Oracle linguistic index not used when SQL contains parameter with LIKE - oracle

My schema (simplified):
CREATE TABLE LOC
(
LOC_ID NUMBER(15,0) NOT NULL,
LOC_REF_NO VARCHAR2(100 CHAR) NOT NULL
)
/
CREATE INDEX LOC_REF_NO_IDX ON LOC
(
NLSSORT("LOC_REF_NO",'nls_sort=''BINARY_AI''') ASC
)
/
My query (in SQL*Plus):
ALTER SESSION SET NLS_COMP=LINGUISTIC NLS_SORT=BINARY_AI
/
VAR LOC_REF_NO VARCHAR2(50)
BEGIN
:LOC_REF_NO := 'SPDJ1501270';
END;
/
-- Causes full table scan (i.e, does not use LOC_REF_NO_IDX)
SELECT * FROM LOC WHERE LOC_REF_NO LIKE :LOC_REF_NO||'%';
-- Causes index scan (i.e. uses LOC_REF_NO_IDX)
SELECT * FROM LOC WHERE LOC_REF_NO LIKE 'SPDJ1501270%';
That the index is not used has been confirmed by doing an AUTOTRACE (EXPLAIN PLAN) and the SQL just runs slower. Tried a number of thing without success. Anyone got any idea what is going on? I am using Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit.
Update 1:
Note that the index is used when I use an equals with a parameter:
SELECT * FROM LOC WHERE LOC_REF_NO = :LOC_REF_NO;
Explain Plan:
----------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 93 | 5 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| LOC | 1 | 93 | 5 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | LOC_REF_NO_IDX | 1 | | 3 (0)| 00:00:01 |
----------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access(NLSSORT("LOC_REF_NO",'nls_sort=''BINARY_AI''')=NLSSORT(:LOC_REF_NO,'nls_
sort=''BINARY_AI'''))
Whereas
SELECT * FROM LOC WHERE LOC_REF_NO LIKE :LOC_REF_NO||'%';
Explain Plan:
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 50068 | 3471K| 5724 (1)| 00:01:09 |
|* 1 | TABLE ACCESS FULL| LOC | 50068 | 3471K| 5724 (1)| 00:01:09 |
--------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("LOC_REF_NO" LIKE :LOC_REF_NO||'%')
Dumbfounded!
Update 2:
The reason we are using NLSSORT on an index is to make Oracle queries case insensitive and this was the general recommendation. Previously we use functional indexes with NLS_UPPER. The strange thing that is that the index is always used, parameter or not, as shown below.
So if table is as above, LOC_REF_NO_IDX index removed and this one added:
CREATE INDEX LOC_REF_NO_CI_IDX ON LOC
(
NLS_UPPER(LOC_REF_NO) ASC
)
/
The all of the following use the index:
ALTER SESSION SET NLS_COMP=BINARY NLS_SORT=BINARY;
SELECT * FROM LOC WHERE NLS_UPPER(LOC_REF_NO) LIKE :LOC_REF_NO||'%';
-------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 50068 | 5329K| 5700 (1)| 00:01:09 |
| 1 | TABLE ACCESS BY INDEX ROWID| LOC | 50068 | 5329K| 5700 (1)| 00:01:09 |
|* 2 | INDEX RANGE SCAN | LOC_REF_NO_CI_IDX | 9012 | | 43 (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access(NLS_UPPER("LOC_REF_NO") LIKE :LOC_REF_NO||'%')
filter(NLS_UPPER("LOC_REF_NO") LIKE :LOC_REF_NO||'%')
So for some reason when using LIKE with a parameter on a linguistic index, the Oracle optimizer is deciding not to use the index.

