I'm looking at a paper named "Shape Based Image Retrieval Using Generic Fourier Descriptors", but only have rudimentary knowledge of Fourier Descriptors. I am attempting to implement the algorithm on page 12 of the paper, and have some results which I can't really make too much sense out of.
If I create an small image, take calculate the FD for the image, and compare the FD to the same image which has been translated by a single pixel in the x and y directions, the descriptor is completely different, except for the first entry - which is exactly the same. Firstly, a question is, is should these descriptors be exactly the same (as the descriptor is apparently scale, rotation, and translation invariant) between the two images?
Secondly, in the paper, it mentions that descriptors of two separate images are compared by a simple Euclidean distance - therefore, by taking the Euclidean distance between the two descriptors mentioned above, the Euclidean distance would apparently be 0.
I quickly put together some Javascript code to test out the algorithm, which is below.
Does anybody have any input, ideas, ways to move forward?
Thanks,
Paul
var iShape = [
0, 0, 0, 0, 0,
0, 0, 255, 0, 0,
0, 255, 255, 255, 0,
0, 0, 255, 0, 0,
0, 0, 0, 0, 0
];
var ImageWidth = 5, ImageHeight = 5, MaxRFreq = 5, MaxAFreq = 5;
// Calculate centroid
var cX = 0, cY = 0, pCount = 0;
for (x = 0; x < ImageWidth; x++) {
for (y = 0; y < ImageHeight; y++) {
if (iShape[y * ImageWidth + x]) {
cX += x;
cY += y;
pCount++;
}
}
}
cX = cX / pCount;
cY = cY / pCount;
console.log("cX = " + cX + ", cY = " + cY);
// Calculate the maximum radius
var maxR = 0;
for (x = 0; x < ImageWidth; x++) {
for (y = 0; y < ImageHeight; y++) {
if (iShape[y * ImageWidth + x]) {
var r = Math.sqrt(Math.pow(x - cX, 2) + Math.pow(y - cY, 2));
if (r > maxR) {
maxR = r;
}
}
}
}
// Initialise real / imaginary table
var i;
var FR = [ ];
var FI = [ ];
for (r = 0; r < (MaxRFreq); r++) {
var rRow = [ ];
FR.push(rRow);
var aRow = [ ];
FI.push(aRow);
for (a = 0; a < (MaxAFreq); a++) {
rRow.push(0.0);
aRow.push(0.0);
}
}
var rFreq, aFreq, x, y;
for (rFreq = 0; rFreq < MaxRFreq; rFreq++) {
for (aFreq = 0; aFreq < MaxAFreq; aFreq++) {
for (x = 0; x < ImageWidth; x++) {
for (y = 0; y < ImageHeight; y++) {
var radius = Math.sqrt(Math.pow(x - maxR, 2) +
Math.pow(y - maxR, 2));
var theta = Math.atan2(y - maxR, x - maxR);
if (theta < 0.0) {
theta += (2 * Math.PI);
}
var iPixel = iShape[y * ImageWidth + x];
FR[rFreq][aFreq] += iPixel * Math.cos(2 * Math.PI * rFreq *
(radius / maxR) + aFreq * theta);
FI[rFreq][aFreq] -= iPixel * Math.sin(2 * Math.PI * rFreq *
(radius / maxR) + aFreq * theta);
}
}
}
}
// Initialise fourier descriptor table
var FD = [ ];
for (i = 0; i < (MaxRFreq * MaxAFreq); i++) {
FD.push(0.0);
}
// Calculate the fourier descriptor
for (rFreq = 0; rFreq < MaxRFreq; rFreq++) {
for (aFreq = 0; aFreq < MaxAFreq; aFreq++) {
if (rFreq == 0 && aFreq == 0) {
FD[0] = Math.sqrt(Math.pow(FR[0][0], 2) + Math.pow(FR[0][0], 2) /
(Math.PI * maxR * maxR));
} else {
FD[rFreq * MaxAFreq + aFreq] = Math.sqrt(Math.pow(FR[rFreq][aFreq], 2) +
Math.pow(FI[rFreq][aFreq], 2) / FD[0]);
}
}
}
for (i = 0; i < (MaxRFreq * MaxAFreq); i++) {
console.log(FD[i]);
}
There are three separate normalization techniques applied here in order to make the final descriptor invariant to 1) translation and 2) scale 3) rotation.
