What is the difference between trap handler , interrupt dispatch routine and interrupt service routine (ISR)? - windows

I am confused between above mentioned concepts while reading Windows internals.

All three terms - trap handler , interrupt dispatch routine and interrupt service routine (ISR) - relate to Windows driver level programming (as opposed to user-mode Windows applications).
"Traps" are programmer-initiated interrupts (vs. automatically generated "exceptions").
An "Interrupt service routine" (ISR) is a procedure written to handle an "interrupt". Although there are different kinds of interrupts (hardware interrupts, programmatic traps, CPU exceptions, etc, etc), the format of an ISR is similar in all cases. A "trap handler" is an ISR.
Interrupts should always be serviced as quickly as possible.
Finally "Dispatch routines" are the main entry points for performing hardware I/O.

Related

How does Kernel handle the lock in process context when an interrupt comes?

First of all sorry for a little bit ambiguity in Question... What I want to understand is the below scenario
Suppose porcess is running, it holds one lock, Now after acquiring the lock HW interrupt is generated, So How kernel will handle this situation, will it wait for lock ? if yes, what if the interrupt handler need to access that lock or the shared data protected by that lock in process ?
The Linux kernel has a few functions for acquiring spinlocks, to deal with issues like the one you're raising here. In particular, there is spin_lock_irq(), which disables interrupts (on the CPU the process is running on) and acquires the spinlock. This can be used when the code knows interrupts are enabled before the spinlock is acquired; in case the function might be called in different contexts, there is also spin_lock_irqsave(), which stashes away the current state of interrupts before disabling them, so that they can be reenabled by spin_unlock_irqrestore().
In any case, if a lock is used in both process and interrupt context (which is a good and very common design if there is data that needs to be shared between the contexts), then process context must disable interrupts (locally on the CPU it's running on) when acquiring the spinlock to avoid deadlocks. In fact, lockdep ("CONFIG_PROVE_LOCKING") will verify this and warn if a spinlock is used in a way that is susceptible to the "interrupt while process context holds a lock" deadlock.
Let me explain some basic properties of interrupt handler or bottom half.
A handler can’t transfer data to or from user space, because it doesn’t execute in the context of a process.
Handlers also cannot do anything that would sleep, such as calling wait_event, allocating memory with anything other than GFP_ATOMIC, or locking a semaphore
handlers cannot call schedule.
What i am trying to say is that Interrupt handler runs in atomic context. They can not sleep as they cannot be rescheduled. interrupts do not have a backing process context
The above is by design. You can do whatever you want in code, just be prepared for the consequences
Let us assume that you acquire a lock in interrupt handler(bad design).
When an interrupt occur the process saves its register on stack and start ISR. now after acquiring a lock you would be in a deadlock as their is no way ISR know what the process was doing.
The process will not be able to resume execution until it is done it with ISR
In a preemptive kernel the ISR and the process can be preempt but for a non-preemptive kernel you are dead.

Can an interrupt handler be preempted by the same interrupt handler?