According to Oracle support note 1451804.1 this is a known limitation of using LIKE with NLSSORT-based indexes.
If you look at the execution plan for your fixed-value query you see something like:
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access(NLSSORT("LOC_REF_NO",'nls_sort=''BINARY_AI''')>=HEXTORAW('7370646A313530
3132373000') AND NLSSORT("LOC_REF_NO",'nls_sort=''BINARY_AI''')<HEXTORAW('7370646A313
5303132373100') )
Those raw values evaluate to spdj1501270 and spdj1501271; those are derived from your constant string, and any values matching your like condition will be in that range. That parse-time transformation has to be based on a constant value, and doesn't work with a bind variable or an expression, presumably because it's evaluated too late.
See the note for more information, but there doesn't seem to be a workaround unfortunately. You might have to go back to your NLS_UPPER approach.
Previous explanation applies generally but not in this specific case, but kept for reference...
In general, with the fixed value the optimiser can estimate how selective your query is when it parses it, because it can know roughly what proportion of index values match that value. It may or may not use the index, depending on the actual value you use.
With the bind variable it comes up with a plan via bind variable peeking:
In bind variable peeking (also known as bind peeking), the optimizer looks at the value in a bind variable when the database performs a hard parse of a statement.
When a query uses literals, the optimizer can use the literal values to find the best plan. However, when a query uses bind variables, the optimizer must select the best plan without the presence of literals in the SQL text. This task can be extremely difficult. By peeking at bind values the optimizer can determine the selectivity of a WHERE clause condition as if literals had been used, thereby improving the plan.
It uses the statistics it has gathered to decide if any particular value is more likely than others. That probably isn't going to be the case here, especially with the like. It's falling back to a full table scan becuse it can't determine when it does the hard parse that the index will be more selective most of the time. Imagine, for example, that the parse decided to use the index, but then you supplied a bind value of just S, or even null - using the index would then do much more work than a full table scan.
Also worth noting:
When choosing a plan, the optimizer only peeks at the bind value during the hard parse. This plan may not be optimal for all possible values.
Adaptive cursor sharing can mitigate this, but this query may not qualify:
The criteria used by the optimizer to decide whether a cursor is bind-sensitive include the following:
The optimizer has peeked at the bind values to generate selectivity estimates.
A histogram exists on the column containing the bind value.
When I mocked this up with a small-ish amount of limited data, v$sql reported both is_bind_sensitive and is_bind_aware as 'N'.

Related

ORDER BY subquery and ROWNUM goes against relational philosophy?

