How to publish a command to all users in unix - bash

I have a command which is not working if I log-in to Unix using my ID.
$ db2licm -l
-bash: db2licm: command not found
But if the root gives the same command in the format ./db2licm -l, he gets valid results.
How can root publish the command so that it can be used by me also?

The ./ at the beginning of root's version of the command indicates that it is in the current directory (presumably root's home directory). To make it accessible to other users it should be moved or copied to a directory that is in their executable search path, such as /usr/bin, and its permission bits should be set so that anyone can execute it (normally mode 0755).
Usually that sort of thing should be done via the program's installer, not manually.

Your question doesn't have a single answer, because this depends on a lot of factor.
Access
First of all, in order to run a program from your account, you need to have execution privilege on the executable. You can check that you indeed have execution rights using ls -l :
$ ls -l /bin/bash
-rwxr-xr-x 1 root root 934336 2014-09-27 04:01 /bin/bash
Here, the characters rwxr-xr-x are respectively for user (root), group (root) and others access (three characters/flags for each). In my case, anybody can execute /bin/bash because the x flag is set on the last three character block (rwxr-xr-x).
Finding the executable
Secondly, the system needs to be able to find the executable. In your example, you specify that root launches the executable by prepending ./ before the command name, which basically mean "execute this program located in the current directory". Navigate anywhere else in your filesystem's tree structure and the command won't execute anymore.
To execute a command without specifying its exact path, this command must be in a directory included in your PATH environment variable. You can either add your command's directory to your PATH variable, move that command into a directory already present in your PATH variable (like /usr/bin) or create a symbolic link into a directory already present in your PATH variable, pointing to your command in its current directory.
Adding to PATH
If you'd like to add your executable's directory to your PATH environment variable on a permanent basis, you only need to modify your profile (usually ~/.bashrc if you are using bash or ~/.profile) by adding the following line :
export PATH="/the/directory/to/add:$PATH"
Note the : between your path and the $PATH variable.

Related

Command not found in ssh but is in direcory

I am using an ssh account that connects to an external server, i have downloaded through guix some software like samtools and bedtools but when i try to use them in my directory it gives me this error:
-bash: samtools: command not found
In my direcory, however, there is the directry guix.profile and if I go into the bin folder of this, I have everything I downloaded.
What am I doing wrong?
Thank you
enter image description here
To run a file from the shell you need two things:
The shell must find the file
Being in the same directory does not enable the shell to find the file. You have to either supply an absolute or relative path the file, or have the directory in your PATH environment variable
In simplest terms this means instead of
$ samtools
try
$ ./samtools
The relative path tells the shell it wants that file
To run it from another directory, either use the whole absolute path, e.g. /home/yourname/samtools , or move the file into a directory that is on your $PATH
The file needs to be executable
If the file is not executable you will need
$ chmod +x ./samtools

Why do I have to type ./ before gradlew in others' terminals and not in command prompt (Windows) when I run Spring Boot? [duplicate]