For the translation invariance part you need to find the centroid of the shape and calculate the vector of every contour point having the centroid as the origin. This is done by substracting the x and y coordinate of the centroid from each point's coordinates, respectively. So in your code the radius and theta of each point should be computes as follows:
var radius = Math.sqrt(Math.pow(x - cX, 2) + Math.pow(y - cY, 2));
var theta = Math.atan2(y - cY, x - cX);
For the scale invariance part you need to find the maximum magnitute(or radius as you say) of every vector (already normalized for translation invariance) and divide the magnitude of each point by the maximum magnitude value. An alternative way of achieving this is to divide every fourier coefficient with the zero-frequency coefficient (first coefficient) as the scale information is represented there. As I can see in you code and in the paper, this is implemented according to the second way I described.
Finally, the rotation invariance is achieved by only keeping the magnitude of the fourier coefficients as you can see in step 6 of the paper's pseudo-code.
In addition to all these, keep in mind that in order to apply the eucidean distance for the descriptor comparison, the length of the descriptor for every shape must be the same. In FFT, the number of the final coefficients depends on the number of the contour points of the shape. The solution I have found to this is to interpolate between points in order to reach a fixed number of points for every shape.
Hope I helped,
Lazaros
Related
I'm using D3.js to create a globe. I have a working SVG wife-frame version, and I'm also trying to create a more detailed textured one, a two-mode thing.
The image I'm using from an API is square:
Which doesn't really work out well when projected to orthographic, it's a lot more "squished" towards the equator than it should be:
Not doing anything particularly special:
const dx = 2048;
const dy = 2048;
const width = 2048;
const height = 2048;
let sourceData = mapImage.getImageData(0, 0, dx, dy).data,
target = ctx.createImageData(width, height),
targetData = target.data;
for (let y = 0, i = -1; y < height; ++y) {
for (let x = 0; x < width; ++x) {
let p = projection.invert([x, y]);
if (p[0] > 180 || p[0] < -180 || p[1] > 90 || p[1] < -90) {
i += 4;
continue;
}
let q = ((90 - p[1]) / 180 * dy | 0) * dx + ((180 + p[0]) / 360 * dx | 0) << 2;
targetData[++i] = sourceData[q];
targetData[++i] = sourceData[++q];
targetData[++i] = sourceData[++q];
targetData[++i] = 255;
}
}
ctx.clearRect(0, 0, width, height);
ctx.putImageData(target, 0, 0);
I'm wondering if there's a straightforward way to make the additional adjustment for the stretching of the map image?
(Bonus points if you can also point me to why the space around the globe is not transparent? But that's not the main question here.)
I need an algorithm to give me coordinates to the nearest cells (in order of distance) to another cell in a 2D grid. Its for a search algorithm that then checks those coordinates for all sorts of things for suitability. Anyways, so far I came up with this:
function testy(cx, cy, idx) {
var radius = Math.floor(Math.sqrt(idx / Math.PI));
var segment = Math.round(idx - (radius * Math.PI));
var angle = segment / radius;
var x = Math.round(cx + radius * Math.cos(angle));
var y = Math.round(cy + radius * Math.sin(angle));
return [x, y];
}
addEventListener("load", function() {
var canv = document.createElement("canvas");
document.body.appendChild(canv);
canv.width = 800;
canv.height = 600;
var ctx = canv.getContext("2d");
var scale = 5;
var idx = 0;
var idx_end = 10000;
var func = function() {
var xy = testy(0,0,idx++);
var x = xy[0] * scale + canv.width / 2;
var y = xy[1] * scale + canv.height / 2;
ctx.rect(x, y, scale, scale);
ctx.fill();
if (idx < idx_end) setTimeout(func, 0);
}
func();
});
but as you can tell, its kinda crap because it skips some cells. There's a few assumptions I'm making there:
That the circumference of a circle of a certain radius corresponds to the number of cells on the path of that circle. I didn't think that would be too great of a problem though since the actual number of cells in a radius should be lower than the circumference leading to duplication(which in small amounts is ok) but not exclusion(not ok).
