Recently, I've asked a question for building DFS tree from Graph in Stackoverflow and had learned that it can be simply implemented by using State Monad.
DFS in haskell
While DFS requires to track only visited nodes, so that we can use 'Set' or 'List' or some sort of linear data structure to track visited nodes, BFS requires 'visited node' and 'queue' data structure to be accomplished.
My pseudocode for BFS is
Q = empty queue
T = empty Tree
mark all nodes except u as unvisited
while Q is nonempty do
u = deq(Q)
for each vertex v ∈ Adj(u)
if v is not visited
then add edge (u,v) to T
Mark v as visited and enq(v)
As can be inferred from pseudocode, we only have to do 3 processes per iteration.
dequeue point from queue
add all unvisited neighbors of the point to current tree's child, queue and 'visited' list
repeat this for next in queue
Since we are not using recursive traversal for BFS search, we need some other traversal method such as while loop. I've looked up loop-while package in hackage, but it seems somewhat deprecated.
What I assume is that I require some sort of code like this :
{-...-}
... = evalState (bfs) ((Set.singleton start),[start])
where
neighbors x = Map.findWithDefault [] x adj
bfs =do (vis,x:queue)<-get
map (\neighbor ->
if (Set.member neighbor vis)
then put(vis,queue)
else put ((Set.insert neighbor vis), queue++[neighbor]) >> (addToTree neighbor)
) neighbors x
(vis,queue)<-get
while (length queue > 0)
I understand that this implementation is very erroneous but this should give minimalistic view for how I think BFS should be implemented. Also, I really don't know how to circumvent using while loop for do blocks.(i.e should I use recursive algorithm to overcome it or should I think of completely different strategy)
Considering one of the answer I've found in previous question linked above, it seems like the answer should look like this :
newtype Graph a = Graph (Map.Map a [a]) deriving (Ord, Eq, Show)
data Tree a = Tree a [Tree a] deriving (Ord, Eq, Show)
bfs :: (Ord a) => Graph a -> a -> Tree a
bfs (Graph adj) start = evalState (bfs') ((Set.singleton start),[start])
where
bfs' = {-part where I don't know-}
Finally, if such implementation for BFS using state monad is impossible due to some reason, (which I believe not to be) please correct my false assumption.
I've seen some of the examples for BFS in Haskell without using state monad but I want to learn more about how state monad can be processed and couldn't have found any of examples of BFS implemented using state monad.
Thanks in advance.
EDIT:
I came up with some sort of algorithm using state monad but I fall in infinite loop.
bfs :: (Ord a) => Graph a -> a -> Tree a
bfs (Graph adj) start = evalState (bfs' (Graph adj) start) (Set.singleton start)
bfs' :: (Ord a) => Graph a -> a -> State (Set.Set a) (Tree a)
bfs' (Graph adj) point= do
vis <- get
let neighbors x = Map.findWithDefault [] x adj
let addableNeighbors (x:xs) = if Set.member x vis
then addableNeighbors(xs)
else x:addableNeighbors(xs)
let addVisited (vis) (ns) = Set.union (vis) $ Set.fromList ns
let newVisited = addVisited vis $ addableNeighbors $ neighbors point
put newVisited
return (Tree point $ map (flip evalState newVisited) (map (bfs' (Graph adj)) $ addableNeighbors $ neighbors point))
EDIT2: With some expense of space complexity, I've came out with a solution to get BFS graph using graph to return and queue to process. Despite it is not the optimal solution for generating BFS tree/graph, it will work.
bfs :: (Ord a) => Graph a -> a -> Graph a
bfs (Graph adj) start = evalState (bfs' (Graph adj) (Graph(Map.empty)) [start]) (Set.singleton start)
bfs':: (Ord a) => Graph a -> Graph a -> [a] -> State (Set.Set a) (Graph a)
bfs' _ (Graph ret) [] = return (Graph ret)
bfs' (Graph adj) (Graph ret) (p:points)= do
vis <- get
let neighbors x = Map.findWithDefault [] x adj
let addableNeighbors ns
| null ns = []
| otherwise = if Set.member (head ns) vis
then addableNeighbors(tail ns)
else (head ns):addableNeighbors(tail ns)
let addVisited (v) (ns) = Set.union (v) $ Set.fromList ns
let unVisited = addableNeighbors $ neighbors p
let newVisited = addVisited vis unVisited
let unionGraph (Graph g1) (Graph g2) = Graph (Map.union g1 g2)
put newVisited
bfs' (Graph adj) (unionGraph (Graph ret) (Graph (Map.singleton p unVisited))) (points ++ unVisited)
EDIT3: I've added convert function for graph to tree. Running function in EDIT2, and EDIT3 will yield BFS Tree. It is not the best algorithm for computation time wise, but I believe it is intuitive and easy to understand for newbies like me :)
graphToTree :: (Ord a) => Graph a -> a -> Tree a
graphToTree (Graph adj) point = Tree point $ map (graphToTree (Graph adj)) $ neighbors point
where neighbors x = Map.findWithDefault [] x adj
Converting a graph into a Tree breadth-first is a bit more difficult than simply searching the graph breadth-first. If you are searching the graph, you only ever need to return from a single branch. When converting the graph into a tree, the result needs to include results from multiple branches.
