How to speed up a double loop in matlab - performance

This is a follow-up question of this question.
The following code takes an enormous amount of time to loop through. Do you have any recommendations for speeding up the process? The variable z has a size of 479x1672 and others will be around 479x12000.
z = HongKongPrices;
zmat = false(size(z));
r = size(z,1);
c = size(z,2);
for k = 1:c
for i = 5:r
if z(i,k) == z(i-4,k) && z(i,k) == z(i-3,k) && z(i,k) == z(end,k)
zmat(i-3:i,k) = 1
end
end
end
z(zmat) = NaN
I am currently running this with MatLab R2014b on an iMac with 3.2 Intel i5 and 16 GB DDR3.

You can use logical indexing here to your advantage to replace the IF-conditional statement and have a small-loop -
%// Get size parameters
[r,c] = size(z);
%// Get logical mask with ones for each column at places that satisfy the condition
%// mentioned as the IF conditional statement in the problem code
mask = z(1:r-4,:) == z(5:r,:) & z(2:r-3,:) == z(5:r,:) & ...
bsxfun(#eq,z(end,:),z(5:r,:));
%// Use logical indexing to map entire z array and set mask elements as NaNs
for k = 1:4
z([false(k,c) ; mask ; false(4-k,c)]) = NaN;
end
Benchmarking
%// Size parameters
nrows = 479;
ncols = 12000;
max_num = 10;
num_iter = 10; %// number of iterations to run each approach,
%// so that runtimes are over 1 sec mark
z_org = randi(max_num,nrows,ncols); %// random input data of specified size
disp('--------------------------------- With proposed approach')
tic
for iter = 1:num_iter
z = z_org;
[..... code from the proposed approach ...]
end
toc, clear z k mask r c
disp('--------------------------------- With original approach')
tic
for iter = 1:num_iter
z = z_org;
[..... code from the problem ...]
end
toc
Results
Case # 1: z as 479 x 1672 (num_iter = 50)
--------------------------------- With proposed approach
Elapsed time is 1.285337 seconds.
--------------------------------- With original approach
Elapsed time is 2.008256 seconds.
Case # 2: z as 479 x 12000 (num_iter = 10)
--------------------------------- With proposed approach
Elapsed time is 1.941858 seconds.
--------------------------------- With original approach
Elapsed time is 2.897006 seconds.

Related

How to reduce the allocations in Julia?

I am starting to use Julia mainly because of its speed. Currently, I am solving a fixed point problem. Although the current version of my code runs fast I would like to know some methods to improve its speed.
First of all, let me summarize the algorithm.
There is an initial seed called C0 that maps from the space (b,y) into an action space c, then we have C0(b,y)
There is a formula that generates a rule Ct from C0.
Then, using an additional restriction, I can obtain an updating of b [let's called it bt]. Thus,it generates a rule Ct(bt,y)
I need to interpolate the previous rule to move from the grid bt into the original grid b. It gives me an update for C0 [let's called that C1]
I will iterate until the distance between C1 and C0 is below a convergence threshold.
To implement it I created two structures:
struct Parm
lC::Array{Float64, 2} # Lower limit
uC::Array{Float64, 2} # Upper limit
γ::Float64 # CRRA coefficient
δ::Float64 # factor in the euler
γ1::Float64 #
r1::Float64 # inverse of the gross interest rate
yb1::Array{Float64, 2} # y - b(t+1)
P::Array{Float64, 2} # Transpose of transition matrix
end
mutable struct Upd1
pol::Array{Float64,2} # policy function
b::Array{Float64, 1} # exogenous grid for interpolation
dif::Float64 # updating difference
end
The first one is a set of parameters while the second one stores the decision rule C1. I also define some functions:
function eulerm(x::Upd1,p::Parm)
ct = p.δ *(x.pol.^(-p.γ)*p.P).^(-p.γ1); #Euler equation
bt = p.r1.*(ct .+ p.yb1); #Endeogenous grid for bonds
return ct,bt
end
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds #simd for col in 1:size(bt,2)
F1 = LinearInterpolation(bt[:,col], ct[:,col],extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC];
polnew[polnew .> p.uC] .= p.uC[polnew .> p.uC];
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
function updating!(x::Upd1,p::Parm)
ct, bt = eulerm(x,p); # endogeneous grid
x.pol, x.dif = interp0!(bt,ct,x,p);
end
function conver(x::Upd1,p::Parm)
while x.dif>1e-8
updating!(x,p);
end
end
The first formula implements steps 2 and 3. The third one makes the updating (last part of step 4), and the last one iterates until convergence (step 5).
