Floating point integers in Ruby - ruby

Trying to make a small script to calculate the incrementally increasing value of a base number by 2%.
Having trouble with, I think, the way I'm handling the floating point.
The script should calculate each number up to a preset value, but it just goes on infinitely.
require 'bigdecimal'
def multiplication sum, count
print "Original Sum: #{sum}\n"
until sum == 100 do
float = BigDecimal('1.02')
next_sum = (sum * float.round(3))
print "#{count}: #{next_sum}\n"
count += 1
sum = next_sum
end
end
multiplication 2, 1

Your script is looping until sum is exactly 100, which might not happen if it jumps from a value less to a value greater. Change the loop condition to this:
until sum >= 100 do
Also, "floating point integer" is a contradiction in terms.

Related

A faster alternative to all(a(:,i)==a,1) in MATLAB

It is a straightforward question: Is there a faster alternative to all(a(:,i)==a,1) in MATLAB?
I'm thinking of a implementation that benefits from short-circuit evaluations in the whole process. I mean, all() definitely benefits from short-circuit evaluations but a(:,i)==a doesn't.
I tried the following code,
% example for the input matrix
m = 3; % m and n aren't necessarily equal to those values.
n = 5000; % It's only possible to know in advance that 'm' << 'n'.
a = randi([0,5],m,n); % the maximum value of 'a' isn't necessarily equal to
% 5 but it's possible to state that every element in
% 'a' is a positive integer.
% all, equal solution
tic
for i = 1:n % stepping up the elapsed time in orders of magnitude
%%%%%%%%%% all and equal solution %%%%%%%%%
ax_boo = all(a(:,i)==a,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
toc
% alternative solution
tic
for i = 1:n % stepping up the elapsed time in orders of magnitude
%%%%%%%%%%% alternative solution %%%%%%%%%%%
ax_boo = a(1,i) == a(1,:);
for k = 2:m
ax_boo(ax_boo) = a(k,i) == a(k,ax_boo);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
toc
but it's intuitive that any "for-loop-solution" within the MATLAB environment will be naturally slower. I'm wondering if there is a MATLAB built-in function written in a faster language.
EDIT:
After running more tests I found out that the implicit expansion does have a performance impact in evaluating a(:,i)==a. If the matrix a has more than one row, all(repmat(a(:,i),[1,n])==a,1) may be faster than all(a(:,i)==a,1) depending on the number of columns (n). For n=5000 repmat explicit expansion has proved to be faster.
But I think that a generalization of Kenneth Boyd's answer is the "ultimate solution" if all elements of a are positive integers. Instead of dealing with a (m x n matrix) in its original form, I will store and deal with adec (1 x n matrix):
exps = ((0):(m-1)).';
base = max(a,[],[1,2]) + 1;
adec = sum( a .* base.^exps , 1 );
In other words, each column will be encoded to one integer. And of course adec(i)==adec is faster than all(a(:,i)==a,1).
EDIT 2:
I forgot to mention that adec approach has a functional limitation. At best, storing adec as uint64, the following inequality must hold base^m < 2^64 + 1.
Since your goal is to count the number of columns that match, my example converts the binary encoding to integer decimals, then you just loop over the possible values (with 3 rows that are 8 possible values) and count the number of matches.
a_dec = 2.^(0:(m-1)) * a;
num_poss_values = 2 ^ m;
num_matches = zeros(num_poss_values, 1);
for i = 1:num_poss_values
num_matches(i) = sum(a_dec == (i - 1));
end
On my computer, using 2020a, Here are the execution times for your first 2 options and the code above:
Elapsed time is 0.246623 seconds.
Elapsed time is 0.553173 seconds.
Elapsed time is 0.000289 seconds.
So my code is 853 times faster!
I wrote my code so it will work with m being an arbitrary integer.
The num_matches variable contains the number of columns that add up to 0, 1, 2, ...7 when converted to a decimal.
As an alternative you can use the third output of unique:
[~, ~, iu] = unique(a.', 'rows');
for i = 1:n
ax_boo = iu(i) == iu;
end
As indicated in a comment:
ax_boo isolates the indices of the columns I have to sum in a row vector b. So, basically the next line would be something like c = sum(b(ax_boo),2);
It is a typical usage of accumarray:
[~, ~, iu] = unique(a.', 'rows');
C = accumarray(iu,b);
for i = 1:n
c = C(i);
end

