Why can't I set the camera rotation? - three.js

I've been struggling with an application where I'm trying to set the camera rotation initially so when the scene is loaded, you'll be looking where we want you to look.
The backstory, I'm creating a panorama viewer where the panorama is applied to a mesh with a sphere geometry.
The problem I'm having is I don't seem to be able to set the camera rotation. I've tried multiple attempts, but none have been working. I attempted setting the camera rotation after creating the camera, and I tried applying the target of my orbitcontrols and setting the object rotation in the orbit controls. I haven't had any luck yet with just setting an initial camera rotation.
I'm really hoping at this point that this is due to something minor that I'm over looking.
Here's a source: http://www.freeptools.com/mapster/testing-360s2.php
It shows the camera itself AND the orbit controls object. It also shows what their target is I'm setting, and what they really are. So far I haven't been able to get this to accept anything I give it.

THREE.js OrbitControls take over the camera completely, so you should not use that in conjunction with updating camera rotations.
Instead, OrbitControls has methods that help you do this: https://github.com/mrdoob/three.js/blob/master/examples/js/controls/OrbitControls.js
orbitControls.rotateLeft( angle );
orbitControls.rotateUp( angle );
In addition, you can move orbitControls.target around (it's a THREE.Vector3) and the camera will just look to that direction.

Related

How to apply viewing angle with three.js?

In the scene, there is an object that I'm looking at with a PerspectiveCamera. Using OrbitControls, I can move around the object.
I want to set viewing angle to the camera.
Concretely, here is the example where the behavior I suppose is realized.
Click camera icon and you find the slider to change viewing angle.
Is it possible to realize this, using PerspectiveCamera?
Or should I use Effect Composer for Post Processing? If so, I look for shader code.

How can I give objects whole side with light?

I'm looking for an way to give specify light for some objects.
I have added new light to object to remove shadow on it, but then, the other objects also affected by additional light, and I don't want it.
I have let the object's castShadow = false; receiveShadow = false, but it doesn't work.
When the camera is positioned with the light directions, camera will see the 'light' meshes, and at the opposite position, camera will see the dark side.
I want both sides to see 'light' meshes.
(I want to remove the shadow.)
Thanks for your help. :)
I have added new light to object to remove shadow on it, but then, the other objects also affected by additional light, and I don't want it.
What you are looking for is called "selective lighting" which is not yet supported by three.js. Check out the following issue for more information:
https://github.com/mrdoob/three.js/issues/5180
The only workaround right now is to work with multiple scenes and render passes.
When the camera is positioned with the light directions, camera will see the 'light' meshes, and at the opposite position, camera will see the dark side.
When using a single directional, point or spot light, it's normal that this setup produces a lit and unlit side of a sphere mesh. You can only avoid this by adding an additional light on the other side of the mesh, by using unlit materials or again by using different scenes with different lighting setups.
three.js R112

Can't get Three.js camera up direction

I need to get the camera up direction and i've tried many ways with no luck, i'm not an expert of quaternions so i'm doubting i did it right.
I've tried:
camera.up
camera.up.applyMatrix4(camera.matrixWorld);
new THREE.Vertex3(0,1,0).applyMatrix4(camera.matrixWorld);
camera.up.normalize().applyMatrix4(camera.matrixWorld);
after this i create two planes passing by two points of my interest, and add the plane helper to the scene and i can see they are very far from where i was expecting them. (i'm expecting two planes that looks like the top and bottom of the camera frustum).
P.s. the camera is a shadow camera of a directional light so an orthographic camera, and i manipulate the directional light position and target before doing this operation, but i've called updateMatrixWorld on the light, on it's target and the camera, on the camera i've called also updateProjectionMatrix... still no results
I've made a sandbox to see what i've tried till now, and better visualize what i want to achieve:
https://codesandbox.io/embed/throbbing-cache-j5yse
once i manage to get the green arrow to point to the top of the blue triangle of the camera helper i'm good to go
In the normal render flow, shadow camera matrices are updated as part of rendering the shadow map (WebGLShadowMap.render).
However, if you want the updated matrix values before the render, then you'll need to update them manually (you already understand this part).
The shadow camera is a property of (not a child of) the DirectionalLight. As such, it doesn't follow the same rules as other scene objects when it comes to updating its matrices (because it's not really a child of the scene). Instead, you need to call the shadow property's updateMatrices method (inherited from LightShadow.updateMatrices).
const dl = new THREE.DirectionalLight(0xffffff, 1)
dl.shadow.updateMatrices(dl) // <<------------------------ Updates the shadow camera
This updates the shadow camera with information from the DirectionalLight's own matrix, and its target's matrix, to properly orient the shadow camera.
Finally, it looks like you're trying to get the "world up" of the camera. Personally, I'd use the convenience function localToWorld:
let up = new THREE.Vector3(0, 1, 0)
dl.shadow.camera.localToWorld(up) // destructively converts "up" from local-to-camera into world coordinates
via trial and errors i've figured out that what gave me the correct result was:
calling
directionalLight.shadow.updateMatrices(...)
and then
new THREE.Vector3(0,1,0).applyQuaternion(directionalLight.shadow.camera.quaternion)

