Project Tango Camera Specifications - google-project-tango

I've been developing a virtual camera app for depth cameras and I'm extremely interested in the Tango project. I have several questions regarding the cameras on board. I can't seem to find these specs anywhere in the developer section or forums, so I understand completely if these cant be answered publicly. I thought I would ask regardless and see if the current device is suitable for my app.
Are the depth and color images from the rgb/ir camera captured simultaneously?
What frame rates is the rgb/ir capable of? e.g. 30, 25, 24? And at what resolutions?
Does the motion tracking camera run in sync with the rgb/ir camera? If not what frame rate (or refresh rate) does the motion tracking camera run at? Also if they do not run on the same clock does the API expose a relative or an absolute time stamp for both cameras?
What manual controls (if any) are exposed for the color camera? Frame rate, gain, exposure time, white balance?
If the color camera is fully automatic, does it automatically drop its frame rate in low light situations?
Thank you so much for your time!
Edit: Im specifically referring to the new tablet.

Some guessing
No, the actual image used to generate the point cloud is not the droid you want - I put up a picture on Google+ that shows what you get when you get one of the images that has the IR pattern used to calculate depth (an aside - it looks suspiciously like a Serpinski curve to me
Image frame rate is considerably higher than point cloud frame rate, but seems variable - probably a function of the load that Tango imposes
Motion tracking, i.e. pose, is captured at a rate roughly 3x the pose cloud rate
Timestamps are done with the most fascinating double precision number - in prior releases there was definitely artifacts/data in the lsb's of the double - I do a getposeattime (callbacks used for ADF localization) when I pick up a cloud, so supposedly I've got a pose aligned with the cloud - images have very low timestamp correspondance with pose and cloud data - it's very important to note that the 3 tango streams (pose,image,cloud) all return timestamps
Don't know about camera controls yet - still wedging OpenCV into the cloud services :-) Low light will be interesting - anecdotal data indicates that Tango has a wider visual spectrum than we do, which makes me wonder if fiddling with the camera at the point of capture to change image quality, e.g. dropping the frame rate, might not cause Tango problems

Related

Pass modified video stream into Vuforia Engine?

Is it possible to modify the Vuforia video stream for better tracking performance?
Step 1: Get the raw pixel data from the VuforiaBehaviour.Instance.CameraDevice.GetCameraImage();
Step 2: Modify the pixels with post processing via custom shaders in Unity. For example apply a threshold or edge detection.
Step 3: Vuforia Engine uses the modified video input to track images.
That´s the idea but I´m not sure if Vuforia is gonna pass the modified video into the Vuforia Engine then or still uses the unmodified video input for tracking?
If anybody has experience with that I would be thankful for your help! :)
Vuforia Engine assumes that the input images look like "natural" images. Passing an image belonging to a different domain (e.g., the result of an edge detector) is unlikely to improve tracking performance.
That said, tracking performance is affected by image quality. For example, if images are blurry, tracking robustness is going to suffer. If this is the case you might want to look at trying to adjust system camera parameters via the platform API (iOS, Android, etc.). However, please note that this might or might not be possible depending on the platform. Also, on some platforms when a device tracker like ARKit or ARCore is used, the platform tracker itself adjusts the camera parameters for good tracking performance. For example it might keep the exposure time low to reduce blur.

Does the project tango tablet work outdoors?

I'm looking to develop an outdoor application but not sure if the tango tablet will work outdoors. Other depth devices out there tend to not work well outside becuase they depend on IR light being projected from the device and then observed after it bounces off the objects in the scene. I've been looking for information on this and all I've found is this video - https://www.youtube.com/watch?v=x5C_HNnW_3Q. Based on the video, it appears it can work outside by doing some IR compensation and/or using the depth sensor but just wanted to make sure before getting the tablet.
If the sun is out, it will only work in the shade, and darker shade is better. I tested this morning using the Java Point Cloud sample app, and only get > 10k points in my point cloud in center of my building's shadow, close to the building. Toward the edge of the shadow the depth point cloud frame rate goes way down and I get the "Few depth points" message. If it's overcast, I'm guessing your results will vary, depending on how dark it is, I haven't tested this yet.
The tango (yellowstone) tablet also works by projecting IR light patterns, like the other depth sensing devices you mentioned.
You can expect the pose tracking and area learning to work as well as they do indoors. The depth perception, however, will likely not work well outside in direct sunlight.