We can use a more general type than Graph a for what we can search or convert to trees. We can search or convert to trees anything with a function a -> [a]. For a Graph we'd use the function (Map.!) m, where m is the Map. Searching with a transposition table has a signature like
breadthFirstSearchUnseen:: Ord r => (a -> r) -> -- how to compare `a`s
(a -> Bool) -> -- where to stop
(a -> [a]) -> -- where you can go from an `a`
[a] -> -- where to start
Maybe [a]
Converting the function to a tree that contains each reachable node at the earliest depth has a signature like
shortestPathTree :: Ord r => (a -> r) -> -- how to compare `a`s
(a -> l) -- what label to put in the tree
(a -> [a]) -> -- where you can go from an `a`
a -> -- where to start
Tree l
We can slightly more generally start at any number of nodes and build a Forest that contains each reachable node at the earliest depth.
shortestPathTrees :: Ord r => (a -> r) -> -- how to compare `a`s
(a -> l) -- what label to put in the tree
(a -> [a]) -> -- where you can go from an `a`
[a] -> -- where to start
[Tree l]
Searching
Performing the conversion to a tree doesn't really help us search, we can perform breadth first searches on the original graph.
import Data.Sequence (viewl, ViewL (..), (><))
import qualified Data.Sequence as Seq
import qualified Data.Set as Set
breadthFirstSearchUnseen:: Ord r => (a -> r) -> (a -> Bool) -> (a -> [a]) -> [a] -> Maybe [a]
breadthFirstSearchUnseen repr p expand = combine Set.empty Seq.empty []
where
combine seen queued ancestors unseen =
go
(seen `Set.union` (Set.fromList . map repr $ unseen))
(queued >< (Seq.fromList . map ((,) ancestors) $ unseen))
go seen queue =
case viewl queue of
EmptyL -> Nothing
(ancestors, a) :< queued ->
if p a
then Just . reverse $ ancestors'
else combine seen queued ancestors' unseen
where
ancestors' = a:ancestors
unseen = filter (flip Set.notMember seen . repr) . expand $ a
The state maintained in the above search algorithm is a Seq queue of what nodes to visit next and a Set of nodes that have already been seen. If we instead kept track of nodes that have already been visited, then we could visit the same node multiple times if we find multiple paths to the node at the same depth. There's a more complete explanation in the answer I wrote this breadth first search for.
We can easily write searching Graphs in terms of our general search.
import qualified Data.Map as Map
newtype Graph a = Graph (Map.Map a [a]) deriving (Ord, Eq, Show)
bfsGraph :: (Ord a) => Graph a -> (a -> Bool) -> [a] -> Maybe [a]
bfsGraph (Graph adj) test = breadthFirstSearchUnseen id test ((Map.!) adj)
We can also write how to search Trees themselves.
import Data.Tree
bfsTrees :: (Ord a) => (a -> Bool) -> [Tree a] -> Maybe [a]
bfsTrees test = fmap (map rootLabel) . breadthFirstSearchUnseen rootLabel (test . rootLabel) subForest
Building trees
Building trees breadth-first is a lot more difficult. Fortunately Data.Tree already provides ways to build Trees in breadth first order from a monadic unfold. The breadth first order will take care of the queuing, we will only need to keep track of the state for the nodes we've already seen.
unfoldTreeM_BF has the type Monad m => (b -> m (a, [b])) -> b -> m (Tree a). m is the Monad our computations will be in, b is the type of data we are going to build the tree based on, and a is the type for the labels of the tree. In order to use it to build a tree we need to make a function b -> m (a, [b]). We're going to rename a to l for label, and b to a, which is what we've been using for our nodes. We need to make an a -> m (l, [a]). For m, we'll use the State monad from transformers to keep track of some state; the state will be the Set of nodes whose representation r we've already seen; we'll be using the State (Set.Set r) monad. Overall, we need to provide a function a -> State (Set.Set r) (l, [a]).
expandUnseen :: Ord r => (a -> r) -> (a -> l) -> (a -> [a]) -> a -> State (Set.Set r) (l, [a])
expandUnseen repr label expand a = do
seen <- get
let unseen = filter (flip Set.notMember seen . repr) . uniqueBy repr . expand $ a
put . Set.union seen . Set.fromList . map repr $ unseen
return (label a, unseen)
To build the trees, we run the state computation built by unfoldForestM_BF
shortestPathTrees :: Ord r => (a -> r) -> (a -> l) -> (a -> [a]) -> [a] -> [Tree l]
shortestPathTrees repr label expand = run . unfoldForestM_BF k . uniqueBy repr
where
run = flip evalState Set.empty
k = expandUnseen repr label expand
uniqueBy is a nubBy that takes advantage of an Ord instance instead of Eq.