The most important function is the second one. It makes the interpolation. While I was running the function #time and #btime I realized that the largest number of allocations are in the loop inside this function. I tried to reduce it by not defining polnew and goes directly to x.pol but in this case, the results are not correct since it only need two iterations to converge (I think that Julia is thinking that polold is exactly the same than x.pol and it is updating both at the same time).
Any advice is well received.
To anyone that wants to run it by themselves, I add the rest of the required code:
function rouwen(ρ::Float64, σ2::Float64, N::Int64)
if (N % 2 != 1)
return "N should be an odd number"
end
sigz = sqrt(σ2/(1-ρ^2));
zn = sigz*sqrt(N-1);
z = range(-zn,zn,N);
p = (1+ρ)/2;
q = p;
Rho = [p 1-p;1-q q];
for i = 3:N
zz = zeros(i-1,1);
Rho = p*[Rho zz; zz' 0] + (1-p)*[zz Rho; 0 zz'] + (1-q)*[zz' 0; Rho zz] + q *[0 zz'; zz Rho];
Rho[2:end-1,:] = Rho[2:end-1,:]/2;
end
return z,Rho;
end
#############################################################
# Parameters of the model
############################################################
lb = 0; ub = 1000; pivb = 0.25; nb = 500;
ρ = 0.988; σz = 0.0439; μz =-σz/2; nz = 7;
ϕ = 0.0; σe = 0.6376; μe =-σe/2; ne = 7;
β = 0.98; r = 1/400; γ = 1;
b = exp10.(range(start=log10(lb+pivb), stop=log10(ub+pivb), length=nb)) .- pivb;
#=========================================================
Algorithm
======================================================== =#
(z,Pz) = rouwen(ρ,σz, nz);
μZ = μz/(1-ρ);
z = z .+ μZ;
(ee,Pe) = rouwen(ϕ,σe,ne);
ee = ee .+ μe;
y = exp.(vec((z .+ ee')'));
P = kron(Pz,Pe);
R = 1 + r;
r1 = R^(-1);
γ1 = 1/γ;
δ = (β*R)^(-γ1);
m = R*b .+ y';
lC = max.(m .- ub,0);
uC = m .- lb;
by1 = b .- y';
# initial guess for C0
c0 = 0.1*(m);
# Set of parameters
pp = Parm(lC,uC,γ,δ,γ1,r1,by1,P');
# Container of results
up1 = Upd1(c0,b,1);
# Fixed point problem
conver(up1,pp)
UPDATE As it was reccomend, I made the following changes to the third function
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds for col in 1:size(bt,2)
F1 = LinearInterpolation(#view(bt[:,col]), #view(ct[:,col]),extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
for j in eachindex(polnew)
polnew[j] < p.lC[j] ? polnew[j] = p.lC[j] : nothing
polnew[j] > p.uC[j] ? polnew[j] = p.uC[j] : nothing
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
This leads to an improvement in the speed (from ~1.5 to ~1.3 seconds). And a reduction in the number of allocations. Somethings that I noted were:
Changing from polnew[:,col] = F1(x.b) to polnew[:,col] .= F1(x.b) can reduce the total allocations but the time is slower, why is that?
How should I understand the difference between #time and #btime. For this case, I have:
up1 = Upd1(c0,b,1);
#time conver(up1,pp)
1.338042 seconds (385.72 k allocations: 1.157 GiB, 3.37% gc time)
up1 = Upd1(c0,b,1);
#btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
Just to be precise, in both cases, I run it several times and I choose representative numbers for each line.
Does it mean that all the time is due allocations during the compilation?
Start going through the "performance tips" as advised by #DNF but below you will find most important comments for your code.