That the radius of a circle by the n-th index specified would be slightly more than Math.floor(Math.sqrt(idx / Math.PI)) because each increase of 1 to the radius corresponds to 2 * Math.PI being added to the circumference of the circle. Again, should lead to slight duplication but no exclusion.
Other than that I have no idea what could be wrong with it, I fail at math any more complex than this so probably something to do with that.
Perhaps there is another algorithm like this already out there though? One that doesn't skip cells? Language doesn't really matter, I'm using js to prototype it but it can be whatever.
Instead of thinking about the full circle, think about a quadrant. Adapting that to the full circle later should be fairly easy. Use (0,0) as the center of the circle for convenience. So you want to list grid cells with x,y ≥ 0 in order of non-decreasing x² + y².
One useful data structure is a priority queue. It can be used to keep track of the next y value for every x value, and you can extract the one with minimal x² + y² easily.
q = empty priority queue, for easy access to element with minimal x²+y²
Insert (0,0) into queue
while queue is not empty:
remove minimal element from queue and call it (x,y)
insert (x,y+1) into queue unless y+1 is off canvas
if y = 0:
insert (x+1,0) into queue unless x+1 is off canvas
do whatever you want to do with (x,y)
So for a canvas of size n this will enumerate all the n² points, but the priority queue will only contain n elements at most. The whole loop runs in O(n² log(n)). And if you abort the loop eraly because you found what you were looking for, it gets cheaper still, in contrast to simply sorting all the points. Another benefit is that you can use integer arithmetic exclusively, so numeric errors won't be an issue. One drawback is that JavaScript does not come with a priority queue out of the box, but I'm sure you can find an implementation you can reuse, e.g. tiniqueue.
When doing full circle, you'd generate (−x,y) unless x=0, and likewise for (x,−y) and (−x,−y). You could exploit symmetry a bit more by only having the loop over ⅛ of the circle, i.e. not inserting (x,y+1) if x=y, and then also generating (y,x) as a separate point unless x=y. Difference in performance should be marginal for many use cases.
"use strict";
function distCompare(a, b) {
const a2 = a.x*a.x + a.y*a.y;
const b2 = b.x*b.x + b.y*b.y;
return a2 < b2 ? -1 : a2 > b2 ? 1 : 0;
}
// Yields points in the range -w <= x <= w and -h <= y <= h
function* aroundOrigin(w,h) {
const q = TinyQueue([{x:0, y:0}], distCompare);
while (q.length) {
const p = q.pop();
yield p;
if (p.x) yield {x:-p.x, y:p.y};
if (p.y) yield {x:p.x, y:-p.y};
if (p.x && p.y) yield {x:-p.x, y:-p.y};
if (p.y < h) q.push({x:p.x, y:p.y+1});
if (p.y == 0 && p.x < w) q.push({x:p.x + 1, y:0});
}
}
// Yields points around (cx,cy) in range 0 <= x < w and 0 <= y < h
function* withOffset(cx, cy, w, h) {
const delegate = aroundOrigin(
Math.max(cx, w - cx - 1), Math.max(cy, h - cy - 1));
for(let p of delegate) {
p = {x: p.x + cx, y: p.y + cy};
if (p.x >= 0 && p.x < w && p.y >= 0 && p.y < h) yield p;
}
}
addEventListener("load", function() {
const canv = document.createElement("canvas");
document.body.appendChild(canv);
const cw = 800, ch = 600;
canv.width = cw;
canv.height = ch;
const ctx = canv.getContext("2d");
const scale = 5;
const w = Math.ceil(cw / scale);
const h = Math.ceil(ch / scale);
const cx = w >> 1, cy = h >> 1;
const pointgen = withOffset(cx, cy, w, h);
let cntr = 0;
var func = function() {
const {value, done} = pointgen.next();
if (done) return;
if (cntr++ % 16 === 0) {
// lighten older parts so that recent activity is more visible
ctx.fillStyle = "rgba(255,255,255,0.01)";
ctx.fillRect(0, 0, cw, ch);
ctx.fillStyle = "rgb(0,0,0)";
}
ctx.fillRect(value.x * scale, value.y*scale, scale, scale);
setTimeout(func, 0);
}
func();
});
<script type="text/javascript">module={};</script>
<script src="https://cdn.rawgit.com/mourner/tinyqueue/54dc3eb1/index.js"></script>
I need to loop through a array in circle in arc shape with a small radius (like draw a circle pixel by pixel), but all algorithm i tried, checks duplicate indexes of array (it's got the same x and y several times).