Oracle 's ROWNUM is applied before ORDER BY. In order to put ROWNUM according to a sorted column, the following subquery is proposed in all documentations and texts.
select *
from (
select *
from table
order by price
)
where rownum <= 7
That bugs me. As I understand, table input into FROM is relational, hence no order is stored, meaning the order in the subquery is not respected when seen by FROM.
I cannot remember the exact scenarios but this fact of "ORDER BY has no effect in the outer query" I have read more than once. Examples are in-line subqueries, subquery for INSERT, ORDER BY of PARTITION clause, etc. For example in
OVER (PARTITION BY name ORDER BY salary)
the salary order will not be respected in outer query, and if we want salary to be sorted at outer query output, another ORDER BY need to be added in the outer query.
Some insights from everyone on why the relational property is not respected here and order is stored in the subquery ?
The ORDER BY in this context is in effect Oracle's proprietary syntax for generating an "ordered" row number on a (logically) unordered set of rows. This is a poorly designed feature in my opinion but the equivalent ISO standard SQL ROW_NUMBER() function (also valid in Oracle) may make it clearer what is happening:
select *
from (
select ROW_NUMBER() OVER (ORDER BY price) rn, *
from table
) t
where rn <= 7;
In this example the ORDER BY goes where it more logically belongs: as part of the specification of a derived row number attribute. This is more powerful than Oracle's version because you can specify several different orderings defining different row numbers in the same result. The actual ordering of rows returned by this query is undefined. I believe that's also true in your Oracle-specific version of the query because no guarantee of ordering is made when you use ORDER BY in that way.
It's worth remembering that Oracle is not a Relational DBMS. In common with other SQL DBMSs Oracle departs from the relational model in some fundamental ways. Features like implicit ordering and DISTINCT exist in the product precisely because of the non-relational nature of the SQL model of data and the consequent need to work around keyless tables with duplicate rows.
Not surprisingly really, Oracle treats this as a bit of a special case. You can see that from the execution plan. With the naive (incorrect/indeterminate) version of the limit that crops up sometimes, you get SORT ORDER BY and COUNT STOPKEY operations:
select *
from my_table
where rownum <= 7
order by price;
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 13 | 3 (34)| 00:00:01 |
| 1 | SORT ORDER BY | | 1 | 13 | 3 (34)| 00:00:01 |
|* 2 | COUNT STOPKEY | | | | | |
| 3 | TABLE ACCESS FULL| MY_TABLE | 1 | 13 | 2 (0)| 00:00:01 |
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter(ROWNUM<=7)
If you just use an ordered subquery, with no limit, you only get the SORT ORDER BY operation:
select *
from (
select *
from my_table
order by price
);
-------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 13 | 3 (34)| 00:00:01 |
| 1 | SORT ORDER BY | | 1 | 13 | 3 (34)| 00:00:01 |
| 2 | TABLE ACCESS FULL| MY_TABLE | 1 | 13 | 2 (0)| 00:00:01 |
-------------------------------------------------------------------------------
With the usual subquery/ROWNUM construct you get something different,
select *
from (
select *
from my_table
order by price
)
where rownum <= 7;
------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 13 | 3 (34)| 00:00:01 |
|* 1 | COUNT STOPKEY | | | | | |
| 2 | VIEW | | 1 | 13 | 3 (34)| 00:00:01 |
|* 3 | SORT ORDER BY STOPKEY| | 1 | 13 | 3 (34)| 00:00:01 |
| 4 | TABLE ACCESS FULL | MY_TABLE | 1 | 13 | 2 (0)| 00:00:01 |
------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(ROWNUM<=7)
3 - filter(ROWNUM<=7)
The COUNT STOPKEY operation is still there for the outer query, but the inner query (inline view, or derived table) now has a SORT ORDER BY STOPKEY instead of the simple SORT ORDER BY. This is all hidden away in the internals so I'm speculating, but it looks like the stop key - i.e. the row number limit - is being pushed into the subquery processing, so in effect the subquery may only end up with seven rows anyway - though the plan's ROWS value doesn't reflect that (but then you get the same plan with a different limit), and it still feels the need to apply the COUNT STOPKEY operation separately.