Vectorize vector assignments - a small dot makes big difference
julia> julia> a = rand(3,4);
julia> #btime $a[3,:] = $a[3,:] ./ 2;
40.726 ns (2 allocations: 192 bytes)
julia> #btime $a[3,:] .= $a[3,:] ./ 2;
20.562 ns (1 allocation: 96 bytes)
Use views when doing something with subarrays:
julia> #btime sum($a[3,:]);
18.719 ns (1 allocation: 96 bytes)
julia> #btime sum(#view($a[3,:]));
5.600 ns (0 allocations: 0 bytes)
Your code around a lines polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC]; will make much less allocations when you do it with a for loop over each element of polnew
#simd will have no effect on conditionals (point 3) neither when code is calling complex external functions
I want to give an update about this problem. I made two main changes to my code: (i) I define my own linear interpolation function and (ii) I include the check of bounds in the interpolation.
With this the new function three is
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
#inbounds #views for col in 1:size(bt,2)
polnew[:,col] = myint(bt[:,col], ct[:,col],x.b[:],p.lC[:,col],p.uC[:,col]);
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
And the interpolation is now:
function myint(x0,y0,x1,ly,uy)
y1 = similar(x1);
n = size(x0,1);
j = 1;
#simd for i in eachindex(x1)
while (j <= n) && (x1[i] > x0[j])
j+=1;
end
if j == 1
y1[i] = y0[1] + ((y0[2]-y0[1])/(x0[2]-x0[1]))*(x1[i]-x0[1]) ;
elseif j == n+1
y1[i] = y0[n] + ((y0[n]-y0[n-1])/(x0[n]-x0[n-1]))*(x1[i]-x0[n]);
else
y1[i] = y0[j-1]+ ((x1[i]-x0[j-1])/(x0[j]-x0[j-1]))*(y0[j]-y0[j-1]);
end
y1[i] > uy[i] ? y1[i] = uy[i] : nothing;
y1[i] < ly[i] ? y1[i] = ly[i] : nothing;
end
return y1;
end
As you can see, I am taking advantage (and assuming) that both vectors that we use as basis are ordered while the two last lines in the outer loops checks the bounds imposed by lC and uC.
With that I get the following total time
up1 = Upd1(c0,b,1);
#time conver(up1,pp)
0.734630 seconds (28.93 k allocations: 752.214 MiB, 3.82% gc time)
up1 = Upd1(c0,b,1);
#btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
which is almost as twice faster with ~8% of the total allocations. the use of views in the loop of the function interp0! also helps a lot.

Image Processing: Algorithm taking too long in MATLAB

I am working in MATLAB to process two 512x512 images, the domain image and the range image. What I am trying to accomplish is the following:
Divide both domain and range images into 8x8 pixel blocks
For each 8x8 block in the domain image, I have to apply a linear transformations to it and compare each of the 4096 transformed blocks with each of the 4096 range blocks.
Compute error in each case between the transformed block and the range image block and find the minimum error.
Finally I'll have for each 8x8 range block, the id of the 8x8 domain block for which the error was minimum (error between the range block and the transformed domain block)
To achieve this, I have written the following code:
RangeImagecolor = imread('input.png'); %input is 512x512
DomainImagecolor = imread('input.png'); %Range and Domain images are identical
RangeImagetemp = rgb2gray(RangeImagecolor);
DomainImagetemp = rgb2gray(DomainImagecolor);
RangeImage = im2double(RangeImagetemp);
DomainImage = im2double(DomainImagetemp);
%For the (k,l)th 8x8 range image block
for k = 1:64
for l = 1:64
minerror = 9999;
min_i = 0;
min_j = 0;
for i = 1:64
for j = 1:64
%here I compute for the (i,j)th domain block, the transformed domain block stored in D_trans
error = 0;
D_trans = zeros(8,8);
R = zeros(8,8); %Contains the pixel values of the (k,l)th range block
for m = 1:8
for n = 1:8
R(m,n) = RangeImage(8*k-8+m,8*l-8+n);
%ApplyTransformation can depend on (k,l) so I can't compute the transformation outside the k,l loop.