uniqueBy :: Ord r => (a -> r) -> [a] -> [a]
uniqueBy repr = go Set.empty
where
go seen [] = []
go seen (x:xs) =
if Set.member (repr x) seen
then go seen xs
else x:go (Set.insert (repr x) seen) xs
We can write building shortest path trees from Graphs in terms of our general shortest path tree building
shortestPathsGraph :: Ord a => Graph a -> [a] -> [Tree a]
shortestPathsGraph (Graph adj) = shortestPathTrees id id ((Map.!) adj)
We can do the same for filtering a Forest to only the shortest paths through the Forest.
shortestPathsTree :: Ord a => [Tree a] -> [Tree a]
shortestPathsTree = shortestPathTrees rootLabel rootLabel subForest
My solution is based on working level-by-level (wrt. to BFS), see also this question and answer.
The general idea is: Assume we already know the sets of visited elements prior each level of our BFS as a list of sets. Then we can traverse the graph, level by level, updating our list of sets, constructing the output Tree on the way.
The trick is that after such a level-by-level traversal, we'll have the sets of visited elements after each level. And this is the same as the list before each level, just shifted by one. So by tying the knot, we can use the shifted output as the input for the procedure.
import Control.Monad.State
import qualified Data.Map as M
import Data.Maybe (fromMaybe, catMaybes)
import qualified Data.Set as S
import Data.Tree
newtype Graph a = Graph (M.Map a [a])
deriving (Ord, Eq, Show)
tagBfs :: (Ord a) => Graph a -> a -> Maybe (Tree a)
tagBfs (Graph g) s = let (t, sets) = runState (thread s) (S.empty : sets)
in t
where
thread x = do
sets#(s : subsets) <- get
case M.lookup x g of
Just vs | not (S.member x s) -> do
-- recursively create sub-nodes and update the subsets list
let (nodes, subsets') = runState
(catMaybes `liftM` mapM thread vs) subsets
-- put the new combined list of sets
put (S.insert x s : subsets')
-- .. and return the node
return . Just $ Node x nodes
_ -> return Nothing -- node not in the graph, or already visited
Running tagBfs example2 'b' it on the following example
example2 :: Graph Char
example2 = Graph $ M.fromList
[ ('a', ['b', 'c', 'd'])
, ('b', ['a'])
, ('c', [])
, ('d', [])
]
yields
Just (Node {rootLabel = 'b',
subForest = [Node {rootLabel = 'a',
subForest = [Node {rootLabel = 'c',
subForest = []},
Node {rootLabel = 'd',
subForest = []}
]}
]}
)
Related
I have the following code to do an inorder traversal of a Binary Tree:
data BinaryTree a =
Node a (BinaryTree a) (BinaryTree a)
| Leaf
deriving (Show)
inorder :: (a -> b -> b) -> b -> BinaryTree a -> b
inorder f acc tree = go tree acc
where go Leaf z = z
go (Node v l r) z = (go r . f v . go l) z
Using the inorder function above I'd like to get the kth element without having to traverse the entire list.
The traversal is a little like a fold given that you pass it a function and a starting value. I was thinking that I could solve it by passing k as the starting value, and a function that'll decrement k until it reaches 0 and at that point returns the value inside the current node.
The problem I have is that I'm not quite sure how to break out of the recursion of inorder traversal short of modifying the whole function, but I feel like having to modify the higher order function ruins the point of using a higher order function in the first place.
Is there a way to break after k iterations?
I observe that the results of the recursive call to go on the left and right subtrees are not available to f; hence no matter what f does, it cannot choose to ignore the results of recursive calls. Therefore I believe that inorder as written will always walk over the entire tree. (edit: On review, this statement may be a bit strong; it seems f may have a chance to ignore left subtrees. But the point basically stands; there is no reason to elevate left subtrees over right subtrees in this way.)
