Cache in multi-tenant environment - caching

I am developing a service that will host multiple tenants. The service will have a limited size cache that will be used by multiple tenants. I do not want to limit the cache size for individual tenants because then we are not effectively using the entire cache pool. But, not having a limit for individual clients might lead to abusing the cache (for example, one tenant may continuously cache the data that will never be retrieved again). What is a better approach?

IMHO, a lot of factors come into picture for this use case. I guess you are using some sorta paid cache model like redis.
A question is how can you restrict size if tenants are not known beforehand. IFA tenant adds up on the fly,you cannot shrink the size of the cache already allowed to the existing tenants
Ideally the cache can be identified based on tenant ID the key. So when you add something to the cache for a tenant, you increase the usage amount on each store.
It would be better to bill the tenant based on the metered cache usage or use a customLRU algorithm to evict the unused cache.
Hope this helps.

Related

What is best way to cache 100k records in memory

For authentication I need to cache records like username, password
Does it is feasible to cache this data ?.
A caching platform is partially specific to the platform and language you want to use, for example if you want to c# then something like MemoryCache is a good choice.
However if you are looking to cache your entire set of user data, then maybe its worth considering something different than a cache, maybe try and speed up access to your data store, look into a NoSQL store, or a memory optimized SQL Table.
Caching is great when a single item is retrieved lots of times, but not so awesome when lots of data is retrieved a very little amount (i.e a user account).

Will Caching be useful when we need multiple items in one go

We are working on a ecom site, where admin can store some configuration on the combination of Product-Category-manufacturer or on Product-Category.
We have some reports, which can return 10000 Product's transactions (with 100-1000 unique combination of product-category-manufacturer ).
In this report, we also need to use configuration as well.
One option could be to fetch configurations from the same stored procedure for all unique Product-Category-manufacturer.
Another option could be to cache all these combination in some outproc cache (like redis). And once transaction data is fetched from stored procedure, system will pull the data from cache for all 1000 Product-Category-Feature combinations. But in this case, we will have to request cache 1000 times and if some of keys are not found in cache, we will have to hit database.
In fact there can be some combination where data does not exist in database. If we request for these combination, system will not find it in cache, and it will have to hit database every-time. To resolve this, we will have to form a set of all the Product-Category-Feature combination where there is data available in cache.
Could anybody suggest that if cache will be useful in this case?
We use caching mainly in 2 occasions,
To Reduce latency: Cache is closer to the client it takes less time for the resource to reach the client.
To Reduce network traffic: Most of the time we see that some resources are reusable but always fetch from original source which
is costly and make more unnecessary traffic. Adding a cache layer
solves this.
So to answer your question, "Will Caching be useful when we need multiple items in one go?" You have to think on the above 2 points. How much you are reusing (cache hit percentage). And cost difference between cache call and call to original source.
If your issue is getting 1000 items at once, Redis don't have issue providing that. It will be so much faster than the transnational DB. And you can have set of all the Product-Category-Feature combinations, its better as we will no have cache misses. However think about the size of the Redis DB, before you proceed.

Difference between In-Memory cache and In-Memory Database

I was wondering if I could get an explanation between the differences between In-Memory cache(redis, memcached), In-Memory data grids (gemfire) and In-Memory database (VoltDB). I'm having a hard time distinguishing the key characteristics between the 3.
Cache - By definition means it is stored in memory. Any data stored in memory (RAM) for faster access is called cache. Examples: Ehcache, Memcache Typically you put an object in cache with String as Key and access the cache using the Key. It is very straight forward. It depends on the application when to access the cahce vs database and no complex processing happens in the Cache. If the cache spans multiple machines, then it is called distributed cache. For example, Netflix uses EVCAche which is built on top of Memcache to store the users movie recommendations that you see on the home screen.
In Memory Database - It has all the features of a Cache plus come processing/querying capabilities. Redis falls under this category. Redis supports multiple data structures and you can query the data in the Redis ( examples like get last 10 accessed items, get the most used item etc). It can span multiple machine and is usually very high performant and also support persistence to disk if needed. For example, Twitter uses Redis database to store the timeline information.
I don't know about gemfire and VoltDB, but even memcached and redis are very different. Memcached is really simple caching, a place to store variables in a very uncomplex fashion, and then retrieve them so you don't have to go to a file or database lookup every time you need that data. The types of variable are very simple. Redis on the other hand is actually an in memory database, with a very interesting selection of data types. It has a wonderful data type for doing sorted lists, which works great for applications such as leader boards. You add your new record to the data, and it gets sorted automagically.
So I wouldn't get too hung up on the categories. You really need to examine each tool differently to see what it can do for you, and the application you're building. It's kind of like trying to draw comparisons on nosql databases - they are all very different, and do different things well.
I would add that things in the "database" category tend to have more features to protect and replicate your data than a simple "cache". Cache is temporary (usually) where as database data should be persistent. Many cache solutions I've seen do not persist to disk, so if you lost power to your whole cluster, you'd lose everything in cache.
But there are some cache solutions that have persistence and replication features too, so the line is blurry.
An in-memory Cache is a common query store therefore relieves DB of read Workloads. Common examples of in-memory cache are Redis cache. An example could be Web site storing popular searches made by clients thereby relieving the DB of some load.
In-memory Cache provides query functionality on top of caching (storing session data in RAM (temporary storage)).
Memcache falls in the temp store caching category.