Tom Kyte covered similar ground in an Oracle Magazine article, when talking about "Top- N Query Processing with ROWNUM" (emphasis added):
There are two ways to approach this:
- Have the client application run that query and fetch just the first N rows.
- Use that query as an inline view, and use ROWNUM to limit the results, as in SELECT * FROM ( your_query_here ) WHERE ROWNUM <= N.
The second approach is by far superior to the first, for two reasons. The lesser of the two reasons is that it requires less work by the client, because the database takes care of limiting the result set. The more important reason is the special processing the database can do to give you just the top N rows. Using the top- N query means that you have given the database extra information. You have told it, "I'm interested only in getting N rows; I'll never consider the rest." Now, that doesn't sound too earth-shattering until you think about sorting—how sorts work and what the server would need to do.
... and then goes on to outline what it's actually doing, rather more authoritatively than I can.
Interestingly I don't think the order of the final result set is actually guaranteed; it always seems to work, but arguably you should still have an ORDER BY on the outer query too to make it complete. It looks like the order isn't really stored in the subquery, it just happens to be produced like that. (I very much doubt that will ever change as it would break too many things; this ends up looking similar to a table collection expression which also always seems to retain its ordering - breaking that would stop dbms_xplan working though. I'm sure there are other examples.)
Just for comparison, this is what the ROW_NUMBER() equivalent does:
select *
from (
select ROW_NUMBER() OVER (ORDER BY price) rn, my_table.*
from my_table
) t
where rn <= 7;
-------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 2 | 52 | 4 (25)| 00:00:01 |
|* 1 | VIEW | | 2 | 52 | 4 (25)| 00:00:01 |
|* 2 | WINDOW SORT PUSHED RANK| | 2 | 26 | 4 (25)| 00:00:01 |
| 3 | TABLE ACCESS FULL | MY_TABLE | 2 | 26 | 3 (0)| 00:00:01 |
-------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("RN"<=7)
2 - filter(ROW_NUMBER() OVER ( ORDER BY "PRICE")<=7)
Adding to sqlvogel's good answer :
"As I understand, table input into FROM is relational"
No, table input into FROM is not relational. It is not relational because "table input" are tables and tables are not relations. The myriads of quirks and oddities in SQL eventually all boil down to that simple fact : the core building brick in SQL is the table, and a table is not a relation. To sum up the differences :
Tables can contain duplicate rows, relations cannot. (As a consequence, SQL offers bag algebra, not relational algebra. As another consequence, it is as good as impossible for SQL to even define equality comparison for its most basic building brick !!! How would you compare tables for equality given that you might have to deal with duplicate rows ?)
Tables can contain unnamed columns, relations cannot. SELECT X+Y FROM ... As a consequence, SQL is forced into "column identity by ordinal position", and as a consequence of that, you get all sorts of quirks, e.g. in SELECT A,B FROM ... UNION SELECT B,A FROM ...
Tables can contain duplicate column names, relations cannot. A.ID and B.ID in a table are not distinct column names. The part before the dot is not part of the name, it is a "scope identifier", and that scope identifier "disappears" once you're "outside the SELECT" it appears/is introduced in. You can verify this with a nested SELECT : SELECT A.ID FROM (SELECT A.ID, B.ID FROM ...). It won't work (unless your particular implementation departs from the standard in order to make it work).
Various SQL constructs leave people with the impression that tables do have an ordering to rows. The ORDER BY clause, obviously, but also the GROUP BY clause (which can be made to work only by introducing rather dodgy concepts of "intermediate tables with rows grouped together"). Relations simply are not like that.
Tables can contain NULLs, relations cannot. This one has been beaten to death.
There should be some more, but I don't remember them off the tip of the hat.