A better choice is to give the recursive calls to f. For example:
anyOldOrder :: (a -> b -> b -> b) -> b -> BinaryTree a -> b
anyOldOrder f z = go where
go Leaf = z
go (Node v l r) = f v (go l) (go r)
Now when we write
flatten = anyOldOrder (\v ls rs -> ls ++ [v] ++ rs) []
we will find that flatten is sufficiently lazy:
> take 3 (flatten (Node 'c' (Node 'b' (Node 'a' Leaf Leaf) Leaf) undefined))
"abc"
(The undefined is used to provide evidence that this part of the tree is never inspected during the traversal.) Hence we may write
findK k = take 1 . reverse . take k . flatten
which will correctly short-circuit. You can make flatten slightly more efficient with the standard difference list technique:
flatten' t = anyOldOrder (\v l r -> l . (v:) . r) id t []
Just for fun, I also want to show how to implement this function without using an accumulator list. Instead, we will produce a stateful computation which walks over the "interesting" part of the tree, stopping when it reaches the kth element. The stateful computation looks like this:
import Control.Applicative
import Control.Monad.State
import Control.Monad.Trans.Maybe
kthElem k v l r = l <|> do
i <- get
if i == k
then return v
else put (i+1) >> r
Looks pretty simple, hey? Now our findK function will farm out to kthElem, then do some newtype unwrapping:
findK' k = (`evalState` 1) . runMaybeT . anyOldOrder (kthElem 3) empty
We can verify that it is still as lazy as desired:
> findK' 3 $ Node 'c' (Node 'b' (Node 'a' Leaf Leaf) Leaf) undefined
Just 'c'
There are (at least?) two important generalizations of the notion of folding a list. The first, more powerful, notion is that of a catamorphism. The anyOldOrder of Daniel Wagner's answer follows this pattern.
But for your particular problem, the catamorphism notion is a bit more power than you need. The second, weaker, notion is that of a Foldable container. Foldable expresses the idea of a container whose elements can all be mashed together using the operation of an arbitrary Monoid. Here's a cute trick:
{-# LANGUAGE DeriveFoldable #-}
-- Note that for this trick only I've
-- switched the order of the Node fields.
data BinaryTree a =
Node (BinaryTree a) a (BinaryTree a)
| Leaf
deriving (Show, Foldable)
index :: [a] -> Int -> Maybe a
[] `index` _ = Nothing
(x : _) `index` 0 = Just x
(_ : xs) `index` i = xs `index` (i - 1)
(!?) :: Foldable f => Int -> f a -> Maybe a
xs !? i = toList xs `index` i
Then you can just use !? to index into your tree!
That trick is cute, and in fact deriving Foldable is a tremendous convenience, but it won't help you understand anything. I'll start by showing how you can define treeToList fairly directly and efficiently, without using Foldable.
treeToList :: BinaryTree a -> [a]
treeToList t = treeToListThen t []
The magic is in the treeToListThen function. treeToListThen t more converts t to a list and appends the list more to the end of the result. This slight generalization turns out to be all that's required to make conversion to a list efficient.
treeToListThen :: BinaryTree a -> [a] -> [a]
treeToListThen Leaf more = more
treeToListThen (Node v l r) more =
treeToListThen l $ v : treeToListThen r more
Instead of producing an inorder traversal of the left subtree and then appending everything else, we tell the left traversal what to stick on the end when it's done! This avoids the potentially serious inefficiency of repeated list concatenation that can turn things O(n^2) in bad cases.
Getting back to the Foldable notion, turning things into lists is a special case of foldr:
toList = foldr (:) []
So how can we implement foldr for trees? It ends up being somewhat similar to what we did with toList:
foldrTree :: (a -> b -> b) -> b -> BinaryTree a -> b
foldrTree _ n Leaf = n
foldrTree c n (Node v l r) = foldrTree c rest l
where
rest = v `c` foldrTree c n r
That is, when we go down the left side, we tell it that when it's done, it should deal with the current node and its right child.
Now foldr isn't quite the most fundamental operation of Foldable; that is actually
foldMap :: (Foldable f, Monoid m)
=> (a -> m) -> f a -> m
It is possible to implement foldr using foldMap, in a somewhat tricky fashion using a peculiar Monoid. I don't want to overload you with details of that right now, unless you ask (but you should look at the default definition of foldr in Data.Foldable). Instead, I'll show how foldMap can be defined using Daniel Wagner's anyOldOrder:
instance Foldable BinaryTree where
foldMap f = anyOldOrder bin mempty where
bin lres v rres = lres <> f v <> rres
I am reading this paper by Chris Okasaki; titled "Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design".
A question is - how is the magic happening in the algorithm? There are some figures (e.g. figure 7 titled "threading the output of one level into the input of next level")
Unfortunately, maybe it's only me, but that figure has completely baffled me. I don't understand how the threading happens at all?
Breadth first traversal means traversing levels of a tree one by one. So let's assume we already know what are the numbers at the beginning of each level - the number of traversed elements so far before each level. For the simple example in the paper
import Data.Monoid
data Tree a = Tree (Tree a) a (Tree a)
| Empty
deriving (Show)
example :: Tree Char
example = Tree (Tree Empty 'b' (Tree Empty 'c' Empty)) 'a' (Tree Empty 'd' Empty)
the sizes would be 0, 1, 3, 4. Knowing this, we can thread such a list of sizes through a give tree (sub-tree) left-to-right: We advance the first element of the list by one for the node, and thread the tail of the list first through the left and then through the right subtree (see thread below).