Three.js - transparent objects when rotated with TrackballControls don't behave like transparent

When I add to the scene two objects and set their transparency as true with some opacity and using TrackballControls I rotate the scene by mouse, the object which was initially further from camera loses its transparency.
I read that this is Z-buffer problem and further objects from camera will be displayed first. But when I rotate the scene using TrackballControls, camera changes its position, so transparent objects should be displayed correctly. But it is not like that.
Here in this picture - on the right is frontview, on the left is backview which is not displayed correctly:
http://www.foto-ondruskova.cz/Experiment/lenses.jpg
Please, any solutions?
I have come across this problem and setting alphaTest: 0.5 to the material as suggested here solved my problem. But it is hit and miss. Give it a try. Hopefully it works!

Working with Three.js

Context: trying to take THREE.js and use it to display conic sections.
Method: creating a mesh of vertices and then connect face4's to all of them. Used two faces to produce a front and back side so that when the conic section rotates it won't matter from which angle the camera views it.
Problems encountered: 1. Trying to find a good way to create a intuitive mouse rotation scheme. If you think in spherical coordinates, then it feels like just making up/down change phi and left/right change phi would work. But that requires that you can move the camera. As far as I can tell, there is no way to change actively change the rotation of anything besides the objects. Does anyone know how to change the rotation of the camera or scene? 2. Is there a way to graph functions that is better than creating a mesh? If the mesh has many points then it is too slow, and if the mesh has few points then you cannot easily make out the shape of the conic sections.
Any sort of help would be most excellent.
I'm still starting to learn Three.js, so I'm not sure about the second part of your question.
For the first part, to change the camera, there is a very good way, which could also include zooming and moving the scene: the trackball camera.
For the exact code and how to use it, you can view:
https://github.com/mrdoob/three.js/blob/master/examples/webgl_trackballcamera_earth.html
At the botton of this page (http://mrdoob.com/122/Threejs) you can see the example in action (the globe in the third row from the bottom).
There is an orbit control script for the three.js camera.
I'm not sure if I understand the rotation bit. You do want to rotate an object, but you are correct, the rotation is relative.
When you rotate or move your camera, a matrix is calculated for that position/rotation, and it does indeed rotate the scene while keeping the camera static.
This is irrelevant though, because you work in model/world space, and you position your camera in it, the engine takes care of the rotations under the hood.
What you probably want is to set up an object, hook up your rotation with spherical coordinates, and link your camera as a child to this object. The translation along the cameras Z axis relative to the object should mimic your dolly (zoom is FOV change).
You can rotate the camera by changing its position. See the code I pasted here: https://gamedev.stackexchange.com/questions/79219/three-js-camera-turning-leftside-right
As others are saying OrbitControls.js is an intuitive way for users to manage the camera.
I tackled many of the same issues when building formulatoy.net. I used Morphing Geometries since I found mapping 3d math functions to a UV surface to require v little code and it allowed an easy way to implement different coordinate systems (Cartesian, spherical, cylindrical).
You could use particles instead of a mesh I suppose but a mesh seems best. The lattice material is not too useful if you're trying to understand a surface mathematically. At this point I'm thinking of drawing my own X,Y lines on the surface (or phi, theta lines etc) to better demonstrate cross-sections.
Hope that helps.
You can use trackball controls by which you can zoom in and out of an object,rotate the object,pan it.In trackball controls you are moving the camera around the object.Object still rotates with respect to the screen or renderer centre (0,0,0).

Resources