[m_dash,n_dash] = ApplyTransformation(8*i-8+m,8*j-8+n);
D_trans(m,n) = DomainImage(m_dash,n_dash);
error = error + (R(m,n)-D_trans(m,n))^2;
end
end
if(error < minerror)
minerror = error;
min_i = i;
min_j = j;
end
end
end
end
end
As an example ApplyTransformation, one can use the identity transformation:
function [x_dash,y_dash] = Iden(x,y)
x_dash = x;
y_dash = y;
end
Now the problem I am facing is the high computation time. The order of computation in the above code is 64^5, which is of the order 10^9. This computation should take at the worst minutes or an hour. It takes about 40 minutes to compute just 50 iterations. I don't know why the code is running so slow.
Thanks for reading my question.
You can use im2col* to convert the image to column format so each block forms a column of a [64 * 4096] matrix. Then apply transformation to each column and use bsxfun to vectorize computation of error.
DomainImage=rand(512);
RangeImage=rand(512);
DomainImage_col = im2col(DomainImage,[8 8],'distinct');
R = im2col(RangeImage,[8 8],'distinct');
[x y]=ndgrid(1:8);
function [x_dash, y_dash] = ApplyTransformation(x,y)
x_dash = x;
y_dash = y;
end
[x_dash, y_dash] = ApplyTransformation(x,y);
idx = sub2ind([8 8],x_dash, y_dash);
D_trans = DomainImage_col(idx,:); %transformation is reduced to matrix indexing
Error = 0;
for mn = 1:64
Error = Error + bsxfun(#minus,R(mn,:),D_trans(mn,:).').^2;
end
[minerror ,min_ij]= min(Error,[],2); % linear index of minimum of each block;
[min_i min_j]=ind2sub([64 64],min_ij); % convert linear index to subscript
Explanation:
Our goal is to reduce number of loops as much as possible. For it we should avoid matrix indexing and instead we should use vectorization. Nested loops should be converted to one loop. As the first step we can create a more optimized loop as here:
min_ij = zeros(4096,1);
for kl = 1:4096 %%% => 1:size(D_trans,2)
minerror = 9999;
min_ij(kl) = 0;
for ij = 1:4096 %%% => 1:size(R,2)
Error = 0;
for mn = 1:64
Error = Error + (R(mn,kl) - D_trans(mn,ij)).^2;
end
if(Error < minerror)
minerror = Error;
min_ij(kl) = ij;
end
end
end
We can re-arrange the loops and we can make the most inner loop as the outer loop and separate computation of the minimum from the computation of the error.
% Computation of the error
Error = zeros(4096,4096);
for mn = 1:64
for kl = 1:4096
for ij = 1:4096
Error(kl,ij) = Error(kl,ij) + (R(mn,kl) - D_trans(mn,ij)).^2;
end
end
end
% Computation of the min
min_ij = zeros(4096,1);
for kl = 1:4096
minerror = 9999;
min_ij(kl) = 0;
for ij = 1:4096
if(Error(kl,ij) < minerror)
minerror = Error(kl,ij);
min_ij(kl) = ij;
end
end
end
Now the code is arranged in a way that can best be vectorized:
Error = 0;
for mn = 1:64
Error = Error + bsxfun(#minus,R(mn,:),D_trans(mn,:).').^2;
end
[minerror ,min_ij] = min(Error, [], 2);
[min_i ,min_j] = ind2sub([64 64], min_ij);
*If you don't have the Image Processing Toolbox a more efficient implementation of im2col can be found here.
*The whole computation takes less than a minute.
First things first - your code doesn't do anything. But you likely do something with this minimum error stuff and only forgot to paste this here, or still need to code that bit. Never mind for now.
One big issue with your code is that you calculate transformation for 64x64 blocks of resulting image AND source image. 64^5 iterations of a complex operation are bound to be slow. Rather, you should calculate all transformations at once and save them.
allTransMats = cell(64);
for i = 1 : 64
for j = 1 : 64
allTransMats{i,j} = getTransformation(DomainImage, i, j)
end
end
function D_trans = getTransformation(DomainImage, i,j)
D_trans = zeros(8);
for m = 1 : 8
for n = 1 : 8
[m_dash,n_dash] = ApplyTransformation(8*i-8+m,8*j-8+n);
D_trans(m,n) = DomainImage(m_dash,n_dash);
end
end
end
This serves to get allTransMat and is OUTSIDE the k, l loop. Preferably as a simple function.
Now, you make your big k, l, i, j loop, where you compare all the elements as needed. Comparison could be also done block-wise instead of filling a small 8x8 matrix, yet doing it per element for some reason.
m = 1 : 8;
n = m;
for ...