After doing so, we'll get again the same list of sizes, only shifted by one - now we have the total number of elements after each level. So the trick is: Assume we have such a list, use it for the computation, and then feed the output as the input - tie the knot.
A sample implementation:
tagBfs :: (Monoid m) => (a -> m) -> Tree a -> Tree m
tagBfs f t = let (ms, r) = thread (mempty : ms) t
in r
where
thread ms Empty = (ms, Empty)
thread (m : ms) (Tree l x r) =
let (ms1, l') = thread ms l
(ms2, r') = thread ms1 r
in ((m <> f x) : ms2, Tree l' m r')
generalized to Monoid (for numbering you'd give const $ Sum 1 as the function).
One way to view tree numbering is in terms of a traversal. Specifically, we want to traverse the tree in breadth-first order using State to count up. The necessary Traversable instance looks something like this. Note that you'd probably actually want to define this instance for a newtype like BFTree, but I'm just using the raw Tree type for simplicity. This code is strongly inspired by ideas in Cirdec's monadic rose tree unfolding code, but the situation here seems to be substantially simpler. Hopefully I haven't missed something horrible.
{-# LANGUAGE DeriveFunctor,
GeneralizedNewtypeDeriving,
LambdaCase #-}
{-# OPTIONS_GHC -Wall #-}
module BFT where
import Control.Applicative
import Data.Foldable
import Data.Traversable
import Prelude hiding (foldr)
data Tree a = Tree (Tree a) a (Tree a)
| Empty
deriving (Show, Functor)
newtype Forest a = Forest {getForest :: [Tree a]}
deriving (Functor)
instance Foldable Forest where
foldMap = foldMapDefault
-- Given a forest, produce the forest consisting
-- of the children of the root nodes of non-empty
-- trees.
children :: Forest a -> Forest a
children (Forest xs) = Forest $ foldr go [] xs
where
go Empty c = c
go (Tree l _a r) c = l : r : c
-- Given a forest, produce a list of the root nodes
-- of the elements, with `Nothing` values in place of
-- empty trees.
parents :: Forest a -> [Maybe a]
parents (Forest xs) = foldr go [] xs
where
go Empty c = Nothing : c
go (Tree _l a _r) c = Just a : c
-- Given a list of values (mixed with blanks) and
-- a list of trees, attach the values to pairs of
-- trees to build trees; turn the blanks into `Empty`
-- trees.
zipForest :: [Maybe a] -> Forest a -> [Tree a]
zipForest [] _ts = []
zipForest (Nothing : ps) ts = Empty : zipForest ps ts
zipForest (Just p : ps) (Forest ~(t1 : ~(t2 : ts'))) =
Tree t1 p t2 : zipForest ps (Forest ts')
instance Traversable Forest where
-- Traversing an empty container always gets you
-- an empty one.
traverse _f (Forest []) = pure (Forest [])
-- First, traverse the parents. The `traverse.traverse`
-- gets us into the `Maybe`s. Then traverse the
-- children. Finally, zip them together, and turn the
-- result into a `Forest`. If the `Applicative` in play
-- is lazy enough, like lazy `State`, I believe
-- we avoid the double traversal Okasaki mentions as
-- a problem for strict implementations.
traverse f xs = (Forest .) . zipForest <$>
(traverse.traverse) f (parents xs) <*>
traverse f (children xs)
instance Foldable Tree where
foldMap = foldMapDefault
instance Traversable Tree where
traverse f t =
(\case {(Forest [r]) -> r;
_ -> error "Whoops!"}) <$>
traverse f (Forest [t])
Now we can write code to pair up each element of the tree with its breadth-first number like this:
import Control.Monad.Trans.State.Lazy
numberTree :: Tree a -> Tree (Int, a)
numberTree tr = flip evalState 1 $ for tr $ \x ->
do
v <- get
put $! (v+1)
return (v,x)
This is a follow up to my previous question about processing a Vector representation of a 5.1m edge directed graph. I am trying to implement Kosaraju's graph algorithm and thus need to rearrange my Vector in the order of the finishing times of a depth first search (DFS) on the edges reversed. I have code that runs on small data sets but that fails to return in 10 minutes on the full data set. (I can't exclude that a loop arises from the big graph, but there are no signs of that on my test data.)
DFS needs to avoid revisiting nodes, so I need some sort of 'state' for the search (currently a tuple, should I use a State Monad?). The first search should return a reordered Vector, but I am keeping things simple at present by returning a list of the reordered Node indexes so that I can process the Vector in one go subsequently.
I presume the issue lies in dfsInner. The code below 'remembers' the nodes visited updating the explored field of each node (third guard). Although I tried to make it tail recursive, the code seems to grow memory use fairly fast. Do I need to enforce some strictness and if so, how? (I have another version that I use on a single search search, which checks for previous visits by looking at the start nodes of the unexplored edges on the stack and the list of nodes that have been completed. This does not grow so quickly, but does not return for any well connected node.)