I have a radius of 3, with a circle form of 28 elements (not filled), but the algorithm iterate 360 times. I can check if x or y change before i do something, but it's lame.
My code now:
for (int radius = 1; radius < 6; radius++)
{
for (double i = 0; i < 360; i += 1)
{
double angle = i * System.Math.PI / 180;
int x = (int)(radius * System.Math.Cos(angle)) + centerX;
int y = (int)(radius * System.Math.Sin(angle)) + centerY;
// do something
// if (array[x, y]) ....
}
}
PS: I can't use midpoint circle, because i need to increment radius starting from 2 until 6, and not every index is obtained, because his circle it's not real (according trigonometry)
EDIT:
What i really need, is scan a full circle edge by edge, starting by center.
360 steps (it's get all coordinates):
Full scan
for (int radius = 2; radius <= 7; radius++)
{
for (double i = 0; i <= 360; i += 1)
{
double angle = i * System.Math.PI / 180;
int x = (int)(radius * System.Math.Cos(angle));
int y = (int)(radius * System.Math.Sin(angle));
print(x, y, "X");
}
}
Using Midpoint Circle or other algorithm skipping steps (missing coordinates):
Midpoint Circle Algorithm
for (int radius = 2; radius <= 7; radius++)
{
int x = radius;
int y = 0;
int err = 0;
while (x >= y)
{
print(x, y, "X");
print(y, x, "X");
print(-y, x, "X");
print(-y, x, "X");
print(-x, y, "X");
print(-x, -y, "X");
print(-y, -x, "X");
print(y, -x, "X");
print(x, -y, "X");
y += 1;
err += 1 + 2 * y;
if (2 * (err - x) + 1 > 0)
{
x -= 1;
err += 1 - 2 * x;
}
}
}
There are two algorithmic ideas in play here: one is rasterizing a circle. The OP code presents a couple opportunities for improvement on that front: (a) one needn't sample the entire 360 degree circle, realizing that a circle is symmetric across both axes. (x,y) can be reflected in the other three quadrants as (-x,y), (-x,-y), and (x,-y). (b) the step on the loop should be related to the curvature. A simple heuristic is to use the radius as the step. So...
let step = MIN(radius, 90)
for (double i=0; i<90; i += step) {
add (x,y) to results
reflect into quadrants 2,3,4 and add to results
}
With these couple improvements, you may no longer care about duplicate samples being generated. If you still do, then the second idea, independent of the circle, is how to hash a pair of ints. There's a good article about that here: Mapping two integers to one, in a unique and deterministic way.