Ruby prime number sum

I am trying to take the sum of the n first prime numbers. I found a way of showing the first 100, but I don't know how to get rid of 1 and how to make a sum with the numbers. I was thinking about storing them into an array, but I can not figure it out.
num = 1
last = 100
while (num <= last)
condition = true
x = 2
while (x <= num / 2)
if (num % x == 0)
condition = false
break
end
x = x + 1
end
primes = [] # Here
if condition
puts num.to_s
primes << num.to_s # Here
end
num = num + 1
end
puts primes.inject(:+) # Here
Based on what I understood from what you guys are saying I added these lines (the ones commented # Here). It still does not print the sum of them. What I meant with getting rid of 1 is that I know that 1 is not considered a prime number, and I do not get how to make it without 1. Thank you very much guys for your time and answers, and please understand that I am just starting to study this.
If you want to add a list of numbers together you can use the following:
list_of_prime_numbers.inject(0) {|total,prime| total + prime}
This will take the list of numbers, and add them one by one to an accumulator (total) that was injected into the loop (.inject(0)), add it to the current number (prime) and then return the total which then becomes the value of total in the next iteration.
I'm not quite sure what you mean by:
I don't know how to get rid of 1
but if you mean to not use the first number (which is 1 in a list of primes starting from 0)
then you could do:
list_of_prime_numbers[1...list_of_prime_numbers.length].
inject(0) {|total,prime| total + prime}
Which would only get all the numbers except the first up to but not including the length of the array
and as for getting the number into the array you could push it into the array like so:
list_of_prime_numbers << prime_number
You can make use of Prime Enumerable in ruby
require 'prime'
((1..100).select { |number| Prime.prime?(number) }).inject(:+)
OR
Prime.each(100).inject(:+)
Hope this helps.

Code Optimization - Generating Prime Numbers

I am trying to write a code for the following problem:
Input
The input begins with the number t of test cases in a single line (t<=10). In each of the next t lines there are two numbers m and n (1 <= m <= n <= 1000000000, n-m<=100000) separated by a space.
Output
For every test case print all prime numbers p such that m <= p <= n, one number per line, test cases separated by an empty line.
Sample Input:
2
1 10
3 5
Sample Output:
2
3
5
7
3
5
My code:
def prime?(number)
return false if number == 1
(2..number-1).each do |n|
return false if number % n == 0
end
true
end
t = gets.strip.to_i
for i in 1..t
mi, ni = gets.strip.split(' ')
mi = mi.to_i
ni = ni.to_i
i = mi
while i <= ni
puts i if prime?(i)
i += 1
end
puts "\n"
end
The code is running fine, only problem I am having is that it is taking a lot of time when run against big input ranges as compared to other programming languages.
Am I doing something wrong here? Can this code be further optimized for faster runtime?
I have tried using a for loop, normal loop, creating an array and then printing it.
Any suggestions.
Ruby is slower than some other languages, depending on what language you compare it to; certainly slower than C/C++. But your problem is not the language (although it influences the run-time behavior), but your way of finding primes. There are many better algorithms for finding primes, such as the Sieve of Eratosthenes or the Sieve of Atkin. You might also read the “Generating Primes” page on Wikipedia and follow the links there.
By the way, for the Sieve of Eratosthenes, there is even a ready-to-use piece of code on Stackoverflow. I'm sure a little bit of googling will turn up implementations for other algorithms, too.
Since your problem is finding primes within a certain range, this is the Sieve of Eratosthenes code found at the above link modified to suit your particular problem:
def better_sieve_upto(first, last)
sieve = [nil, nil] + (2..last).to_a
sieve.each do |i|
next unless i
break if i*i > last
(i*i).step(last, i) {|j| sieve[j] = nil }
end
sieve.reject {|i| !i || i < first}
end
Note the change from "sieve.compact" to a complexer "sieve.reject" with a corresponding condition.
Return true if the number is 2, false if the number is evenly divisible by 2.
Start iterating at 3, instead of 2. Use a step of two.
Iterate up to the square root of the number, instead of the number minus one.
def prime?(number)
return true if number == 2
return false if number <= 1 or number % 2 == 0
(3..Math.sqrt(number)).step(2) do |n|
return false if number % n == 0
end
true
end
This will be much faster, but still not very fast, as #Technation explains.
Here's how to do it using the Sieve of Eratosthenes built into Ruby. You'll need to precompute all the primes up to the maximum maximum, which will be very quick, and then select the primes that fall within each range.
require 'prime'
ranges = Array.new(gets.strip.to_i) do
min, max = gets.strip.split.map(&:to_i)
Range.new(min, max)
end
primes = Prime.each(ranges.map(&:max).max, Prime::EratosthenesGenerator.new)
ranges.each do |range|
primes.each do |prime|
next if prime < range.min
break if prime > range.max
puts prime
end
primes.rewind
puts "\n"
end
Here's how the various solutions perform with the range 50000 200000:
Your original prime? function: 1m49.639s
My modified prime? function: 0m0.687s
Prime::EratosthenesGenerator: 0m0.221s
The more ranges being processed, the faster the Prime::EratosthenesGenerator method should be.