However, it could also be the foldr', but how can I detect that?
This is supposedly Coursera homework, but I'm no longer sure I can tick the honour code button! Learning is more important though, so I don't really want a copy/paste answer. What I have is not very elegant - it has an imperative feel to it too, which is driven by the issue with keeping some sort of state - see third guard. I'd welcome comments on design patterns.
type NodeName = Int
type Edges = [NodeName]
type Explored = Bool
type Stack = [(Int, Int)]
data Node = Node NodeName Explored Edges Edges deriving (Eq, Show)
type Graph = Vector Node
main = do
edges <- V.fromList `fmap` getEdges "SCC.txt"
let
maxIndex = fst $ V.last edges
gr = createGraph maxIndex edges
res = dfsOuter gr
--return gr
putStrLn $ show res
dfsOuter gr =
let tmp = V.foldr' callInner (gr,[]) gr
in snd tmp
callInner :: Node -> (Graph, Stack) -> (Graph, Stack)
callInner (Node idx _ fwd bwd) (gr,acc) =
let (Node _ explored _ _) = gr V.! idx
in case explored of
True -> (gr, acc)
False ->
let
initialStack = map (\l -> (idx, l)) bwd
gr' = gr V.// [(idx, Node idx True fwd bwd)]
(gr'', newScc) = dfsInner idx initialStack (length acc) (gr', [])
in (gr'', newScc++acc)
dfsInner :: NodeName -> Stack -> Int -> (Graph, [(Int, Int)]) -> (Graph, [(Int, Int)])
dfsInner start [] finishCounter (gr, acc) = (gr, (start, finishCounter):acc)
dfsInner start stack finishCounter (gr, acc)
| nextStart /= start = -- no more places to go from this node
dfsInner nextStart stack (finishCounter + 1) $ (gr, (start, finishCounter):acc)
| nextExplored =
-- nextExplored || any (\(y,_) -> y == stack0Head) stack || any (\(x,_) -> x == stack0Head) acc =
dfsInner start (tail stack) finishCounter (gr, acc)
| otherwise =
dfsInner nextEnd (add2Stack++stack) finishCounter (gr V.// [(nextEnd, Node idx True nextLHS nextRHS)], acc)
-- dfsInner gr stack0Head (add2Stack++stack) finishCounter acc
where
(nextStart, nextEnd) = head stack
(Node idx nextExplored nextLHS nextRHS) = gr V.! nextEnd
add2Stack = map (\l -> (nextEnd, l)) nextRHS
In a nutshell:
Know the time complexities.
There are a lot of fine points to optimization, a large subset of which being not very important in everyday programming, but fail to know the asymptotic complexities and programs will often just not work at all.
Haskell libraries usually document the complexities, especially when it's not obvious or not effective (linear of worse). In particular, all the complexities relevant to this question can be found in Data.List and Data.Vector.
The performance is killed by V.// here. Vectors are boxed or unboxed immutable contiguous arrays in memory. Hence, modifying them requires copying the entire vector. Since we have O(N) such modifications, the whole algorithm is O(n^2), so we have to copy about 2 terabytes with N = 500000. So, there isn't much use for marking visited nodes inside the vector. Instead, build an IntSet of indices as needed.
initialStack (length acc) also looks really bad. It's almost never a good idea to use length on large lists, because it's also O(n). It's probably not as nearly as bad as // in your code, since it sits in a relatively rarely occurring branch, but it'd still leave the performance crippled after we've corrected the vector issue.
Also, the search implementation seems rather unclear and overcomplicated to me. Aiming for a literal-minded translation of the pseudocode on the Wiki page should be a good start. Also, it's unnecessary to store the indices in nodes, since they can be determined from vector positions and the adjacency lists.
Based on #andras gist, I rewrote my code as below. I did not use Arrow functions as I am unfamiliar with them, and my second depth first search is stylistically the same as the first one (instead of #Andras filterM approach). The end result is that it completes in 20% of the time of Andras' code (21s instead of 114s).