Transforming and registering point clouds

I’m starting to develop with Project Tango API.
I need to save PointCloud data that I get in the event OnXyzIjAvailable;
to do this, I started from your example "PointCloudJava" and wrote PointCloud coordinates in single files (an AsyncTask is started for this purpose).
So I have one file with xyz for each event. On the same event I get the corresponding transformation matrix (mRenderer.getModelMatCalculator(). GetPointCloudModelMatrixCopy()).
Point clouds
Then I’ve imported all this data (xyz point cloud with corresponding transformation matrix; the transformation matrix is applied to the point clouds) but the point clouds doesn’t match exactly; it seems that point clouds are closed each other but not overlapping exactly.
My questions are:
-Why I don’t have the matching between the single point clouds ?
-What I should have to do to have this matching ?
Then I’ve notice the following that is probably related to the above problem; I’ve used Project Tango Explore application (Area learning), I can see my position, but is constantly in motion even if I don't move.
Which is the problem ? Is it necessary a calibration?
Device Information
Poses delivered by Tango have a non-negligible amount of drift. Here is a sample graph of pose position when my tablet was in its stand observing a static scene (ideally the traces should be flat):
When we couple this drift with tracking errors when the device is actually moving then this produces noticeable registration issues. I see this especially when the device is rolled, i.e. rotated about the view axis. The raw pose quality may be sufficient for some applications (e.g. location) but causes problems for others (e.g. 3D scanning, seamless augmented reality).
I was disappointed when I saw this. But if Tango is attempting to measure motion by using the fisheye camera to correct inertial motion prediction - and not by using stereo vision between the fisheye and color cameras - then that is a really hard problem. And the reason for doing that would be to stay within CPU/GPU/RAM/latency/battery budgets to leave something for applications. So after consideration, while I remain disappointed, I can understand it.
I am hopeful that Tango will improve their pose algorithm over time, but I suspect that applications that depend on precise tracking will still have to add their own corrections, e.g. via stereo, structure from motion, point cloud correlation, etc.
Point clouds should be viewed as statistically accurate, not exactly accurate - there is a distance estimation error range that is a function of distance and surface characteristics - a tango fixed in a specific location will not return a constant point clout - rotation of the device can cause apparent drift, but it really isn't, it's just that the error is rotating along with the tango

Tango color frames not of best quality, looks like up-scaled from lower resolution. Is it a Tango hardware limitation?

I obtain color frames from TANGO_CAMERA_COLOR. Frames are not of the best quality - looks like they are up-scaled from lower resolution.
This can be easily seen by comparing video quality from standard Android Camera app and "Project Tango Native Augmented Reality" sample app, running on the same device.
Questions: is it what intended to be? If so then why?
Is there a way to improve quality, of if there is a plan to improve quality in future Tango releases?
I set config_color_iso to 400, default exposition time.
Each depth frame has corresponding color frame with the exactly same timestamp. Infrared illumination (artefacts) are seen at just a very few color frames.
You may want to stick with the images coming out of Tango
1) If you snag another camera, or grab the camera directly, then Tango depth information stops coming.
2) More importantly to my eyes, it is the images from Tango that are the source of the point cloud - anything you want to do with coloring cloud points and surfaces and having the faintest hope of success would do better with these images
3) Trying to offload the image stream in real time requires JPEG compression if you're going straight to the cloud - raw images from tango are 1280x720, so they way in at about a megabyte each before compression

Using windows phone combined motion api to track device position

I'd like to track the position of the device with respect to an initial position with high accuracy (ideally) for motions at a small scale (say < 1 meter). The best bet seems to be using motionReading.SensorReading.DeviceAcceleration. I tried this. But ran into few problems. Apart from the noisy readings (which I was expecting and can tolerate), I see some behaviors that are conceptually wrong - e.g. If I start from rest, move the phone around and bring it back to rest- and in the process periodically update the velocity vector along all the dimensions, I would expect the magnitude of the velocity to be very small (ideally 0). But I don't see that. I have extensively reviewed available help including the official msdn pages but I don't see any examples where the position/velocity of the device are updated using the acceleration vector. Is the acceleration vector that the api returns (atleast in theory) supposed to be the rate of change of velocity or something else? (FYI - my device does not have a gyroscope, so the api is going to be the low accuracy version.)

Resources