Exchange Online push notification subscription unable to perpetuate - exchange-server

I have inherited from a colleague who left a system module that integrates with Exchange Online in Office 365. Essentially what this module does is interact with with the remote Exchange service via EWS Managed API; subscribe for push notifications on changes in a user's calendar.
Change events do get posted to our web service and that is fine. And based on the frequency parameter we defined, the status checks messages also get posted on expected intervals, as per description about the subscription keep-alive behaviour.
The problem is, in observation, the subscription does not perpetuate despite responding with SubscriptionStatusType.OK to keep it ongoing. We never send SubscriptionStatusType.Unsubscribe since there is no error condition found in notification in messages. It seems to only last 9 to 14 hours before the Exchange service stops sending any status checks or change notification messages. When we make subscriptions from two separate web servers (different notification callback URLs), their subscriptions seem to die out around the same time.
Haven't found any clues that would cause the Exchange service to cancel/expire our subscriptions. What other conditions might contribute to this premature unsubscribe?

Exchange will "lose" subscriptions on a fairly regular basis, especially in the O365 environment because mailboxes are continually being shuffled onto different servers in order to load balance the entire ecosystem. Even in an on-prem Exchange you can lose subscription if a CAS restarts. Unfortunately to build a reliable app, you have to check periodically that you heard from Exchange via some kind of notification or heartbeat.

Related

Send, Publish and Request/Response in MasstTransit

Recently I am trying to use MassTransit in our microservice ecosystem.
According to MassTransit vocabulary and from documents my understanding is :
Publish: Sends a message to 1 or many subscribers (Pub/Sub Pattern) to propagate the message.
Send: Used to send messages in fire and forget fashion like publish, but instead It is just used for one receiver. The main difference with Publish is that in Send if your destination didn't receive a message, it would return an exception.
Requests: uses request/reply pattern to just send a message and get a response in a different channel to be able to get response value from the receiver.
Now, my question is according to the Microservice concept, to follow the event-driven design, we use Publish to propagate messages(Events) to the entire ecosystem. but what is exactly the usage (use case) of Send here? Just to get an exception if the receiver doesn't exist?
My next question is that is it a good approach to use Publish, Send and Requests in a Microservices ecosystem at the same time? like publish for propagation events, Send for command (fire and forget), and Requests for getting responses from the destination.
----- Update
I also found here which Chris Patterson clear lots of things. It also helps me a lot.
Your question is not related to MassTransit. MassTransit implements well-known messaging patterns thoughtfully described on popular resources such as Enterprise Integration Patterns
As Eben wrote in his answer, the decision of what pattern to use is driven by intent. There are also technical differences in the message delivery mechanics for each pattern.
Send is for commands, you tell some other service to do something. You do not wait for a reply (fire and forget), although you might get a confirmation of the action success or failure by other means (an event, for example).
It is an implementation of the point-to-point channel, where you also can implement competing consumers to scale the processing, but those will be instances of the same service.
With MassTransit using RabbitMQ it's done by publishing messages to the endpoint exchange rather than to the message type exchange, so no other endpoints will get the message even though they can consume it.
Publish is for events. It's a broadcast type of delivery or fan-out. You might be publishing events to which no one is listening, so you don't really know who will be consuming them. You also don't expect any response.
It is an implementation of the publish-subscribe channel.
MassTransit with RabbitMQ creates exchanges for each message type published and publishes messages to those exchanges. Consumers create bindings between their endpoint exchanges and message exchanges, so each consumer service (different apps) will get those in their independent queues.
Request-response can be used for both commands that need to be confirmed, or for queries.
It is an implementation of the request-reply message pattern.
MassTransit has nice diagrams in the docs explaining the mechanics for RabbitMQ.
Those messaging patterns are frequently used in a complex distributed system in different combinations and variations.
The difference between Send and Publish has to do with intent.
As you stated, Send is for commands and Publish is for events. I worked on a large enterprise system once running on webMethods as the integration engine/service bus and only events were used. I can tell you that it was less than ideal. If the distinction had been there between commands and events it would've made a lot more sense to more people. Anyway, technically one needs a message enqueued and on that level it doesn't matter, which is why a queueing mechanism typically would not care about such semantics.
To illustrate this with a silly example: Facebook places and Event on my timeline that one of my friends is having a birthday on a particular day. I can respond directly (send a message) or I could publish a message on my timeline and hope my friend sees it. Another silly example: You send an e-mail to PersonA and CC 4 others asking "Please produce report ABC". PersonA would be expected to produce the report or arrange for it to be done. If that same e-mail went to all five people as the recipient (no CC) then who gets to do it? I know, even for Publish one could have a 1-1 recipient/topic but what if another endpoint subscribed? What would that mean?
So the sender is responsible, still configurable as subscriptions are, to determine where to Send the message to. For my own service bus I use an implementation of an IMessageRouteProvider interface. A practical example in a system I once developed was where e-mails received had to have their body converted to an image for a content store (IBM FileNet P8 if memory serves). For reasons I will not go into the systems were stopped each night at 20h00 and restarted at 6h00 in the morning. This led to a backlog of usually around 8000 e-mails that had to be converted. The conversion endpoint would process a conversion in about 2 seconds but that still takes a while to work through. In the meantime the web front-end folks could request PDF files for conversion to paged TIFF files. Now, these ended up at the end of the queue and they would have to wait hours for that to come back. The solution was to implement another conversion endpoint, with its own queue, and have the web front-end configured to send the same message type, e.g. ConvertDocumentCommand to that "priority" queue for processing. Pretty easy to do. Now, if that had been a publish how would I do that split? The same event going to 2 different endpoints under different circumstances? Well, you could have another subscription store for your system but now you'd need to maintain both. There could be another answer such as coding this logic into the send bit but that is a design choice and would require coding changes.
In my own Shuttle.Esb service bus I only have Send and Publish. For request/response both the sender and receiver have an inbox and a request would be sent (Send) to the receiver and it in turn could reply (also a Send but uses the sender's URI).