How to round float number with while loop in MATLAB?

I have a rather unorthodox homework assignment where I am to write a simple function where a double value is rounded to an integer with using only a while loop.
The main goal is to write something similar to the round function.
I made some progress where I should add or subtract a very small double value and I would eventually hit a number that will become an integer:
while(~isinteger(inumberup))
inumberup=inumberup+realmin('double');
end
However, this results in a never-ending loop. Is there a way to accomplish this task?
I'm not allowed to use round, ceil, floor, for, rem or mod for this question.
Assumption: if statements and the abs function are allowed as the list of forbidden functions does not include this.
Here's one solution. What you can do is keep subtracting the input value by 1 until you get to a point where it becomes less than 1. The number produced after this point is the fractional component of the number (i.e. if our number was 3.4, the fractional component is 0.4). You would then check to see if the fractional component, which we will call f, is less than 0.5. If it is, that means you need to round down and so you would subtract the input number with f. If the number is larger than 0.5 or equal to 0.5, you would add the input number by (1 - f) in order to go up to the next highest number. However, this only handles the case for positive values. For negative values, round in MATLAB rounds towards negative infinity, so what we ought to do is take the absolute value of the input number and do this subtraction to find the fractional part.
Once we do this, we then check to see what the fractional part is equal to, and then depending on the sign of the number, we either add or subtract accordingly. If the fractional part is less than 0.5 and if the number is positive, we need to subtract by f else we need to add by f. If the fractional part is greater than or equal to 0.5, if the number is positive we need to add by (1 - f), else we subtract by (1 - f)
Therefore, assuming that num is the input number of interest, you would do:
function out = round_hack(num)
%// Repeatedly subtract until we get a value that less than 1
%// i.e. the fractional part
%// Also make sure to take the absolute value
f = abs(num);
while f > 1
f = f - 1;
end
%// Case where we need to round down
if f < 0.5
if num > 0
out = num - f;
else
out = num + f;
end
%// Case where we need to round up
else
if num > 0
out = num + (1 - f);
else
out = num - (1 - f);
end
end
Be advised that this will be slow for larger values of num. I've also wrapped this into a function for ease of debugging. Here are a few example runs:
>> round_hack(29.1)
ans =
29
>> round_hack(29.6)
ans =
30
>> round_hack(3.4)
ans =
3
>> round_hack(3.5)
ans =
4
>> round_hack(-0.4)
ans =
0
>> round_hack(-0.6)
ans =
-1
>> round_hack(-29.7)
ans =
-30
You can check that this agrees with MATLAB's round function for the above test cases.
You can do it without loop: you can use num2str to convert the number into a string, then find the position of the . in the string and extract the string fron its beginning up to the position of the .; then you convert it back to a numebr with str2num
To round it you have to check the value of the first char (converted into a number) after the ..
r=rand*100
s=num2str(r)
idx=strfind(num2str(r),'.')
v=str2num(s(idx+1))
if(v <= 5)
rounded_val=str2num(s(1:idx-1))
else
rounded_val=str2num(s(1:idx-1))+1
end
Hope this helps.
Qapla'