When running scripts in bash, I have to write ./ in the beginning:
$ ./manage.py syncdb
If I don't, I get an error message:
$ manage.py syncdb
-bash: manage.py: command not found
What is the reason for this? I thought . is an alias for current folder, and therefore these two calls should be equivalent.
I also don't understand why I don't need ./ when running applications, such as:
user:/home/user$ cd /usr/bin
user:/usr/bin$ git
(which runs without ./)
Because on Unix, usually, the current directory is not in $PATH.
When you type a command the shell looks up a list of directories, as specified by the PATH variable. The current directory is not in that list.
The reason for not having the current directory on that list is security.
Let's say you're root and go into another user's directory and type sl instead of ls. If the current directory is in PATH, the shell will try to execute the sl program in that directory (since there is no other sl program). That sl program might be malicious.
It works with ./ because POSIX specifies that a command name that contain a / will be used as a filename directly, suppressing a search in $PATH. You could have used full path for the exact same effect, but ./ is shorter and easier to write.
EDIT
That sl part was just an example. The directories in PATH are searched sequentially and when a match is made that program is executed. So, depending on how PATH looks, typing a normal command may or may not be enough to run the program in the current directory.
When bash interprets the command line, it looks for commands in locations described in the environment variable $PATH. To see it type:
echo $PATH
You will have some paths separated by colons. As you will see the current path . is usually not in $PATH. So Bash cannot find your command if it is in the current directory. You can change it by having:
PATH=$PATH:.
This line adds the current directory in $PATH so you can do:
manage.py syncdb
It is not recommended as it has security issue, plus you can have weird behaviours, as . varies upon the directory you are in :)
Avoid:
PATH=.:$PATH
As you can “mask” some standard command and open the door to security breach :)
Just my two cents.
Your script, when in your home directory will not be found when the shell looks at the $PATH environment variable to find your script.
The ./ says 'look in the current directory for my script rather than looking at all the directories specified in $PATH'.
When you include the '.' you are essentially giving the "full path" to the executable bash script, so your shell does not need to check your PATH variable. Without the '.' your shell will look in your PATH variable (which you can see by running echo $PATH to see if the command you typed lives in any of the folders on your PATH. If it doesn't (as is the case with manage.py) it says it can't find the file. It is considered bad practice to include the current directory on your PATH, which is explained reasonably well here: http://www.faqs.org/faqs/unix-faq/faq/part2/section-13.html
On *nix, unlike Windows, the current directory is usually not in your $PATH variable. So the current directory is not searched when executing commands. You don't need ./ for running applications because these applications are in your $PATH; most likely they are in /bin or /usr/bin.
This question already has some awesome answers, but I wanted to add that, if your executable is on the PATH, and you get very different outputs when you run
./executable
to the ones you get if you run
executable
(let's say you run into error messages with the one and not the other), then the problem could be that you have two different versions of the executable on your machine: one on the path, and the other not.
Check this by running
which executable
and
whereis executable
It fixed my issues...I had three versions of the executable, only one of which was compiled correctly for the environment.
Rationale for the / POSIX PATH rule
The rule was mentioned at: Why do you need ./ (dot-slash) before executable or script name to run it in bash? but I would like to explain why I think that is a good design in more detail.
First, an explicit full version of the rule is:
if the path contains / (e.g. ./someprog, /bin/someprog, ./bin/someprog): CWD is used and PATH isn't
if the path does not contain / (e.g. someprog): PATH is used and CWD isn't
Now, suppose that running:
someprog
would search:
relative to CWD first
relative to PATH after
Then, if you wanted to run /bin/someprog from your distro, and you did:
someprog
it would sometimes work, but others it would fail, because you might be in a directory that contains another unrelated someprog program.
Therefore, you would soon learn that this is not reliable, and you would end up always using absolute paths when you want to use PATH, therefore defeating the purpose of PATH.
This is also why having relative paths in your PATH is a really bad idea. I'm looking at you, node_modules/bin.
Conversely, suppose that running:
./someprog
Would search:
relative to PATH first
relative to CWD after
Then, if you just downloaded a script someprog from a git repository and wanted to run it from CWD, you would never be sure that this is the actual program that would run, because maybe your distro has a:
/bin/someprog
which is in you PATH from some package you installed after drinking too much after Christmas last year.
Therefore, once again, you would be forced to always run local scripts relative to CWD with full paths to know what you are running:
"$(pwd)/someprog"
which would be extremely annoying as well.
Another rule that you might be tempted to come up with would be:
relative paths use only PATH, absolute paths only CWD
but once again this forces users to always use absolute paths for non-PATH scripts with "$(pwd)/someprog".
The / path search rule offers a simple to remember solution to the about problem:
slash: don't use PATH
no slash: only use PATH
which makes it super easy to always know what you are running, by relying on the fact that files in the current directory can be expressed either as ./somefile or somefile, and so it gives special meaning to one of them.
Sometimes, is slightly annoying that you cannot search for some/prog relative to PATH, but I don't see a saner solution to this.
When the script is not in the Path its required to do so. For more info read http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_01.html
All has great answer on the question, and yes this is only applicable when running it on the current directory not unless you include the absolute path. See my samples below.
Also, the (dot-slash) made sense to me when I've the command on the child folder tmp2 (/tmp/tmp2) and it uses (double dot-slash).
SAMPLE:
[fifiip-172-31-17-12 tmp]$ ./StackO.sh
Hello Stack Overflow
[fifi#ip-172-31-17-12 tmp]$ /tmp/StackO.sh
Hello Stack Overflow
[fifi#ip-172-31-17-12 tmp]$ mkdir tmp2
[fifi#ip-172-31-17-12 tmp]$ cd tmp2/
[fifi#ip-172-31-17-12 tmp2]$ ../StackO.sh
Hello Stack Overflow

STAR error - INPUT file error: could not open read file: Read1 [duplicate]