how to resolve "EWS could not contact the appropriate CAS server for this request"

I have an application that is creating StreamingSubscription (using EWS managed API) for many hundreds of room resource mailboxes in EXO, and I'm trying to make the code tolerant of a subscription going "bad" and needing to be re-created. Here's the behavior I'm seeing at the moment.
I first divide up the mailboxes into groups according to best practices, and then within each group:
I create a StreamingSubscription for each mailbox
I add all the subscriptions to a connection and open the connection
Some time passes, and the OnSubscriptionError event fires for
one subscription. At this point I find that the subscription in
question is no longer in the connection's CurrentSubscriptions
collection, but I'm able to identify which mailbox it was originally
for.
I then flag that mailbox so that the code will try to re-create its
subscription.
When the code tries to re-create the failed subscription, this error is thrown:
Request failed because EWS could not contact the appropriate CAS server for this request.
Thereafter, my code tries again once per minute to create that subscription, and that same error is thrown each time. This continues for as long as I allow it to run.
If I then stop my Windows service and start it again, all the subscriptions are created successfully, including that failed one.
Here's my question. Why is it able to successfully create the subscription after stopping and re-starting the service, but can't re-create it after the OnSubscriptionError?

Notification microservice API or queue

I'm new to microservices architecture and want to create a centralised notification microservice to send emails/sms to users.
My first option was to create a notification Kafka queue where all other microservices can send notifications to. The notification microservice would then listen to this queue and send messages accordingly. If the notification service was restarted or taken down, we would not lose any messages as the messages will be stored on the queue.
My second option was to add a notification message API on the notifications microservice. This would make it easier for all other microservices as they just have to call an API as opposed to integrate with the queue. The API would then internally send the message to the notification Kafka queue and send the message. The only issue here is if the API is not available or there is an error, we will lose messages.
Any recommendations on the best way to handle this?
Either works. Some concepts that might help you decide:
A service that fronts "Kafka" would be helpful to:
Hide the implementation. This gives you the flexibility to change Kafka out later for something else. Your wrapper API would only respond with a 200 once it has put the notification request on the queue. I also see giving services direct access to "your" queue similar to allowing services to directly interact with a database they don't own. If you allow direct-access to Kafka and Kafka proves to be inadequate, a change to Kafka will require all of your clients to change their code.
Enforce the notification request contract (ensure the body of the request is well-formed). If you want to make sure that all of the items put on the queue are well-formed according to contract, an API can help enforce that. That will help prevent issues later when the "notifier" service picks notifications off the queue to send.
Adding a wrapper API would be less desirable if:
You don't want to/can't spend the time. Maybe deadlines are driving you to hurry and the days it would take to stand up a wrapper is just too much.
You are a small team and you don't have the resources/tools/time for service-explosion.
Your first design is simple and will work. If you're looking for the advantages I outlined, then consider your second design. And, to make sure I understand it, I would see it unfold like:
Client 1 needs to put out a notification and calls Service A POST /notifications
Service A that accepts POST /notifications
Service A checks the request, puts it on Kafka, responds to client with 200
Service B picks up notification request from Kafka queue.
Service A should be run as multiple instances for reliability.