Does the CPU disable all interrupts on local CPU before calling the interrupt handler?
Or does it only disable that particular interrupt line, which is being served?
x86 disables all local interrupts (except NMI of course) before jumping to the interrupt vector. Linux normally masks the specific interrupt and re-enables the rest of the interrupts (which aren't masked), unless a specific flags is passed to the interrupt handler registration.
Note that while this means your interrupt handler will not race with itself on the same CPU, it can and will race with itself running on other CPUs in an SMP / SMT system.
Normally (at least in x86), an interrupt disables interrupts.
When an interrupt is received, the hardware does these things:
1. Save all registers in a predetermined place.
2. Set the instruction pointer (AKA program counter) to the interrupt handler's address.
3. Set the register that controls interrupts to a value that disables all (or most) interrupts. This prevents another interrupt from interrupting this one.
An exception is NMI (non maskable interrupt) which can't be disabled.
Yes, that's fine.
I'd like to also add what I think might be relevant.
In many real-world drivers/kernel code, "bottom-half" (bh) handlers are used pretty often- tasklets, softirqs. These bh's run in interrupt context and can run in parallel with their top-half (th) handlers on SMP (esp softirq's).
Of course, recently there's a move (mainly code migrated from the PREEMPT_RT project) towards mainline, that essentially gets rid of the 'bh' mechanism- all interrupt handlers will run with all interrupts disabled. Not only that, handlers are (can be) converted to kernel threads- these are the so-called "threaded" interrupt handlers.
As of today, the choice is still left to the developer- you can use the 'traditional' th/bh style or the threaded style.
Ref and Details:
http://lwn.net/Articles/380931/
http://lwn.net/Articles/302043/
Quoting Intels own, surprisingly well-written "Intel® 64 and IA-32 Architectures Software Developer’s Manual", Volume 1, pages 6-10:
If an interrupt or exception handler is called
through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to prevent
subsequent interrupts from interfering with the execution of the handler. When a handler is called through a trap
gate, the state of the IF flag is not changed.
So just to be clear - yes, effectively the CPU "disables" all interrupts before calling the interrupt handler. Properly described, the processor simply triggers a flag which makes it ignore all interrupt requests. Except probably non-maskable interrupts and/or its own software exceptions (please someone correct me on this, not verified).
We want ISR to be atomic and no one should be able to preempt the ISR.
Therefore, An ISR disables the local interrupts ( i.e. the interrupt on the current processor) and once the ISR calls ret_from_intr() function ( i.e. we have finished the ISR) , interrupts are again enabled on the current processor.
If an interrupt occurs, it will now be served by the other processor ( in SMP system) and ISR related to that interrupt will start running.
In SMP system , We also need to include the proper synchronization mechanism ( spin lock) in an ISR.

Trap Dispatching on Windows

I am actually reading Windows Internals 5th edition and i am enjoying, although isn't a easy book to read and understand.
I am confused about IRQLs and IDT Table.
I read that windows implement custom priorization levels with IRQL and the Plug and Play Manager maps IRQ from devices to IRQL.
Alright, so, IRQLs are used for Software and Hardware interrupts, and for exceptions is used the Exception Dispatch handler.
When one device generates an interrupt, the interrupt controller pass this information to the CPU with the IRQ.
So Windows takes this IRQ and translates to IRQL to schedule when to execute the routine (routine that IDT[IRQ_VALUE] is pointing to?
Is that what is happening?
Yes, on a very high level.
Everything starts with a kernel trap. Kernel trap handler handles interrupts, exceptions, system service calls and virtual memory pager.
When an interrupt happens (line based - using dedicated pin or message based- writing to an address) windows uses IRQL to determine the priority of the interrupt and uses this to see if the interrupt can be served or not during that time. HAL does the job of translating the IRQ to IRQL.
It then uses IRQ to get an index of the IDT to find the appropriate ISR routing to invoke. Note there can be multiple ISR associated for a given IRQ. All of them execute in order.
Each processor has its own IDT so you could potentially have multiple ISR's running at the same time.
Exception dispatch, as I mentioned before, is also handled by the kernel trap but the procedure for it is different. It usually starts by checking for any exception handlers by stack unwinding, then checking for debugger port etc.

What is the difference between interrupt and exception context?

Is there any major difference between the two? Is there anything that can be done in one and not the other? Do I need to take more care when modifying, for example, the page fault handler than a timer handler?
Interrupt is one of the classes of exception. There are four classes of exception: interrupt, trap, fault and abort. Interrupt occurs asynchronously and it is triggered by signal which is from I/O device that are external by processor. After exception handler finish handling this interrupt(exception processing), handler will always return to next instruction.
Interrupts and exceptions both alter the program flow. The
difference
between the two is that interrupts are used to handle
external events
(serial ports, keyboard) and exceptions are used to handle
instruction
faults, (division by zero, undefined opcode).
Interrupts are handled by the processor after finishing the
current
instruction. If it finds a signal on its interrupt pin, it
will look up
the address of the interrupt handler in the interrupt table
and pass
that routine control. After returning from the interrupt
handler
routine, it will resume program execution at the
instruction after the
interrupted instruction.
Exceptions on the other hand are divided into three kinds.
These are
Faults, Traps and Aborts. Faults are detected and serviced
by the
processor before the faulting instructions. Traps are
serviced after
the instruction causing the trap. User defined interrupts
go into this
category and can be said to be traps; this includes the MS-
DOS INT 21h
software interrupt, for example. Aborts are used only to
signal severe
system problems, when operation is no longer possible.
Research at: https://www.allinterview.com/showanswers/14289/distinguish-between-interrupts-and-exceptions.html

Why kernel code/thread executing in interrupt context cannot sleep?