When creating filepaths and URLs, I noticed that many times the path starts with ./ or ~/.
What is the difference between filepaths that start with ./ and ~/?
What do each of them mean?
For the sake of completeness ...
Just path is a file or directory named path in the current directory.
./path is a file or directory named path in the current directory, with the directory spelled out. The dot directory . represents the current directory, and path is the name of the file or directory within this directory.
~/path is a shorthand for $HOME/path where $HOME is a variable which refers to your home directory. Typically your home directory will be somewhere like /home/you or /Users/you where you is your account name. (The command echo "$HOME" will display your home directory.) The expanded value is an absolute path (unless you have messed up the value of $HOME thoroughly), as indicated by the initial slash.
/path is an absolute path which refers to a file or directory named path which is in the root directory /. Every file on Unix is ultimately somewhere in the directory tree which starts with the root directory.
A file name which begins with $ includes the value of a shell variable in its name (like for example $HOME above); you have to know the value of that variable to determine whether it ends up containing a relative or an absolute path. Similarly, ~ at the beginning of a file name gets replaced ("expanded") by the shell to a different string, as outlined above.
(Technically, it's possible for a file name to begin with a literal dollar sign or tilde, too; you would then have to quote or backslash-escape that character to avoid having the shell expand it to something else. This is rather inconvenient, so these file names tend to be rare in practice.)
In the following exposition, we refer to the result of any such replacements, and ignore the complication of possible quoting.
Every file name which begins with / is an absolute path (aka full path) which explains how to reach a particular node starting from the root directory. For example, /var/tmp/you/reminder.txt refers to a file or directory reminder.txt (probably a file, judging from the name; but Unix doesn't care what you call your files or directories) which is in the directory you which is in the directory tmp which is in the directory var which is in the root directory.
Every file name which doesn't begin with / is a relative path which indicates how to reach a particular file or directory starting from the current directory. The special directory .. is the parent directory (that is, the directory which contains this directory) and the special directory . is the current directory. So path/there refers to the file or directory there inside the directory path in the current directory; and (hover the mouse over the gray area to display the spoiler)
there/.././and/back/.. is a (wicked complicated) way to refer to the directory and in the current directory, where we traverse the there directory and then move back to the current directory; then stay in the current directory; then refer to the directory back inside the directory and, but then move back to the parent directory of that, ending up with ./and.
In addition to ~/ for the current user's home directory, some shells and applications allow the notation ~them/ to refer to the home directory of the user account them. Also, some web server configurations allow each user to have a public web site in their directory ~/public_html and the URL notation http://server/~them/ would serve up the site of the user account them for outside visitors.
The current directory is a convenience which the shell provides so you don't have to type long paths all the time. You can, if you want to.
/bin/ls /home/you/Documents/unix-101/directories.txt
is a longwinded but perfectly valid way to say (assuming you are in your home directory),
ls Documents/unix-101/directories.txt
You could also say
cd Documents/unix-101
ls directories.txt
and until you cd again, all your commands will run in this directory.
See What exactly is current working directory? for a longer exposition of this related concept.
A "directory" is sometimes called a "folder" by people who are not yet old enough to prefer the former.
Tangentially, don't confuse the directory name . with the Bourne shell command which comprises a single dot (also known by its Bash alias source). The command
. ./scriptname
runs the commands from the file ./scriptname in the context of the current shell instance, as opposed to in a separate subshell (which is what just ./scriptname does). In other words, this command line invokes the dot command on a file scriptname in the dot directory.
The Bourne shell (and derivatives like Bash, Zsh, etc) use single quotes to prevent variable expansion and wildcard expansion, and double quotes to permit variable expansion, but inhibit wildcard expansion in a string. The quoting rules on Windows are different, and generally use double quotes to keep whitespace-separated values as a single string (and % instead of $ for variable substitutions).
./ means "starting from the current directory". . refers to the current working directory, so something like ./foo.bar would be looking for a file called foo.bar in the current directory. (As a side note, .. means refers to the parent directory of the current directory. So ../foo.bar would be looking for that file one directory above.)
~/ means "starting from the home directory". This could have different meanings in different scenarios. For example, in a Unix environment ~/foo.bar would be looking for a file called foo.bar in your home directory, something like /home/totzam/foo.bar. In many web applications, ~/foo.bar would be looking for a file called foo.bar in the web application root, something like /var/http/mywebapp/foo.bar.
./ is the current directory
~/ is the home directory of the current user
./ means that path is relative to your current position.
~/ means that path is relative to your home directory.
I will explain a simple example of it. As developers mentioned:
./ is current directory.
~/ is the home directory of the current user.
How both of the file path expressions can help us? Suppose you want to execute a script (.sh) and you're in the same directory where file exists then you can simply do it ./filename.sh
I mostly use ~/ to access my home directory files like .bashrc when I want to add any config in it. It's easier since the file path expression (for home directory) feels much easier and makes accessibility to the file from anywhere, without worrying about the path or changing the path.
. represents current directory
.. represents the parent directory
~ represents the home directory for the current user. Home directory is also represented by HOME env variable. you can do echo $HOME on the shell to see it.
These are generally used to specify relative paths. The / in the end of each notation is a separator that you can use when using these notations together.
Ex:
$ cd ../.. # Go 2 directories backwards
$ cd ~ # Takes you to $HOME directory
$ cd . # Does nothing :) As it literally means go to the directory that you are already present in.
$ cd ~/dir1 $ go to `$HOME/dir1`
On Unix, in any directory if you do ls -a you would see that . and .. will be mentioned (even for empty directory). Like mentioned, these have special meaning and are generated by default in Unix systems and are generally helpful to specify relative paths (i.e, path to a different directory relative to your current directory)
cd command is harmless. So, just play around by combining notations with cd command. You will eventually get a grip of them.