R = RangeImage(...); % This will give 8x8 output as n and m are vectors.
D = allTransMats{i,j};
difference = sum(sum((R-D).^2));
if (difference < minDifference) ...
end
Even though this is a simple no transformations case, this speeds up code a lot.
Finally, are you sure you need to compare each block of transformed output with each block in the source? Typically you compare block1(a,b) with block2(a,b) - blocks (or pixels) on the same position.
EDIT: allTransMats requires k and l too. Ouch. There is NO WAY to make this fast for a single iteration, as you require 64^5 calls to ApplyTransformation (or a vectorization of that function, but even then it might not be fast - we would have to see the function to help here).
Therefore, I will re-iterate my advice to generate all transformations and then perform lookup: this upper part of the answer with allTransMats generation should be changed to have all 4 loops and generate allTransMats{i,j,k,l};. It WILL be slow, there is no way around that as I mentioned in the upper part of edit. But, it is a cost you pay once, as after saving the allTransMats, all further image analyses will be able to simply load it instead of generating it again.
But ... what do you even do? Transformation that depends on source and destination block indices plus pixel indices (= 6 values total) sounds like a mistake somewhere, or a prime candidate to optimize instead of all the rest.

efficient matlab implementation for Lukas-Kanade step

I got an assignment in a video processing course - to implement the Lucas-Kanade algorithm. Since we have to do it in the pyramidal model, I first build a pyramid for each of the 2 input images, and then for each level I perform a number of LK iterations. in each step (iteration), the following code runs (note: the images are zero-padded so I can handle the image edges easily):
function [du,dv]= LucasKanadeStep(I1,I2,WindowSize)
It = I2-I1;
[Ix, Iy] = imgradientxy(I2);
Ixx = imfilter(Ix.*Ix, ones(5));
Iyy = imfilter(Iy.*Iy, ones(5));
Ixy = imfilter(Ix.*Iy, ones(5));
Ixt = imfilter(Ix.*It, ones(5));
Iyt = imfilter(Iy.*It, ones(5));
half_win = floor(WindowSize/2);
du = zeros(size(It));
dv = zeros(size(It));
A = zeros(2);
b = zeros(2,1);
%iterate only on the relevant parts of the images
for i = 1+half_win : size(It,1)-half_win
for j = 1+half_win : size(It,2)-half_win
A(1,1) = Ixx(i,j);
A(2,2) = Iyy(i,j);
A(1,2) = Ixy(i,j);
A(2,1) = Ixy(i,j);
b(1,1) = -Ixt(i,j);
b(2,1) = -Iyt(i,j);
U = pinv(A)*b;
du(i,j) = U(1);
dv(i,j) = U(2);
end
end
end
mathematically what I'm doing is calculating for every pixel (i,j) the following optical flow:
as you can see, in the code I am calculating this for each pixel, which takes quite a long time (the whole processing for 2 images - including building 3 levels pyramids and 3 LK steps like the one above on each level - takes about 25 seconds (!) on a remote connection to my university servers).
My question: Is there a way to calculate this single LK step without the nested for loops? it must be more efficient because the next step of the assignment is to stabilize a short video using this algorithm.. thanks.
I ran your code on my system and did profiling. Here is what I got.
As you can see inverting the matrix(pinv) is taking most of the time. You can try and vectorise your code I guess, but I am not sure how to do it. But I do know a trick to improve the compute time. You have to exploit the minimum variance of the matrix A. That is, compute the inverse only if the minimum variance of A is greater than some threshold. This will improve the speed as you won't be inverting the matrix for all the pixel.