In a nutshell, we compute an int from our x,y pair that's guaranteed to map uniquely, and then check that for duplicates...
cantor(x, y) = 1/2(x + y)(x + y + 1) + y
This works only for positive values of x,y, which is just what you need since we're only computing (and then reflecting) in the first quadrant. For each pair, check that they are unique
let s = an empty set
int step = MIN(radius, 90)
for (double i=0; i<90; i += step) {
generate (x,y)
let c = cantor(x,y)
if (not(s contains c)) {
add (x,y) to results
reflect into quadrants 2,3,4 and add to results
add c to s
}
}
Got it!
It's not beautiful, but work for me.
int maxRadius = 7;
for (int radius = 1; radius <= maxRadius; radius++)
{
x = position.X - radius;
y = position.Y - radius;
x2 = position.X + radius;
y2 = position.Y + radius;
for (int i = 0; i <= radius * 2; i++)
{
if (InCircle(position.X, position.Y, x + i, y, maxRadius)) // Top X
myArray[position, x + i, y]; // check array
if (InCircle(position.X, position.Y, x + i, y2, maxRadius)) // Bottom X
myArray[position, x + i, y2]; // check array
if (i > 0 && i < radius * 2)
{
if (InCircle(position.X, position.Y, x, y + i, maxRadius)) // Left Y
myArray[position, x, y + i]; // check array
if (InCircle(position.X, position.Y, x2, y + i, maxRadius)) // Right Y
myArray[position, x2, y + i]; // check array
}
}
}
public static bool InCircle(int originX, int originY, int x, int y, int radius)
{
int dx = Math.Abs(x - originX);
if (dx > radius) return false;
int dy = Math.Abs(y - originY);
if (dy > radius) return false;
if (dx + dy <= radius) return true;
return (dx * dx + dy * dy <= radius * radius);
}
Consider this binary image:
A normal edge detection algorithm (Like Canny) takes the binary image as input and results into the contour shown in red. I need another algorithm that takes a point "P" as a second piece of input data. "P" is the black point in the previous image. This algorithm should result into the blue contour. The blue contours represents the point "P" lines-of-sight edge of the binary image.
I searched a lot of an image processing algorithm that achieve this, but didn't find any. I also tried to think about a new one, but I still have a lot of difficulties.
Since you've got a bitmap, you could use a bitmap algorithm.
Here's a working example (in JSFiddle or see below). (Firefox, Chrome, but not IE)
Pseudocode:
// part 1: occlusion
mark all pixels as 'outside'
for each pixel on the edge of the image
draw a line from the source pixel to the edge pixel and
for each pixel on the line starting from the source and ending with the edge
if the pixel is gray mark it as 'inside'
otherwise stop drawing this line
// part 2: edge finding
for each pixel in the image
if pixel is not marked 'inside' skip this pixel
if pixel has a neighbor that is outside mark this pixel 'edge'
// part 3: draw the edges
highlight all the edges
At first this sounds pretty terrible... But really, it's O(p) where p is the number of pixels in your image.
Full code here, works best full page:
var c = document.getElementById('c');
c.width = c.height = 500;
var x = c.getContext("2d");
//////////// Draw some "interesting" stuff ////////////
function DrawScene() {
x.beginPath();
x.rect(0, 0, c.width, c.height);
x.fillStyle = '#fff';
x.fill();
x.beginPath();
x.rect(c.width * 0.1, c.height * 0.1, c.width * 0.8, c.height * 0.8);
x.fillStyle = '#000';
x.fill();
x.beginPath();