I am reading following article by Robert Love
http://www.linuxjournal.com/article/6916
that says
"...Let's discuss the fact that work queues run in process context. This is in contrast to the other bottom-half mechanisms, which all run in interrupt context. Code running in interrupt context is unable to sleep, or block, because interrupt context does not have a backing process with which to reschedule. Therefore, because interrupt handlers are not associated with a process, there is nothing for the scheduler to put to sleep and, more importantly, nothing for the scheduler to wake up..."
I don't get it. AFAIK, scheduler in the kernel is O(1), that is implemented through the bitmap. So what stops the scehduler from putting interrupt context to sleep and taking next schedulable process and passing it the control?
So what stops the scehduler from putting interrupt context to sleep and taking next schedulable process and passing it the control?
The problem is that the interrupt context is not a process, and therefore cannot be put to sleep.
When an interrupt occurs, the processor saves the registers onto the stack and jumps to the start of the interrupt service routine. This means that when the interrupt handler is running, it is running in the context of the process that was executing when the interrupt occurred. The interrupt is executing on that process's stack, and when the interrupt handler completes, that process will resume executing.
If you tried to sleep or block inside an interrupt handler, you would wind up not only stopping the interrupt handler, but also the process it interrupted. This could be dangerous, as the interrupt handler has no way of knowing what the interrupted process was doing, or even if it is safe for that process to be suspended.
A simple scenario where things could go wrong would be a deadlock between the interrupt handler and the process it interrupts.
Process1 enters kernel mode.
Process1 acquires LockA.
Interrupt occurs.
ISR starts executing using Process1's stack.
ISR tries to acquire LockA.
ISR calls sleep to wait for LockA to be released.
At this point, you have a deadlock. Process1 can't resume execution until the ISR is done with its stack. But the ISR is blocked waiting for Process1 to release LockA.
I think it's a design idea.
Sure, you can design a system that you can sleep in interrupt, but except to make to the system hard to comprehend and complicated(many many situation you have to take into account), that's does not help anything. So from a design view, declare interrupt handler as can not sleep is very clear and easy to implement.
From Robert Love (a kernel hacker):
http://permalink.gmane.org/gmane.linux.kernel.kernelnewbies/1791
You cannot sleep in an interrupt handler because interrupts do not have
a backing process context, and thus there is nothing to reschedule back
into. In other words, interrupt handlers are not associated with a task,
so there is nothing to "put to sleep" and (more importantly) "nothing to
wake up". They must run atomically.
This is not unlike other operating systems. In most operating systems,
interrupts are not threaded. Bottom halves often are, however.
The reason the page fault handler can sleep is that it is invoked only
by code that is running in process context. Because the kernel's own
memory is not pagable, only user-space memory accesses can result in a
page fault. Thus, only a few certain places (such as calls to
copy_{to,from}_user()) can cause a page fault within the kernel. Those
places must all be made by code that can sleep (i.e., process context,
no locks, et cetera).
Because the thread switching infrastructure is unusable at that point. When servicing an interrupt, only stuff of higher priority can execute - See the Intel Software Developer's Manual on interrupt, task and processor priority. If you did allow another thread to execute (which you imply in your question that it would be easy to do), you wouldn't be able to let it do anything - if it caused a page fault, you'd have to use services in the kernel that are unusable while the interrupt is being serviced (see below for why).
Typically, your only goal in an interrupt routine is to get the device to stop interrupting and queue something at a lower interrupt level (in unix this is typically a non-interrupt level, but for Windows, it's dispatch, apc or passive level) to do the heavy lifting where you have access to more features of the kernel/os. See - Implementing a handler.
It's a property of how O/S's have to work, not something inherent in Linux. An interrupt routine can execute at any point so the state of what you interrupted is inconsistent. If you interrupted the thread scheduling code, its state is inconsistent so you can't be sure you can "sleep" and switch threads. Even if you protect the thread switching code from being interrupted, thread switching is a very high level feature of the O/S and if you protected everything it relies on, an interrupt becomes more of a suggestion than the imperative implied by its name.
So what stops the scehduler from putting interrupt context to sleep and taking next schedulable process and passing it the control?
Scheduling happens on timer interrupts. The basic rule is that only one interrupt can be open at a time, so if you go to sleep in the "got data from device X" interrupt, the timer interrupt cannot run to schedule it out.