You do this by modifying your code to the one shown below.
function [du,dv]= LucasKanadeStep(I1,I2,WindowSize)
It = double(I2-I1);
[Ix, Iy] = imgradientxy(I2);
Ixx = imfilter(Ix.*Ix, ones(5));
Iyy = imfilter(Iy.*Iy, ones(5));
Ixy = imfilter(Ix.*Iy, ones(5));
Ixt = imfilter(Ix.*It, ones(5));
Iyt = imfilter(Iy.*It, ones(5));
half_win = floor(WindowSize/2);
du = zeros(size(It));
dv = zeros(size(It));
A = zeros(2);
B = zeros(2,1);
%iterate only on the relevant parts of the images
for i = 1+half_win : size(It,1)-half_win
for j = 1+half_win : size(It,2)-half_win
A(1,1) = Ixx(i,j);
A(2,2) = Iyy(i,j);
A(1,2) = Ixy(i,j);
A(2,1) = Ixy(i,j);
B(1,1) = -Ixt(i,j);
B(2,1) = -Iyt(i,j);
% +++++++++++++++++++++++++++++++++++++++++++++++++++
% Code I added , threshold better be outside the loop.
lambda = eig(A);
threshold = 0.2
if (min(lambda)> threshold)
U = A\B;
du(i,j) = U(1);
dv(i,j) = U(2);
end
% end of addendum
% +++++++++++++++++++++++++++++++++++++++++++++++++++
% U = pinv(A)*B;
% du(i,j) = U(1);
% dv(i,j) = U(2);
end
end
end
I have set the threshold to 0.2. You can experiment with it. By using eigen value trick I was able to get the compute time from 37 seconds to 10 seconds(shown below). Using eigen, pinv hardly takes up the time like before.
Hope this helped. Good luck :)
Eventually I was able to find a much more efficient solution to this problem.
It is based on the formula shown in the question. The last 3 lines are what makes the difference - we get a loop-free code that works way faster. There were negligible differences from the looped version (~10^-18 or less in terms of absolute difference between the result matrices, ignoring the padding zone).
Here is the code:
function [du,dv]= LucasKanadeStep(I1,I2,WindowSize)
half_win = floor(WindowSize/2);
% pad frames with mirror reflections of itself
I1 = padarray(I1, [half_win half_win], 'symmetric');
I2 = padarray(I2, [half_win half_win], 'symmetric');
% create derivatives (time and space)
It = I2-I1;
[Ix, Iy] = imgradientxy(I2, 'prewitt');
% calculate dP = (du, dv) according to the formula
Ixx = imfilter(Ix.*Ix, ones(WindowSize));
Iyy = imfilter(Iy.*Iy, ones(WindowSize));
Ixy = imfilter(Ix.*Iy, ones(WindowSize));
Ixt = imfilter(Ix.*It, ones(WindowSize));
Iyt = imfilter(Iy.*It, ones(WindowSize));
% calculate the whole du,dv matrices AT ONCE!
invdet = (Ixx.*Iyy - Ixy.*Ixy).^-1;
du = invdet.*(-Iyy.*Ixt + Ixy.*Iyt);
dv = invdet.*(Ixy.*Ixt - Ixx.*Iyt);
end

speeding up some for loops in matlab

Basically I am trying to solve a 2nd order differential equation with the forward euler method. I have some for loops inside my code, which take considerable time to solve and I would like to speed things up a bit. Does anyone have any suggestions how could I do this?
And also when looking at the time it takes, I notice that my end at line 14 takes 45 % of my total time. What is end actually doing and why is it taking so much time?
Here is my simplified code:
t = 0:0.01:100;
dt = t(2)-t(1);
B = 3.5 * t;
F0 = 2 * t;
BB=zeros(1,length(t)); % Preallocation
x = 2; % Initial value
u = 0; % Initial value
for ii = 1:length(t)
for kk = 1:ii
BB(ii) = BB(ii) + B(kk) * u(ii-kk+1)*dt; % This line takes the most time
end % This end takes 45% of the other time
x(ii+1) = x(ii) + dt*u(ii);
u(ii+1) = u(ii) + dt * (F0(ii) - BB(ii));
end
Running the code it takes me 8.552 sec.
You can remove the inner loop, I think:
for ii = 1:length(t)
for kk = 1:ii
BB(ii) = BB(ii) + B(kk) * u(ii-kk+1)*dt; % This line takes the most time
end % This end takes 45% of the other time
x(ii+1) = x(ii) + dt*u(ii);
u(ii+1) = u(ii) + dt * (F0(ii) - BB(ii));
end
So BB(ii) = BB(ii) (zero at initalisation) + sum for 1 to ii of BB(kk)* u(ii-kk+1).dt
but kk = 1:ii, so for a given ii, ii-kk+1 → ii-(1:ii) + 1 → ii:-1:1
So I think this is equivalent to:
for ii = 1:length(t)
BB(ii) = sum(B(1:ii).*u(ii:-1:1)*dt);
x(ii+1) = x(ii) + dt*u(ii);
u(ii+1) = u(ii) + dt * (F0(ii) - BB(ii));
end
It doesn't take as long as 8 seconds for me using either method, but the version with only one loop is about 2x as fast (the output of BB appears to be the same).