x.rect(c.width * 0.25, c.height * 0.02 , c.width * 0.5, c.height * 0.05);
x.fillStyle = '#000';
x.fill();
x.beginPath();
x.rect(c.width * 0.3, c.height * 0.2, c.width * 0.03, c.height * 0.4);
x.fillStyle = '#fff';
x.fill();
x.beginPath();
var maxAng = 2.0;
function sc(t) { return t * 0.3 + 0.5; }
function sc2(t) { return t * 0.35 + 0.5; }
for (var i = 0; i < maxAng; i += 0.1)
x.lineTo(sc(Math.cos(i)) * c.width, sc(Math.sin(i)) * c.height);
for (var i = maxAng; i >= 0; i -= 0.1)
x.lineTo(sc2(Math.cos(i)) * c.width, sc2(Math.sin(i)) * c.height);
x.closePath();
x.fill();
x.beginPath();
x.moveTo(0.2 * c.width, 0.03 * c.height);
x.lineTo(c.width * 0.9, c.height * 0.8);
x.lineTo(c.width * 0.8, c.height * 0.8);
x.lineTo(c.width * 0.1, 0.03 * c.height);
x.closePath();
x.fillStyle = '#000';
x.fill();
}
//////////// Pick a point to start our operations: ////////////
var v_x = Math.round(c.width * 0.5);
var v_y = Math.round(c.height * 0.5);
function Update() {
if (navigator.appName == 'Microsoft Internet Explorer'
|| !!(navigator.userAgent.match(/Trident/)
|| navigator.userAgent.match(/rv 11/))
|| $.browser.msie == 1)
{
document.getElementById("d").innerHTML = "Does not work in IE.";
return;
}
DrawScene();
//////////// Make our image binary (white and gray) ////////////
var id = x.getImageData(0, 0, c.width, c.height);
for (var i = 0; i < id.width * id.height * 4; i += 4) {
id.data[i + 0] = id.data[i + 0] > 128 ? 255 : 64;
id.data[i + 1] = id.data[i + 1] > 128 ? 255 : 64;
id.data[i + 2] = id.data[i + 2] > 128 ? 255 : 64;
}
// Adapted from http://rosettacode.org/wiki/Bitmap/Bresenham's_line_algorithm#JavaScript
function line(x1, y1) {
var x0 = v_x;
var y0 = v_y;
var dx = Math.abs(x1 - x0), sx = x0 < x1 ? 1 : -1;
var dy = Math.abs(y1 - y0), sy = y0 < y1 ? 1 : -1;
var err = (dx>dy ? dx : -dy)/2;
while (true) {
var d = (y0 * c.height + x0) * 4;
if (id.data[d] === 255) break;
id.data[d] = 128;
id.data[d + 1] = 128;
id.data[d + 2] = 128;
if (x0 === x1 && y0 === y1) break;
var e2 = err;
if (e2 > -dx) { err -= dy; x0 += sx; }
if (e2 < dy) { err += dx; y0 += sy; }
}
}
for (var i = 0; i < c.width; i++) line(i, 0);
for (var i = 0; i < c.width; i++) line(i, c.height - 1);
for (var i = 0; i < c.height; i++) line(0, i);
for (var i = 0; i < c.height; i++) line(c.width - 1, i);
// Outline-finding algorithm
function gb(x, y) {
var v = id.data[(y * id.height + x) * 4];
return v !== 128 && v !== 0;
}
for (var y = 0; y < id.height; y++) {
var py = Math.max(y - 1, 0);
var ny = Math.min(y + 1, id.height - 1);
console.log(y);
for (var z = 0; z < id.width; z++) {
var d = (y * id.height + z) * 4;
if (id.data[d] !== 128) continue;
var pz = Math.max(z - 1, 0);
var nz = Math.min(z + 1, id.width - 1);
if (gb(pz, py) || gb(z, py) || gb(nz, py) ||
gb(pz, y) || gb(z, y) || gb(nz, y) ||
gb(pz, ny) || gb(z, ny) || gb(nz, ny)) {
id.data[d + 0] = 0;
id.data[d + 1] = 0;
id.data[d + 2] = 255;
}
}
}
x.putImageData(id, 0, 0);
// Draw the starting point
x.beginPath();
x.arc(v_x, v_y, c.width * 0.01, 0, 2 * Math.PI, false);
x.fillStyle = '#800';
x.fill();
}
Update();
c.addEventListener('click', function(evt) {
var x = evt.pageX - c.offsetLeft,
y = evt.pageY - c.offsetTop;
v_x = x;
v_y = y;
Update();
}, false);
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.2.3/jquery.min.js"></script>
<center><div id="d">Click on image to change point</div>
<canvas id="c"></canvas></center>
I would just estimate P's line of sight contour with ray collisions.