Run shell script with external utility (plink) - unable to provide the context [duplicate]

When running scripts in bash, I have to write ./ in the beginning:
$ ./manage.py syncdb
If I don't, I get an error message:
$ manage.py syncdb
-bash: manage.py: command not found
What is the reason for this? I thought . is an alias for current folder, and therefore these two calls should be equivalent.
I also don't understand why I don't need ./ when running applications, such as:
user:/home/user$ cd /usr/bin
user:/usr/bin$ git
(which runs without ./)
Because on Unix, usually, the current directory is not in $PATH.
When you type a command the shell looks up a list of directories, as specified by the PATH variable. The current directory is not in that list.
The reason for not having the current directory on that list is security.
Let's say you're root and go into another user's directory and type sl instead of ls. If the current directory is in PATH, the shell will try to execute the sl program in that directory (since there is no other sl program). That sl program might be malicious.
It works with ./ because POSIX specifies that a command name that contain a / will be used as a filename directly, suppressing a search in $PATH. You could have used full path for the exact same effect, but ./ is shorter and easier to write.
EDIT
That sl part was just an example. The directories in PATH are searched sequentially and when a match is made that program is executed. So, depending on how PATH looks, typing a normal command may or may not be enough to run the program in the current directory.
When bash interprets the command line, it looks for commands in locations described in the environment variable $PATH. To see it type:
echo $PATH
You will have some paths separated by colons. As you will see the current path . is usually not in $PATH. So Bash cannot find your command if it is in the current directory. You can change it by having:
PATH=$PATH:.
This line adds the current directory in $PATH so you can do:
manage.py syncdb
It is not recommended as it has security issue, plus you can have weird behaviours, as . varies upon the directory you are in :)
Avoid:
PATH=.:$PATH
As you can “mask” some standard command and open the door to security breach :)
Just my two cents.
Your script, when in your home directory will not be found when the shell looks at the $PATH environment variable to find your script.
The ./ says 'look in the current directory for my script rather than looking at all the directories specified in $PATH'.
When you include the '.' you are essentially giving the "full path" to the executable bash script, so your shell does not need to check your PATH variable. Without the '.' your shell will look in your PATH variable (which you can see by running echo $PATH to see if the command you typed lives in any of the folders on your PATH. If it doesn't (as is the case with manage.py) it says it can't find the file. It is considered bad practice to include the current directory on your PATH, which is explained reasonably well here: http://www.faqs.org/faqs/unix-faq/faq/part2/section-13.html
On *nix, unlike Windows, the current directory is usually not in your $PATH variable. So the current directory is not searched when executing commands. You don't need ./ for running applications because these applications are in your $PATH; most likely they are in /bin or /usr/bin.
This question already has some awesome answers, but I wanted to add that, if your executable is on the PATH, and you get very different outputs when you run
./executable
to the ones you get if you run
executable
(let's say you run into error messages with the one and not the other), then the problem could be that you have two different versions of the executable on your machine: one on the path, and the other not.
Check this by running
which executable
and
whereis executable
It fixed my issues...I had three versions of the executable, only one of which was compiled correctly for the environment.
Rationale for the / POSIX PATH rule
The rule was mentioned at: Why do you need ./ (dot-slash) before executable or script name to run it in bash? but I would like to explain why I think that is a good design in more detail.
First, an explicit full version of the rule is:
if the path contains / (e.g. ./someprog, /bin/someprog, ./bin/someprog): CWD is used and PATH isn't
if the path does not contain / (e.g. someprog): PATH is used and CWD isn't
Now, suppose that running:
someprog
would search:
relative to CWD first
relative to PATH after
Then, if you wanted to run /bin/someprog from your distro, and you did:
someprog
it would sometimes work, but others it would fail, because you might be in a directory that contains another unrelated someprog program.
Therefore, you would soon learn that this is not reliable, and you would end up always using absolute paths when you want to use PATH, therefore defeating the purpose of PATH.
This is also why having relative paths in your PATH is a really bad idea. I'm looking at you, node_modules/bin.
Conversely, suppose that running:
./someprog
Would search:
relative to PATH first
relative to CWD after
Then, if you just downloaded a script someprog from a git repository and wanted to run it from CWD, you would never be sure that this is the actual program that would run, because maybe your distro has a:
/bin/someprog
which is in you PATH from some package you installed after drinking too much after Christmas last year.
Therefore, once again, you would be forced to always run local scripts relative to CWD with full paths to know what you are running:
"$(pwd)/someprog"
which would be extremely annoying as well.
Another rule that you might be tempted to come up with would be:
relative paths use only PATH, absolute paths only CWD
but once again this forces users to always use absolute paths for non-PATH scripts with "$(pwd)/someprog".
The / path search rule offers a simple to remember solution to the about problem:
slash: don't use PATH
no slash: only use PATH
which makes it super easy to always know what you are running, by relying on the fact that files in the current directory can be expressed either as ./somefile or somefile, and so it gives special meaning to one of them.
Sometimes, is slightly annoying that you cannot search for some/prog relative to PATH, but I don't see a saner solution to this.
When the script is not in the Path its required to do so. For more info read http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_01.html
All has great answer on the question, and yes this is only applicable when running it on the current directory not unless you include the absolute path. See my samples below.
Also, the (dot-slash) made sense to me when I've the command on the child folder tmp2 (/tmp/tmp2) and it uses (double dot-slash).
SAMPLE:
[fifiip-172-31-17-12 tmp]$ ./StackO.sh
Hello Stack Overflow
[fifi#ip-172-31-17-12 tmp]$ /tmp/StackO.sh
Hello Stack Overflow
[fifi#ip-172-31-17-12 tmp]$ mkdir tmp2
[fifi#ip-172-31-17-12 tmp]$ cd tmp2/
[fifi#ip-172-31-17-12 tmp2]$ ../StackO.sh
Hello Stack Overflow