Oracle is not using the Indexes

I have a very large table in oracle 11g that has a very simple index in a char field (that is normally Y or N)
If I just execute the queue as bellow it takes around 10s to return
select QueueId, QueueSiteId, QueueData from queue where QueueProcessed = 'N'
However if I force it to use the index I create it takes 80ms
select /*+ INDEX(avaqueue QUEUEPROCESSED_IDX) */ QueueId, QueueSiteId, QueueData
from queue where QueueProcessed = 'N'
Also if I run under the explain plan for as bellow:
explain plan for select QueueId, QueueSiteId, QueueData
from queue where QueueProcessed = 'N'
and
explain plan for select /*+ INDEX(avaqueue QUEUEPROCESSED_IDX) */
QueueId, QueueSiteId, QueueData
from queue where QueueProcessed = 'N'
For the frist plan I got:
------------------------------------------------------------------------------
Plan hash value: 803924726
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 691K| 128M| 12643 (1)| 00:02:32 |
|* 1 | TABLE ACCESS FULL| AVAQUEUE | 691K| 128M| 12643 (1)| 00:02:32 |
------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("QUEUEPROCESSED"='N')
For the second pla I got:
Plan hash value: 2012309891
--------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 691K| 128M| 24386 (1)| 00:04:53 |
| 1 | TABLE ACCESS BY INDEX ROWID| AVAQUEUE | 691K| 128M| 24386 (1)| 00:04:53 |
|* 2 | INDEX RANGE SCAN | QUEUEPROCESSED_IDX | 691K| | 1297 (1)| 00:00:16 |
--------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("QUEUEPROCESSED"='N')
------------------------------------------------------------------------------
What proves that if I don't explicit tell oracle to use the index it does not use it, my question is why is oracle not using this index? Oracle is normally smart enough to make decisions 10 times better than me, that is the first time I actually have to force oracle to use a index and I am not very comfortable with it.
Does anyone have a good explanation for oracle decision to not use the index in this very explicit case?
The QueueProcessed column is probably missing a histogram so Oracle does not know the data is skewed.
If Oracle does not know the data is skewed it will assume the equality predicate, QueueProcessed = 'N', returns DBA_TABLES.NUM_ROWS /
DBA_TAB_COLUMNS.NUM_DISTINCT. The optimizer thinks the query returns half the rows in the table. Based on the 80ms return time the real number of rows returned is small.
Index range scans generally only work well when they select a small percentage of the rows. Index range scans read from a data structure one block at a time. And if the data is randomly distributed, it may need to read every block of data from the table anyway. For those reasons, if the query accesses a large portion of the table, it is more efficient to use a multi-block full table scan.
The bad cardinality estimate from the skewed data causes Oracle to think a full table scan is better. Creating a histogram will fix the issue.
Sample schema
Create a table, fill it with skewed data, and gather statistics the first time.
drop table queue;
create table queue(
queueid number,
queuesiteid number,
queuedata varchar2(4000),
queueprocessed varchar2(1)
);
create index QUEUEPROCESSED_IDX on queue(queueprocessed);
--Skewed data - only 100 of the 100000 rows are set to N.
insert into queue
select level, level, level, decode(mod(level, 1000), 0, 'N', 'Y')
from dual connect by level <= 100000;
begin
dbms_stats.gather_table_stats(user, 'QUEUE');
end;
/
The first execution will have the problem.
In this case the default statistics settings do not gather histograms the first time. The plan shows a full table scan and estimates Rows=50000, exactly half.
explain plan for
select QueueId, QueueSiteId, QueueData
from queue where QueueProcessed = 'N';
select * from table(dbms_xplan.display);
Plan hash value: 1157425618
---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 50000 | 878K| 103 (1)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| QUEUE | 50000 | 878K| 103 (1)| 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("QUEUEPROCESSED"='N')
Create a histogram
The default statistics settings are usually sufficient. Histogram may not be collected for several reasons. They may be manually disabled - check for the tasks, jobs or preferences set by the DBA.
Also, histograms are only automatically collected on columns that are both skewed and used. Gathering histograms can take time, there's no need to create the histogram on a column that is never used in a relevant predicate. Oracle tracks when a column is used and could benefit from a histogram, although that data is lost if the table is dropped.
Running a sample query and re-gathering statistics will make the histogram appear:
select QueueId, QueueSiteId, QueueData
from queue where QueueProcessed = 'N';
begin
dbms_stats.gather_table_stats(user, 'QUEUE');
end;
/
Now the Rows=100 and the Index is used.
explain plan for
select QueueId, QueueSiteId, QueueData
from queue where QueueProcessed = 'N';
select * from table(dbms_xplan.display);
Plan hash value: 2630796144
----------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 100 | 1800 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID BATCHED| QUEUE | 100 | 1800 | 2 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | QUEUEPROCESSED_IDX | 100 | | 1 (0)| 00:00:01 |
----------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("QUEUEPROCESSED"='N')
Here's the histogram:
select column_name, histogram
from dba_tab_columns
where table_name = 'QUEUE'
order by column_name;
COLUMN_NAME HISTOGRAM
----------- ---------
QUEUEDATA NONE
QUEUEID NONE
QUEUEPROCESSED FREQUENCY
QUEUESITEID NONE
Create the histogram
Try to determine why the histogram was missing. Check that statistics are gathered with the defaults, there are no weird column or table preferences, and that table is not constantly dropped and re-loaded.
If you cannot rely on the default statistics job for your process you can manually gather histograms with the method_opt parameter like this:
begin
dbms_stats.gather_table_stats(user, 'QUEUE', method_opt=>'for columns size 254 queueprocessed');
end;
/
The answer - at least the first one that will just lead to more questions - is right there in the plans. The first plan has an estimated cost and estimated execution time about half that of the second plan. In the absence of the hint, Oracle is choosing the plan that it thinks will run faster.
So of course the next question is why is its estimate so far off in this case. Not only are the estimated times wrong relative to each other, both are much greater than what you actually experience when running the query.
The first thing I would look at is the estimated number of rows returned. The optimizer is guessing, in both cases, that there are about 691,000 rows in table matching your predicate. Is this close to the truth, or very far off? If it's far off, then refreshing statistics may be the right solution. Although if the column only has two possible values, I'd be kind of surprised if the existing stats are so off base.