Is the sum loop of B(kk) * u(ii-kk+1) just conv(B(1:ii),u(1:ii),'same')
The best way to speed up loops in matlab is to try to avoid them. Try if you are able to perform a matrix operation instead of the inner loop. For example try to break the calculation you do there in small parts, then decide, if there are parts you can perform in advance without knowing the results of the next iteration of the loop.
to your secound part of the question, my guess:: The end contains the check if the loop runs for another round and this check by it self is not that long but called 50.015.001 times!

How to optimize MATLAB bitwise operations

I have written my own SHA1 implementation in MATLAB, and it gives correct hashes. However, it's very slow (a string a 1000 a's takes 9.9 seconds on my Core i7-2760QM), and I think the slowness is a result of how MATLAB implements bitwise logical operations (bitand, bitor, bitxor, bitcmp) and bitwise shifts (bitshift, bitrol, bitror) of integers.
Especially I wonder the need to construct fixed-point numeric objects for bitrol and bitror using fi command, because anyway in Intel x86 assembly there's rol and ror both for registers and memory addresses of all sizes. However, bitshift is quite fast (it doesn't need any fixed-point numeric costructs, a regular uint64 variable works fine), which makes the situation stranger: why in MATLAB bitrol and bitror need fixed-point numeric objects constructed with fi, whereas bitshift does not, when in assembly level it all comes down to shl, shr, rol and ror?
So, before writing this function in C/C++ as a .mex file, I'd be happy to know if there is any way to improve the performance of this function. I know there are some specific optimizations for SHA1, but that's not the issue, if the very basic implementation of bitwise rotations is so slow.
Testing a little bit with tic and toc, it's evident that what makes it slow are the loops in with bitrol and fi. There are two such loops:
%# Define some variables.
FFFFFFFF = uint64(hex2dec('FFFFFFFF'));
%# constants: K(1), K(2), K(3), K(4).
K(1) = uint64(hex2dec('5A827999'));
K(2) = uint64(hex2dec('6ED9EBA1'));
K(3) = uint64(hex2dec('8F1BBCDC'));
K(4) = uint64(hex2dec('CA62C1D6'));
W = uint64(zeros(1, 80));
... some other code here ...
%# First slow loop begins here.
for index = 17:80
W(index) = uint64(bitrol(fi(bitxor(bitxor(bitxor(W(index-3), W(index-8)), W(index-14)), W(index-16)), 0, 32, 0), 1));
end
%# First slow loop ends here.
H = sha1_handle_block_struct.H;
A = H(1);
B = H(2);
C = H(3);
D = H(4);
E = H(5);
%# Second slow loop begins here.
for index = 1:80
rotatedA = uint64(bitrol(fi(A, 0, 32, 0), 5));
if (index <= 20)
% alternative #1.
xorPart = bitxor(D, (bitand(B, (bitxor(C, D)))));
xorPart = bitand(xorPart, FFFFFFFF);
temp = rotatedA + xorPart + E + W(index) + K(1);
elseif ((index >= 21) && (index <= 40))
% FIPS.
xorPart = bitxor(bitxor(B, C), D);
xorPart = bitand(xorPart, FFFFFFFF);
temp = rotatedA + xorPart + E + W(index) + K(2);
elseif ((index >= 41) && (index <= 60))
% alternative #2.
xorPart = bitor(bitand(B, C), bitand(D, bitxor(B, C)));
xorPart = bitand(xorPart, FFFFFFFF);
temp = rotatedA + xorPart + E + W(index) + K(3);
elseif ((index >= 61) && (index <= 80))
% FIPS.
xorPart = bitxor(bitxor(B, C), D);
xorPart = bitand(xorPart, FFFFFFFF);
temp = rotatedA + xorPart + E + W(index) + K(4);
else
error('error in the code of sha1_handle_block.m!');
end
temp = bitand(temp, FFFFFFFF);
E = D;
D = C;
C = uint64(bitrol(fi(B, 0, 32, 0), 30));
B = A;
A = temp;
end
%# Second slow loop ends here.