Psuedo-Random Variable

I have a variable, between 0 and 1, which should dictate the likelyhood that a second variable, a random number between 0 and 1, is greater than 0.5. In other words, if I were to generate the second variable 1000 times, the average should be approximately equal to the first variable's value. How do I make this code?
Oh, and the second variable should always be capable of producing either 0 or 1 in any condition, just more or less likely depending on the value of the first variable. Here is a link to a graph which models approximately how I would like the program to behave. Each equation represents a separate value for the first variable.
You have a variable p and you are looking for a mapping function f(x) that maps random rolls between x in [0, 1] to the same interval [0, 1] such that the expected value, i.e. the average of all rolls, is p.
You have chosen the function prototype
f(x) = pow(x, c)
where c must be chosen appropriately. If x is uniformly distributed in [0, 1], the average value is:
int(f(x) dx, [0, 1]) == p
With the integral:
int(pow(x, c) dx) == pow(x, c + 1) / (c + 1) + K
one gets:
c = 1/p - 1
A different approach is to make p the median value of the distribution, such that half of the rolls fall below p, the other half above p. This yields a different distribution. (I am aware that you didn't ask for that.) Now, we have to satisfy the condition:
f(0.5) == pow(0.5, c) == p
which yields:
c = log(p) / log(0.5)
With the current function prototype, you cannot satisfy both requirements. Your function is also asymmetric (f(x, p) != f(1-x, 1-p)).
Python functions below:
def medianrand(p):
"""Random number between 0 and 1 whose median is p"""
c = math.log(p) / math.log(0.5)
return math.pow(random.random(), c)
def averagerand(p):
"""Random number between 0 and 1 whose expected value is p"""
c = 1/p - 1
return math.pow(random.random(), c)
You can do this by using a dummy. First set the first variable to a value between 0 and 1. Then create a random number in the dummy between 0 and 1. If this dummy is bigger than the first variable, you generate a random number between 0 and 0.5, and otherwise you generate a number between 0.5 and 1.
In pseudocode:
real a = 0.7
real total = 0.0
for i between 0 and 1000 begin
real dummy = rand(0,1)
real b
if dummy > a then
b = rand(0,0.5)
else
b = rand(0.5,1)
end if
total = total + b
end for
real avg = total / 1000
Please note that this algorithm will generate average values between 0.25 and 0.75. For a = 1 it will only generate random values between 0.5 and 1, which should average to 0.75. For a=0 it will generate only random numbers between 0 and 0.5, which should average to 0.25.
I've made a sort of pseudo-solution to this problem, which I think is acceptable.
Here is the algorithm I made;
a = 0.2 # variable one
b = 0 # variable two
b = random.random()
b = b^(1/(2^(4*a-1)))
It doesn't actually produce the average results that I wanted, but it's close enough for my purposes.
Edit: Here's a graph I made that consists of a large amount of datapoints I generated with a python script using this algorithm;
import random
mod = 6
div = 100
for z in xrange(div):
s = 0
for i in xrange (100000):
a = (z+1)/float(div) # variable one
b = random.random() # variable two
c = b**(1/(2**((mod*a*2)-mod)))
s += c
print str((z+1)/float(div)) + "\t" + str(round(s/100000.0, 3))
Each point in the table is the result of 100000 randomly generated points from the algorithm; their x positions being the a value given, and their y positions being their average. Ideally they would fit to a straight line of y = x, but as you can see they fit closer to an arctan equation. I'm trying to mess around with the algorithm so that the averages fit the line, but I haven't had much luck as of yet.

Resources