Optimization: Use “between” or “>= and <=”

Let’s take the following question, for example. Is there any difference between using:
SELECT * FROM foo_table
WHERE column BETWEEN n and m
and
SELECT * FROM foo_table
WHER column>=n and column<=m?
Looks like a simple one,Oracle’s documentation is dead clear on this:
[Between] means “greater than or equal to low value and less than or equal to high value.”
They are the same from a semantic point of view. But, SQL is a declarative language. So, you wouldn’t expect same execution plan with two semantically identical statements, right?
My Questions are:
An optimizer might watch for a different code path for equal or less than versus less than on a numeric index, right?
What is better and faster way for Numeric types?
Oracle's optimizer converts between to >= and <=, which you can see from the execution plan. For example, this is from 11gR2:
explain plan for
select * from dual where dummy between 'W' and 'Y';
select * from table(dbms_xplan.display);
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 2 | 2 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| DUAL | 1 | 2 | 2 (0)| 00:00:01 |
--------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("DUMMY">='W' AND "DUMMY"<='Y')
Notice the filter being used. So it makes no difference which you use, except perhaps in edge cases like the article this seems to have come from (thanks Shankar). Worrying about it for mainstream cases probably isn't going to be on much benefit.

Using function based index (oracle) to speed up count(X)

I've a table Film:
CREATE TABLE film (
film_id NUMBER(5) NOT NULL,
title varchar2(255));
And I wanted to make the query, which counts how many titles start with the same word and only displays ones with more than 20, faster using a function based index. The query:
SELECT FW_SEPARATOR.FIRST_WORD AS "First Word", COUNT(FW_SEPARATOR.FIRST_WORD) AS "Count"
FROM (SELECT regexp_replace(FILM.TITLE, '(\w+).*$','\1') AS FIRST_WORD FROM FILM) FW_SEPARATOR
GROUP BY FW_SEPARATOR.FIRST_WORD
HAVING COUNT(FW_SEPARATOR.FIRST_WORD) >= 20;
The thing is, I created this function based index:
CREATE INDEX FIRST_WORD_INDEX ON FILM(regexp_replace(TITLE, '(\w+).*$','\1'));
But it didn't speed anything up...
I was wondering if anyone could help me with this :)
Add a redundant predicate to the query to convince Oracle that the expression will not return null values and an index can be used:
select regexp_replace(film.title, '(\w+).*$','\1') first_word
from film
where regexp_replace(film.title, '(\w+).*$','\1') is not null;
Oracle can use an index like a skinny version of a table. Many queries only contain a small subset of the columns in a table. If all the columns in that set are part of the same index, Oracle can use that index instead of the table. This will be either an INDEX FAST FULL SCAN or an INDEX FULL SCAN. The data may be read similar to the way a regular table scan works. But since the index is much smaller than the table, that access method can be much faster.
But function-based indexes do not store NULLs. Oracle cannot use an index scan if it thinks there is a NULL that is not stored in the index. In this case, if the base column was defined as NOT NULL, the regular expression would always return a non-null value. But unsurprisingly, Oracle has not built code to determine whether or not a regular expression could return NULL. That sounds like an impossible task, similar to the halting problem.
There are several ways to convince Oracle that the expression is not null. The simplest may be to repeat the predicate and add an IS NOT NULL condition.
Sample Schema
create table film (
film_id number(5) not null,
title varchar2(255) not null);
insert into film select rownumber, column_value
from
(
select rownum rownumber, column_value from table(sys.odcivarchar2list(
q'<The Shawshank Redemption>',
q'<The Godfather>',
q'<The Godfather: Part II>',
q'<The Dark Knight>',
q'<Pulp Fiction>',
q'<The Good, the Bad and the Ugly>',
q'<Schindler's List>',
q'<12 Angry Men>',
q'<The Lord of the Rings: The Return of the King>',
q'<Fight Club>'))
);
create index film_idx1 on film(regexp_replace(title, '(\w+).*$','\1'));
begin
dbms_stats.gather_table_stats(user, 'FILM');
end;
/
Query that does not use index
Even with an index hint, the normal query will not use an index. Remember that hints are directives, and this query would use the index if it was possible.
explain plan for
select /*+ index_ffs(film) */ regexp_replace(title, '(\w+).*$','\1') first_word
from film;
select * from table(dbms_xplan.display);
Plan hash value: 1232367652
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 10 | 50 | 3 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| FILM | 10 | 50 | 3 (0)| 00:00:01 |
--------------------------------------------------------------------------
Query that uses index
Now add the extra condition and the query will use the index. I'm not sure why it uses an INDEX FULL SCAN instead of an INDEX FAST FULL SCAN. With such small sample data it doesn't matter. The important point is that an index is used.
explain plan for
select regexp_replace(film.title, '(\w+).*$','\1') first_word
from film
where regexp_replace(film.title, '(\w+).*$','\1') is not null;
select * from table(dbms_xplan.display);
Plan hash value: 1151375616
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 10 | 50 | 1 (0)| 00:00:01 |
|* 1 | INDEX FULL SCAN | FILM_IDX1 | 10 | 50 | 1 (0)| 00:00:01 |
------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter( REGEXP_REPLACE ("TITLE",'(\w+).*$','\1') IS NOT NULL)