Interrupts also happen many times and overlap. If you put the "got data" interrupt to sleep, and then get more data, what happens? It's confusing (and fragile) enough that the catch-all rule is: no sleeping in interrupts. You will do it wrong.
Disallowing an interrupt handler to block is a design choice. When some data is on the device, the interrupt handler intercepts the current process, prepares the transfer of the data and enables the interrupt; before the handler enables the current interrupt, the device has to hang. We want keep our I/O busy and our system responsive, then we had better not block the interrupt handler.
I don't think the "unstable states" are an essential reason. Processes, no matter they are in user-mode or kernel-mode, should be aware that they may be interrupted by interrupts. If some kernel-mode data structure will be accessed by both interrupt handler and the current process, and race condition exists, then the current process should disable local interrupts, and moreover for multi-processor architectures, spinlocks should be used to during the critical sections.
I also don't think if the interrupt handler were blocked, it cannot be waken up. When we say "block", basically it means that the blocked process is waiting for some event/resource, so it links itself into some wait-queue for that event/resource. Whenever the resource is released, the releasing process is responsible for waking up the waiting process(es).
However, the really annoying thing is that the blocked process can do nothing during the blocking time; it did nothing wrong for this punishment, which is unfair. And nobody could surely predict the blocking time, so the innocent process has to wait for unclear reason and for unlimited time.
Even if you could put an ISR to sleep, you wouldn't want to do it. You want your ISRs to be as fast as possible to reduce the risk of missing subsequent interrupts.
The linux kernel has two ways to allocate interrupt stack. One is on the kernel stack of the interrupted process, the other is a dedicated interrupt stack per CPU. If the interrupt context is saved on the dedicated interrupt stack per CPU, then indeed the interrupt context is completely not associated with any process. The "current" macro will produce an invalid pointer to current running process, since the "current" macro with some architecture are computed with the stack pointer. The stack pointer in the interrupt context may point to the dedicated interrupt stack, not the kernel stack of some process.
By nature, the question is whether in interrupt handler you can get a valid "current" (address to the current process task_structure), if yes, it's possible to modify the content there accordingly to make it into "sleep" state, which can be back by scheduler later if the state get changed somehow. The answer may be hardware-dependent.
But in ARM, it's impossible since 'current' is irrelevant to process under interrupt mode. See the code below:
#linux/arch/arm/include/asm/thread_info.h
94 static inline struct thread_info *current_thread_info(void)
95 {
96 register unsigned long sp asm ("sp");
97 return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));
98 }
sp in USER mode and SVC mode are the "same" ("same" here not mean they're equal, instead, user mode's sp point to user space stack, while svc mode's sp r13_svc point to the kernel stack, where the user process's task_structure was updated at previous task switch, When a system call occurs, the process enter kernel space again, when the sp (sp_svc) is still not changed, these 2 sp are associated with each other, in this sense, they're 'same'), So under SVC mode, kernel code can get the valid 'current'. But under other privileged modes, say interrupt mode, sp is 'different', point to dedicated address defined in cpu_init(). The 'current' calculated under these mode will be irrelevant to the interrupted process, accessing it will result in unexpected behaviors. That's why it's always said that system call can sleep but interrupt handler can't, system call works on process context but interrupt not.
High-level interrupt handlers mask the operations of all lower-priority interrupts, including those of the system timer interrupt. Consequently, the interrupt handler must avoid involving itself in an activity that might cause it to sleep. If the handler sleeps, then the system may hang because the timer is masked and incapable of scheduling the sleeping thread.
Does this make sense?
If a higher-level interrupt routine gets to the point where the next thing it must do has to happen after a period of time, then it needs to put a request into the timer queue, asking that another interrupt routine be run (at lower priority level) some time later.
When that interrupt routine runs, it would then raise priority level back to the level of the original interrupt routine, and continue execution. This has the same effect as a sleep.
It is just a design/implementation choices in Linux OS. The advantage of this design is simple, but it may not be good for real time OS requirements.
Other OSes have other designs/implementations.
For example, in Solaris, the interrupts could have different priorities, that allows most of devices interrupts are invoked in interrupt threads. The interrupt threads allows sleep because each of interrupt threads has separate stack in the context of the thread.
The interrupt threads design is good for real time threads which should have higher priorities than interrupts.

Resources