RESOLUTION = PI / 720;
For rad = 0 To PI * 2 Step RESOLUTION
ray = CreateRay(P, rad)
hits = Intersect(ray, contours)
If Len(hits) > 0
Add(hits[0], lineOfSightContour)
https://en.wikipedia.org/wiki/Hidden_surface_determination with e.g. a Z-Buffer is relatively easy. Edge detection looks a lot trickier and probably needs a bit of tuning. Why not take an existing edge detection algorithm from a library that somebody else has tuned, and then stick in some Z-buffering code to compute the blue contour from the red?
First approach
Main idea
Run an edge detection algorithm (Canny should do it just fine).
For each contour point C compute the triplet (slope, dir, dist), where:
slope is the slope of the line that passes through P and C
dir is a bit which is set if C is to the right of P (on the x axis) and reset if it is to the left; it used in order to distinguish in between points having the same slope, but on opposite sides of P
dist is the distance in between P and C.
Classify the set of contour points such that a class contains the points with the same key (slope, dir) and keep the one point from each such class having the minimum dist. Let S be the set of these closest points.
Sort S in clockwise order.
Iterate once more through the sorted set and, whenever two consecutive points are too far apart, draw a segment in between them, otherwise just draw the points.
Notes
You do not really need to compute the real distance in between P and C since you only use dist to determine the closest point to P at step 3. Instead you can keep C.x - P.x in dist. This piece of information should also tell you which of two points with the same slope is closest to P. Also, C.x - P.x swallows the dir parameter (in the sign bit). So you do not really need dir either.
The classification in step 3 can ideally be done by hashing (thus, in linear number of steps), but since doubles/floats are subject to rounding, you might need to allow small errors to occur by rounding the values of the slopes.
Second approach
Main idea
You can perform a sort of BFS starting from P, like when trying to determine the country/zone that P resides in. For each pixel, look at the pixels around it that were already visited by BFS (called neighbors). Depending on the distribution of the neighbor pixels that are in the line of sight, determine if the currently visited pixel is in the line of sight too or not. You can probably apply a sort of convolution operator on the neighbor pixels (like with any other filter). Also, you do not really need to decide right away if a pixel is for sure in the line of sight. You could instead compute some probability of that to be true.
Notes
Due to the fact that your graph is a 2D image, BFS should be pretty fast (since the number of edges is linear in the number of vertices).
This second approach eliminates the need to run an edge detection algorithm. Also, if the country/zone P resides in is considerably smaller than the image the overall performance should be better than running an edge detection algorithm solely.
Given any particular rectangle (x1,y1)-(x2,y2), how can I generate a random point on its perimeter?
I've come up with a few approaches, but it seems like there ought to be a pretty canonical way to do it.
First, I thought I'd generate a random point within the rectangle and clamp it to the closest side, but the distribution didn't seem uniform (points almost never fell on the shorter sides). Second, I picked a side at random and then chose a random point on that side. The code was kind of clunky and it wasn't uniform either - but in the exact opposite way (short sides had the same chance of getting points as long sides). Finally, I've been thinking about "unfolding" the rectangle into a single line and picking a random point on the line. I think that would generate a uniform distribution, but I thought I'd ask here before embarking down that road.