import qualified Data.Vector as V
import qualified Data.IntSet as IS
import qualified Data.ByteString.Char8 as BS
import Data.List
import Control.Monad
import Control.Monad.State
--import Criterion.Main
--getEdges :: String -> IO [(Int, Int)]
getEdges file = do
lines <- (map BS.words . BS.lines) `fmap` BS.readFile file
let
pairs = (map . map) (maybe (error "can't read Int") fst . BS.readInt) lines
pairs' = [(a, b) | [a, b] <- pairs] -- adds 9 seconds
maxIndex = fst $ last pairs'
graph = createGraph maxIndex pairs'
return graph
main = do
graph <- getEdges "SCC.txt"
--let
--maxIndex = fst $ V.last edges
let
fts = bwdLoop graph
leaders = fst $ execState (fwdLoop graph fts) ([], IS.empty)
print $ length leaders
type Connections = [Int]
data Node = Node {fwd, bwd :: Connections} deriving (Show)
type Graph = V.Vector Node
type Visited = IS.IntSet
type FinishTime = Int
type FinishTimes = [FinishTime]
type Leaders = [Int]
createGraph :: Int -> [(Int, Int)] -> Graph
createGraph maxIndex pairs =
let
graph = V.replicate (maxIndex+1) (Node [] [])
graph' = V.accum (\(Node f b) x -> Node (x:f) b) graph pairs
in V.accum (\(Node f b) x -> Node f (x:b)) graph' $ map (\(a,b) -> (b,a)) pairs
bwdLoop :: Graph -> FinishTimes
bwdLoop g = fst $ execState (mapM_ go $ reverse [0 .. V.length g - 1]) ([], IS.empty) where
go :: Int -> State (FinishTimes, Visited) ()
go i = do
(fTimes, vs) <- get
let visited = IS.member i vs
if not visited then do
put (fTimes, IS.insert i vs)
mapM_ go $ bwd $ g V.! i
-- get state again after changes from mapM_
(fTimes', vs') <- get
put (i : fTimes', vs')
else return ()
fwdLoop :: Graph -> FinishTimes -> State (Leaders, Visited) ()
fwdLoop _ [] = return ()
fwdLoop g (i:fts) = do
(ls, vs) <- get
let visited = IS.member i vs
if not visited then do
put (i:ls, IS.insert i vs)
mapM_ go $ fwd $ g V.! i
else return ()
fwdLoop g fts
where
go :: Int -> State (Leaders, Visited) ()
go i = do
(ls, vs) <- get
let visited = IS.member i vs
if not visited then do
put (ls, IS.insert i vs)
mapM_ go $ fwd $ g V.! i
else return ()
This is a follow up to this post, with code now based on Structuring Depth-First Search Algorithms in Haskell to do depth first search, by King and Launchbury in the 1990s. That paper suggests a generate and prune strategy, but uses a mutable array with a State Monad (with some grammar that I suspect has since been deprecated). The authors hint that a set could be used for remembering nodes visited, as the cost of an additional O(log n). I tried to implement with a set (we have better machines now than they did in the 1990s!), to use modern State Monad syntax, and to use Vectors rather than arrays (as I read that that is normally better).
As before, my code runs on small data sets, but fails to return on the 5m edge graph I need to analyse, and I'm looking for hints only as to the weakness operating at scale. What I do know is that the code operates comfortably within memory, so that is not the problem, but have I inadvertently slipped to O(n2)? (By contrast, the official implementation of this paper in the Data.Graph library (which I have lately also borrowed some code from) uses a mutable Array but fails on the big data set with a ... Stack Overflow!!!)
So now I have a Vector data store with IntSet State that does not complete and an Array with ST Monad Array 'official' one that crashes! Haskell should be able to do better than this?
import Data.Vector (Vector)
import qualified Data.IntSet as IS
import qualified Data.Vector as V
import qualified Data.ByteString.Char8 as BS
import Control.Monad.State
type Vertex = Int
type Table a = Vector a
type Graph = Table [Vertex]
type Edge = (Vertex, Vertex)
data Tree a = Node a (Forest a) deriving (Show,Eq)
type Forest a = [Tree a]
-- ghc -O2 -threaded --make
-- +RTS -Nx
generate :: Graph -> Vertex -> Tree Vertex
generate g v = Node v $ map (generate g) (g V.! v)
chop :: Forest Vertex -> State IS.IntSet (Forest Vertex)
chop [] = return []
chop (Node x ts:us) = do
visited <- contains x
if visited then
chop us
else do
include x
x1 <- chop ts
x2 <- chop us
return (Node x x1:x2)
prune :: Forest Vertex -> State IS.IntSet (Forest Vertex)
prune vs = chop vs
main = do
--edges <- V.fromList `fmap` getEdges "testdata.txt"
edges <- V.fromList `fmap` getEdges "SCC.txt"
let
-- calculate size of five largest SCC
maxIndex = fst $ V.last edges
gr = buildG maxIndex edges
sccRes = scc gr
big5 = take 5 sccRes
big5' = map (\l -> length $ postorder l) big5
putStrLn $ show $ big5'
contains :: Vertex -> State IS.IntSet Bool
contains v = state $ \visited -> (v `IS.member` visited, visited)
include :: Vertex -> State IS.IntSet ()
include v = state $ \visited -> ((), IS.insert v visited)
getEdges :: String -> IO [Edge]