Is it normal to have a lot of records in Memached with Laravel?

I have an instance of Laravel up and running with a load balancer in place. We've setup memcached (two server nodes) to handle session management. So far the site is running fine in our test environment. The site largely ties into a web based API, so we only store a few values (other than user authentication data) in a user's session to work with the site.
After a short amount of usage by one or two users, there are about 3000 items in the cache. I don't have full access to the nodes, so I don't know exactly what the items are. However we don't appear to be maxing out the nodes with memory and the application functionality is good.
Is this to be expected? I understand that the cache management will clear out old records over time as they expire, so these could just be "remnant" data records, but this is my first time working with memcached so I want to verify that this is normal behavior.
It's quite normal for any caching solution to rack up a number of items. Especially for lots of small objects it's often more efficient for a cache to keep them beyond their expiry (but no longer serve them) and then clear them out in a big sweep periodically.
"Remnant records" pretty much describes it.
As long as your application performs as expected, I wouldn't worry. You should worry when you get a lot of cache misses for objects that were supposed to be in cache but kicked out before expiry due to lack of memory to store them all.
Yes
It is normal to have lots of records in Memcache. But you need to have proper session management.
Store small amount of values per session. (Data which is required most of the API's, Like user access token)
Cache expiration
The biggest challenge when using Memcache is avoiding cache staleness while still writing clean code. Most developers store data to Memcache and delete or update data when it changes. This strategy can get messy very quickly – Memcache code becomes riddled throughout an application. Rails’ Sweepers can help with this problem, but other languages and frameworks don’t have similar alternatives.
One simple strategy to avoid code complexity is to write data to Memcache with an expiration. Data with an expiration will automatically expire when the expiration is reached. Most applications can benefit from time-based cache expiration with infrequently changing content such as static assets, headers, footers, blog posts, etc.
List management
A simple list stored in Memcache can be useful for maintaining denormalized relationships.
For example An e-commerce website may want to store a small table of recent purchases. Rather than keeping a serialized list in Memcache and recalculating it when a new purchase is made, append and prepend can be used to store denormalized data, avoiding a database query.
Note - Memcache only supports a max value size of 1 MB. Be careful creating lists that may grow larger in size than the maximum allowed value size
Also Check these links-
https://cloud.google.com/appengine/docs/adminconsole/memcache
http://docs.oracle.com/cd/E17952_01/refman-5.6-en/ha-memcached-faq.html
http://symas.com/mdb/memcache/

Cache Managers in Enterprise Library caching Application block

I have been using asp web cache in all my prior application developments. I am looking into Ent. Lib caching application block which seems pretty interesting.
However, I have need some clarifications on how the cache managers work?
1- What is the purpose of having multiple cache managers, is it to partition cahing items ? I am used to have only a single cache manager (similar to ent. lib. default cache manager)?
2- Does each cache manager maps to an individual hash table ? or they are all going to be stored in one hash table?
3- If I only use the Null storage option (no backing store) does it make a difference if I use multiple cache managers?
Thanks,
Robert B.
Multiple cache managers allow you to specify different policies for each. These include:
the maximum number of items you allow in the cache
how often you'd like to poll for expired items
Usually, you'd want these to be configurable based on the items you store in the cache. If you have volatile items that you store for just an hour, you'd like to poll for expired items every ten minutes. If your items can stay in the cache for a week, polling every ten minutes makes little sense and is a waste of resources.

Resources