Your last approach is what I would have recommended just from reading your title. Go with that. Your second approach (pick a side at random) would work if you picked a side with probability proportional to the side length.
here is the unfolding idea in objective-c, seems to work, doesn't it :)
//randomness macro
#define frandom (float)arc4random()/UINT64_C(0x100000000)
#define frandom_range(low,high) ((high-low)*frandom)+low
//this will pick a random point on the rect edge
- (CGPoint)pickPointOnRectEdge:(CGRect)edge {
CGPoint pick = CGPointMake(edge.origin.x, edge.origin.y);
CGFloat a = edge.size.height;
CGFloat b = edge.size.width;
CGFloat edgeLength = 2*a + 2*b;
float randomEdgeLength = frandom_range(0.0f, (float)edgeLength);
//going from bottom left counter-clockwise
if (randomEdgeLength<a) {
//left side a1
pick = CGPointMake(edge.origin.x, edge.origin.y + a);
} else if (randomEdgeLength < a+b) {
//top side b1
pick = CGPointMake(edge.origin.x + randomEdgeLength - a, edge.origin.y + edge.size.height );
} else if (randomEdgeLength < (a + b) + a) {
//right side a2
pick = CGPointMake(edge.origin.x + edge.size.width, edge.origin.y + randomEdgeLength - (a+b));
} else {
//bottom side b2
pick = CGPointMake(edge.origin.x + randomEdgeLength - (a + b + a), edge.origin.y);
}
return pick;
}
If by 'random point on the perimeter' you do in fact mean 'point selected from a uniform random distribution over the length of the perimeter', then yes, your 'unfolding' approach is correct.
It should be mentioned however that both your previous approaches do qualify as being a 'random point on the perimeter', just with a non-uniform distribution.
Figured I would try to do this without branching, expressing both X and Y coords as a function of the random number that walks the "unfolded" rectangle.
JS:
function randomOnRect() {
let r = Math.random();
return [Math.min(1, Math.max(0, Math.abs((r * 4 - .5) % 4 - 2) - .5)),
Math.min(1, Math.max(0, Math.abs((r * 4 + .5) % 4 - 2) - .5))]
}
Your last suggestion seems best to me.
Look at the perimeter as a single long line [of length 2*a + 2*b], generate a random number within it, calculate where the point is on the rectangle [assume it starts from some arbitrary point, it doesn't matter which].
It requires only one random and thus is relatively cheap [random sometimes are costly operations].
It is also uniform, and trivial to prove it, there is an even chance the random will get you to each point [assuming the random function is uniform, of course].
For example:
static Random random = new Random();
/** returns a point (x,y) uniformly distributed
* in the border of the rectangle 0<=x<=a, 0<=y<=b
*/
public static Point2D.Double randomRect(double a, double b) {
double x = random.nextDouble() * (2 * a + 2 * b);
if (x < a)
return new Point2D.Double(x, 0);
x -= a;
if (x < b)
return new Point2D.Double(a, x);
x -= b;
if (x < a)
return new Point2D.Double(x, b);
else
return new Point2D.Double(0, x-a);
}
Here is my implementation with uniform distribution (assumes x1 < x2 and y1 < y2):
void randomPointsOnPerimeter(int x1, int y1, int x2, int y2) {
int width = abs(x2 - x1);
int height = abs(y2 - y1);
int perimeter = (width * 2) + (height * 2);
// number of points proportional to perimeter
int n = (int)(perimeter / 8.0f);
for (int i = 0; i < n; i++) {
int x, y;
int dist = rand() % perimeter;
if (dist <= width) {
x = (rand() % width) + x1;
y = y1;
} else if (dist <= width + height) {
x = x2;
y = (rand() % height) + y1;
} else if (dist <= (width * 2) + height) {
x = (rand() % width) + x1;
y = y2;
} else {
x = x1;
y = (rand() % height) + y1;
}
// do something with (x, y)...
}
}
Here's my implementation in Javascript
function pickPointOnRectEdge(width,height){
var randomPoint = Math.random() * (width * 2 + height * 2);
if (randomPoint > 0 && randomPoint < height){
return {
x: 0,
y: height - randomPoint
}
}
else if (randomPoint > height && randomPoint < (height + width)){
return {
x: randomPoint - height,
y: 0
}
}
else if (randomPoint > (height + width) && randomPoint < (height * 2 + width)){
return {
x: width,
y: randomPoint - (width + height)
}
}
else {
return {
x: width - (randomPoint - (height * 2 + width)),
y: height
}
}
}