getEdges path = do
lines <- (map BS.words . BS.lines) `fmap` BS.readFile path
let pairs = (map . map) (maybe (error "can't read Int") fst . BS.readInt) lines
return [(a, b) | [a, b] <- pairs]
vertices :: Graph -> [Vertex]
vertices gr = [1.. (V.length gr - 1)]
edges :: Graph -> [Edge]
edges g = [(u,v) | u <- vertices g, v <- g V.! u]
-- accumulate :: (a -> b -> a) -> Vector a-> Vector (Int, b)--> Vector a
-- accumulating function f
-- initial vector (of length m)
-- vector of index/value pairs (of length n)
buildG :: Int -> Table Edge -> Graph
buildG maxIndex edges = graph' where
graph = V.replicate (maxIndex + 1) []
--graph' = V.accumulate (\existing new -> new:existing) graph edges
-- flip f takes its (first) two arguments in the reverse order of f
graph' = V.accumulate (flip (:)) graph edges
mapT :: Ord a => (Vertex -> a -> b) -> Table a -> Table b
mapT = V.imap
outDegree :: Graph -> Table Int
outDegree g = mapT numEdges g
where numEdges v es = length es
indegree :: Graph -> Table Int
indegree g = outDegree $ transposeG g
transposeG :: Graph -> Graph
transposeG g = buildG (V.length g - 1) (reverseE g)
reverseE :: Graph -> Table Edge
reverseE g = V.fromList [(w, v) | (v,w) <- edges g]
-- --------------------------------------------------------------
postorder :: Tree a -> [a]
postorder (Node a ts) = postorderF ts ++ [a]
postorderF :: Forest a -> [a]
postorderF ts = concat (map postorder ts)
postOrd :: Graph -> [Vertex]
postOrd g = postorderF (dff g)
dfs :: Graph -> [Vertex] -> Forest Vertex
dfs g vs = map (generate g) vs
dfs' :: Graph -> [Vertex] -> Forest Vertex
dfs' g vs = fst $ runState (prune d) $ IS.fromList []
where d = dfs g vs
dff :: Graph -> Forest Vertex
dff g = dfs' g $ reverse (vertices g)
scc :: Graph -> Forest Vertex
scc g = dfs' g $ reverse $ postOrd (transposeG g)
Some small possible improvements:
Change
type Edge = (Vertex, Vertex)
to
data Edge = Edge {-# UNPACK #-} !Vertex {-# UNPACK #-} !Vertex
to reuse the memory usage for each edge from 7 words to 3 words and to improve cache locality. Reducing memory pressure almost always also improves runtime. As #jberryman mentioned could use an unboxed vector for Table Edge (then you don't need the above custom data type).
generate :: Graph -> Vertex -> Tree Vertex
generate g v = Node v $ map (generate g) (g V.! v)
If you're sure that the index is in bounds, you could use the unsafe indexing function from vector instead of .!.
contains :: Vertex -> State IS.IntSet Bool
contains v = state $ \visited -> (v `IS.member` visited, visited)
Use a combination of get and put $! instead.
include :: Vertex -> State IS.IntSet ()
include v = state $ \visited -> ((), IS.insert v visited)
Use modify' instead.
You're using quite a lot of lists in your program. Linked lists aren't the most memory/cache efficient data structures. See if you can convert your code to use more vectors.
Given the following simple BST definition:
data Tree x = Empty | Leaf x | Node x (Tree x) (Tree x)
deriving (Show, Eq)
inOrder :: Tree x -> [x]
inOrder Empty = []
inOrder (Leaf x) = [x]
inOrder (Node root left right) = inOrder left ++ [root] ++ inOrder right
I'd like to write an in-order function that can have side effects. I achieved that with:
inOrderM :: (Show x, Monad m) => (x -> m a) -> Tree x -> m ()
inOrderM f (Empty) = return ()
inOrderM f (Leaf y) = f y >> return ()
inOrderM f (Node root left right) = inOrderM f left >> f root >> inOrderM f right
-- print tree in order to stdout
inOrderM print tree
This works fine, but it seems repetitive - the same logic is already present in inOrder and my experience with Haskell leads me to believe that I'm probably doing something wrong if I'm writing a similar thing twice.
Is there any way that I can write a single function inOrder that can take either pure or monadic functions?
In inOrder you are mapping a Tree x to a [x], i. e. you sequentialize your tree. Why not just use mapM or mapM_ on the resulting list?
mapM_ print $ inOrder tree
Just to remind the types of the functions I've mentioned:
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()
You might want to look at implementing the Data.Traversable class or Data.Foldable class for your tree structure. Each only requires the definition of a single method.
In particular, if you implement the Data.Foldable class, you get the following two functions for free:
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
toList :: Foldable t => t a -> [a]
It will also give you the rich set of functions (foldr, concatMap, any, ...) that you are used to using with the list type.
You only have to implement one of the following functions to create an instance of Data.Foldable:
foldMap :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b