is there a tricky way to optimize this query

I'm working on a table that has 3008698 rows
exam_date is a DATE field.
But queries I run want to match only the month part. So what I do is:
select * from my_big_table where to_number(to_char(exam_date, 'MM')) = 5;
which I believe takes long because of function on the column. Is there a way to avoid this and make it faster? other than making changes to the table? exam_date in the table have different date values. like 01-OCT-10 or 12-OCT-10...and so on
I don't know Oracle, but what about doing
WHERE exam_date BETWEEN first_of_month AND last_of_month
where the two dates are constant expressions.
select * from my_big_table where MONTH(exam_date) = 5
oops.. Oracle huh?..
select * from my_big_table where EXTRACT(MONTH from exam_date) = 5
Bear in mind that since you want approximately 1/12th of all the data, it may well be more efficient for Oracle to perform a full table scan anyway. This may explain why performance was worse when you followed harpo's advice.
Why? Suppose your data is such that 20 rows fit on each database block (on average), so that you have a total of 3,000,000/20 = 150,000 blocks. That means a full table scan will require 150,000 block reads. Now about 1/12th of the 3,000,000 rows will be for month 05. 3,000,000/12 is 250,000. So that's 250,000 table reads if you use the index - and that's ignoring the index reads that will also be required. So in this example the full table scan does a lot less work than the indexed search.
Bear in miond that there are only twelve distinct values for MONTH. So unless you have a strongly clustered set of records (say if you use partitioining) it is possible that using an index is not necessarily the most efficient way of querying in this fashion.
I didn't find that using EXTRACT() lead the optimizer to use a regular index on my date column but YMMV:
SQL> create index big_d_idx on big_table(col3) compute statistics
2 /
Index created.
SQL> set autotrace traceonly explain
SQL> select * from big_table
2 where extract(MONTH from col3) = 'MAY'
3 /
Execution Plan
----------------------------------------------------------
Plan hash value: 3993303771
-------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 23403 | 1028K| 4351 (3)| 00:00:53 |
|* 1 | TABLE ACCESS FULL| BIG_TABLE | 23403 | 1028K| 4351 (3)| 00:00:53 |
-------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(EXTRACT(MONTH FROM INTERNAL_FUNCTION("COL3"))=TO_NUMBER('M
AY'))
SQL>
What definitely can persuade the optimizer to use an index in these scenarios is building a function-based index:
SQL> create index big_mon_fbidx on big_table(extract(month from col3))
2 /
Index created.
SQL> select * from big_table
2 where extract(MONTH from col3) = 'MAY'
3 /
Execution Plan
----------------------------------------------------------
Plan hash value: 225326446
-------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|Time |
-------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 23403 | 1028K| 475 (0)|00:00:06|
| 1 | TABLE ACCESS BY INDEX ROWID| BIG_TABLE | 23403 | 1028K| 475 (0)|00:00:06|
|* 2 | INDEX RANGE SCAN | BIG_MON_FBIDX | 9361 | | 382 (0)|00:00:05|
-------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access(EXTRACT(MONTH FROM INTERNAL_FUNCTION("COL3"))=TO_NUMBER('MAY'))
SQL>
The function call means that Oracle won't be able to use any index that might be defined on the column.
Either remove the function call (as in harpo's answer) or use a function based index.

Resources