How to add an alias to .bashrc file?

I am new to Ubuntu. I need to set path in my .bashrc file, but I am getting permission denied error even if am the admin of the system .
export TCFRAME_HOME=~/tcframe
alias tcframe=$TCFRAME_HOME/scripts/tcframe
Now when I type tcframe version I get
bash: /home/p46562/tcframe/scripts/tcframe: No such file or directory
How to fix this?
The error message is telling you that you are trying to execute a file which does not exist.
We can vaguely guess about what files do exist, but without access to your system, we can't know for sure what you have actually installed and where.
Perhaps you have a file named tcframe in a directory called scripts in your home directory?
alias tcframe=$HOME/scripts/tcframe
A common arrangement to avoid littering your environment with one or more aliases for each random utility you have installed somewhere is to create a dedicated directory for your PATH - a common convention is to call it bin - and populate it with symlinks to things you want to have executable.
Just once,
mkdir $HOME/bin
and edit your .profile (or .bash_profile or .bashrc if you prefer) to include the line
PATH=$HOME/bin:$PATH
From now on, to make an executable script accessible from anywhere without an explicit path, create a symlink to it in bin;
ln -s $HOME/scripts/tcframe $HOME/bin
Notice that the syntax is like cp; the last argument is the destination (which can be a directory, or a new file name) and the first (and any subsequent arguments before the last, if the last is a directory) are the sources. When the destination is a directory, the file name of each source argument is used as the name of a new symlink within the destination directory.
Also notice that you generally want to use absolute paths; a relative path is resolved relative to bin (so e.g.
ln -s ../scripts/tcframe $HOME/bin
even if you are currently in a directory where ../scripts does not exist.)
Scripts, by definition, need to be executable. If they aren't, you get "permission denied" when you try to run them. This is controlled by permissions; each file has a set of permission bits which indicate whether you can read, write to (or overwrite), and execute this file. These permissions are also set separately for members of your group (so you can manage a crude form of team access) and everyone else. But for your personal scripts, you only really care that the x (executable) bit is set for yourself. If it isn't, you can change it - this is only required once.
chmod +x scripts/tcframe

Resources