Office 365 REST API, Outlook Streaming Service - User Account Blacklisted?

We've been using Outlook's streaming service for emails and events for about a month and a half and haven't run into any issues. However, yesterday at around 6:45 PM Pacific Time I stopped receiving notifications for the email account: matthewbordas#outlook.com. There were no errors transmitted back to us and the stream kept reconnecting and the subscriptions weren't expired. This problem is still persisting to this moment, yet all our other user accounts are fine. I should add that this account has been used significantly for testing and the content of the emails sent to and from it have been gibberish; could the API blacklisted have it and marked it as spam? That's the only reasonable conclusion I can come to, but there isn't any documentation on this case and I haven't received any messages from Microsoft indicating that such a restriction was placed on the account. Any help would be greatly appreciated, thank you!

Web Notifications (HTML5) - How it works?

I'm trying to understand whether the HTML5 Web Notifications API can help me out, but I'm falling short in understanding how it works.
I'd like user_a to be able to send user_b a message within my webapp.
I'd like user_b to receive a notification of this.
Can the web notifications API help here? Does it let me specifically target a user (rather than notify everyone the site has been updated_? I can't see how I would create an alert for one person.
Can anyone help me understand a little more?
The notifications API is client side, so it needs to get events from another client-side technology. Here, read THIS: http://nodejs.org/api/. Just kidding. Node.js+socket.io is probably the best way to go here, you can emit events to one or all clients (broadcast). That's a push scenario. Or each user could be pulling their notifications from the server.
HTML5 Web Notifications API gives you ability to display desktop notifications that your application has generated.
What you are trying to achieve is a different thing and web notification is just a part of your scenario.
Depending upon how you are managing your application, for chat and messaging purpose as humbolight mentioned, you should look into node.js. it will provide you the necessary back-end to manage sending and receiving messages between users.
To notify a user that (s)he has received a message, you can opt for ajax polling on client side.
Simply create a javascript that pings the server every x seconds and checks if there is any notification or new message available for this user.
If response is successful, then you can use HTML5 notification API to show a message to user that (s)he has a new message.
The main problem with long polling is server load, and bandwidth usage even when there are no messages, and if number of users are in thousands then you can expect your server always busy responding to poll calls.
An alternate is to use Server Sent Events API, where you send a request to server and then server PUSHES the notifications/messages to the client as soon as they are available.
This reduces the unnecessary client->server polling and seems much better option in your case.
To get started you can check a good tutorial at
HTML5Rocks
What you're looking for is WebSocket. It's the technology that allows a client (browser) to open a persistent connection to the server and receive data from it at the server's whim, rather than having to "poll" the server to see if there's anything new.
Other answers here have already mentioned node.js, but Node is simply one (though arguably the best) option for implementing websockets on your server. You might also be comfortable with Ratchet, which is a websocket server library for PHP, or Tornado which is in Python.
How you handle your real-time communication is up to you. Websockets are merely the underlying technology that you can use to pass data back and forth. The client side of this will be fairly easy, but on the server side, you'll need a mechanism for websocket handlers to get information from each other. Look at tools like ZeroMQ for handling queues, and Memcached or Redis to handle large swaths of data which don't need to be stored permanently.

Resources