Measuring with tic and toc, the entire computation of SHA1 hash of message abc takes on my laptop around 0.63 seconds, of which around 0.23 seconds is passed in the first slow loop and around 0.38 seconds in the second slow loop. So is there some way to optimize those loops in MATLAB before writing a .mex file?
There's this DataHash from the MATLAB File Exchange that calculates SHA-1 hashes lightning fast.
I ran the following code:
x = 'The quick brown fox jumped over the lazy dog'; %# Just a short sentence
y = repmat('a', [1, 1e6]); %# A million a's
opt = struct('Method', 'SHA-1', 'Format', 'HEX', 'Input', 'bin');
tic, x_hashed = DataHash(uint8(x), opt), toc
tic, y_hashed = DataHash(uint8(y), opt), toc
and got the following results:
x_hashed = F6513640F3045E9768B239785625CAA6A2588842
Elapsed time is 0.029250 seconds.
y_hashed = 34AA973CD4C4DAA4F61EEB2BDBAD27316534016F
Elapsed time is 0.020595 seconds.
I verified the results with a random online SHA-1 tool, and the calculation was indeed correct. Also, the 106 a's were hashed ~1.5 times faster than the first sentence.
So how does DataHash do it so fast??? Using the java.security.MessageDigest library, no less!
If you're interested with a fast MATLAB-friendly SHA-1 function, this is the way to go.
However, if this is just an exercise for implementing fast bit-level operations, then MATLAB doesn't really handle them efficiently, and in most cases you'll have to resort to MEX.
why in MATLAB bitrol and bitror need fixed-point numeric objects constructed with fi, whereas bitshift does not
bitrol and bitror are not part of the set of bitwise logic functions that are applicable for uints. They are part of the fixed-point toolbox, which also contains variants of bitand, bitshift etc that apply to fixed-point inputs.
A bitrol could be expressed as two bitshifts, a bitand and a bitor if you want to try using only the uint-functions. That might be even slower though.
As most MATLAB functions, bitand, bitor, bitxor are vectorized. So you get a lot faster if you give these function vector input rather than calling them in a loop over each element
Example:
%# create two sets of 10k random numbers
num = 10000;
hex = '0123456789ABCDEF';
A = uint64(hex2dec( hex(randi(16, [num 16])) ));
B = uint64(hex2dec( hex(randi(16, [num 16])) ));
%# compare loop vs. vectorized call
tic
C1 = zeros(size(A), class(A));
for i=1:numel(A)
C1(i) = bitxor(A(i),B(i));
end
toc
tic
C2 = bitxor(A,B);
toc
assert(isequal(C1,C2))
The timing was:
Elapsed time is 0.139034 seconds.
Elapsed time is 0.000960 seconds.
That's an order of magnitude faster!
The problem is, and as far as I can tell, the SHA-1 computation cannot be well vectorized. So you might not be able to take advantage of such vectorization.
As an experiment, I implemented a pure MATLAB-based funciton to compute such bit operations:
function num = my_bitops(op,A,B)
%# operation to perform: not, and, or, xor
if ischar(op)
op = str2func(op);
end
%# integer class: uint8, uint16, uint32, uint64
clss = class(A);
depth = str2double(clss(5:end));
%# bit exponents
e = 2.^(depth-1:-1:0);
%# convert to binary
b1 = logical(dec2bin(A,depth)-'0');
if nargin == 3
b2 = logical(dec2bin(B,depth)-'0');
end
%# perform binary operation
if nargin < 3
num = op(b1);
else
num = op(b1,b2);
end
%# convert back to integer
num = sum(bsxfun(#times, cast(num,clss), cast(e,clss)), 2, 'native');
end
Unfortunately, this was even worse in terms of performance:
tic, C1 = bitxor(A,B); toc
tic, C2 = my_bitops('xor',A,B); toc
assert(isequal(C1,C2))
The timing was:
Elapsed time is 0.000984 seconds.
Elapsed time is 0.485692 seconds.
Conclusion: write a MEX function or search the File Exchange to see if someone already did :)

Resources