Prolog append/3 realization with more determinism? - prolog

It is folk knowledge that append(X,[Y],Z) finds the last element
Y of the list Z and the remaining list X.
But there is some advantage of having a customized predicate last/3,
namely it can react without leaving a choice point:
?- last([1,2,3],X,Y).
X = 3,
Y = [1,2]
?- append(Y,[X],[1,2,3]).
Y = [1,2],
X = 3 ;
No
Is there a way to realize a different implementation of
append/3 which would also not leave a choice point in the
above example?
P.S.: I am comparing:
/**
* append(L1, L2, L3):
* The predicate succeeds whenever L3 unifies with the concatenation of L1 and L2.
*/
% append(+List, +List, -List)
:- public append/3.
append([], X, X).
append([X|Y], Z, [X|T]) :- append(Y, Z, T).
And (à la Gertjan van Noord):
/**
* last(L, E, R):
* The predicate succeeds with E being the last element of the list L
* and R being the remainder of the list.
*/
% last(+List, -Elem, -List)
:- public last/3.
last([X|Y], Z, T) :- last2(Y, X, Z, T).
% last2(+List, +Elem, -Elem, -List)
:- private last2/4.
last2([], X, X, []).
last2([X|Y], U, Z, [U|T]) :- last2(Y, X, Z, T).

One way to do it is to use foldl/4 with the appropriate help predicate:
swap(A, B, B, A).
list_front_last([X|Xs], F, L) :-
is_list(Xs),
foldl(swap, Xs, F, X, L).
This should be it:
?- list_front_last([a,b,c,d], F, L).
F = [a, b, c],
L = d.
?- list_front_last([], F, L).
false.
?- list_front_last([c], F, L).
F = [],
L = c.
?- Ys = [y|Ys], list_front_last(Ys, F, L).
false.
Try to see if you can leave out the is_list/1 from the definition.

As I posted:
append2(Start, End, Both) :-
% Preventing unwanted choicepoint with append(X, [1], [1]).
is_list(Both),
is_list(End),
!,
append(Start, End, Both),
!.
append2(Start, End, Both) :-
append(Start, End, Both),
% Preventing unwanted choicepoint with append(X, Y, [1]).
(End == [] -> ! ; true).
Result in swi-prolog:
?- append2(Y, [X], [1,2,3]).
Y = [1, 2],
X = 3.

Related

Get set of elements from list (Prolog)

I am trying to get a set of elements from a list in prolog, such that a query:
get_elems([1, 2, 4, 10], [a, b, c, d, e], X).
yields:
X = [a, b, d]
I would like to implement it without using the built in predicate nth.
I have tried using the following, but it does not work:
minus_one([], []).
minus_one([X|Xs], [Y|Ys]) :- minus_one(Xs, Ys), Y is X-1.
get_elems([], _, []).
get_elems(_, [], []).
get_elems([1|Ns], [A|As], Z) :- get_elems(Ns, As, B), [A|B] = Z.
get_elems(Ns, [_|As], Z) :- minus_one(Ns, Bs), get_elems(Bs, As, Z).
Edit: The list of indices is guaranteed to be ascending, also I want to avoid implementing my own version of nth.
Give this a go:
get_elems(Xs,Ys,Zs) :- get_elems(Xs,1,Ys,Zs).
get_elems(Xs,_,Ys,[]) :- Xs = []; Ys = [].
get_elems([N|Xs],N,[H|Ys],[H|Zs]) :- !, N1 is N + 1, get_elems(Xs,N1,Ys,Zs).
get_elems(Xs,N,[_|Ys],Zs) :- N1 is N + 1, get_elems(Xs,N1,Ys,Zs).
This just keeps counting up and when the head of the second term is equal to the current index it peels off the head and makes it the head of the current output term. If it doesn't match it just discards the head and keeps going.

Why is the following Prolog program only returning one solution?

contains(X, L) :- [X|_] = L.
contains(X, L) :- [Y|Z] = L, Y \= X, contains(X, Z).
f(R, L1, Res) :-
(R,T) = X,
contains(X, L1),
Res = T.
?- f(1, [(1,2), (1,3)], R). gives only one value of R i.e. 2, but I expect it to return 2 values of R 2 and 3.
Answer to a similar prolog question on stackoverflow.com recommends to use SPACEor ; instead of ENTER, but I get false if I press ; or SPACE after I get the first answer.
What is going wrong?
Your contains/2 is defined as:
contains(X, L) :-
[X|_] = L.
contains(X, L) :-
[Y|Z] = L,
Y \= X,
contains(X, Z).
Your Y \= X (here in boldface) however prevents the contains/2 to recurse on the tail Z once it has found an X that unifies with the head of the list. Indeed, in case Y = X, then Y \= X is false (since Y \= X is short for \+ X = Y). If Y \= X fails, we can not call contains(X, Z), and therefore it can not check of other members of the list can be emitted.
So we can remove the statement and write:
contains(X, L) :-
[X|_] = L.
contains(X, L) :-
[Y|Z] = L,
contains(X, Z).
and now contains/2 will work like member/2 works.
The code is however not very elegantly: you do unification in the body that can be done in the head. Furthermore we now have a variable L that is not used in the first clause, and a variable Y in the second clause that is not used. We can rewrite it to:
contains(X, [X|_]).
contains(X, [_|T]) :-
contains(X, T).
and that's it. Now your f/3 will work, although again it is not very elegant. We can rewrite this as well into:
f(R, L, T) :-
contains((R,T), L).
and now our f/3 predicate works in different directions:
?- f(1, [(1,2), (1,3)], R).
R = 2 ;
R = 3 ;
false.
?- f(X, [(1,2), (1,3)], 2).
X = 1 ;
false.
?- f(X, [(1,2), (1,3)], 3).
X = 1 ;
false.
?- f(X, L, 3).
L = [ (X, 3)|_G1262] ;
L = [_G1261, (X, 3)|_G1265] ;
L = [_G1261, _G1264, (X, 3)|_G1268] ;
L = [_G1261, _G1264, _G1267, (X, 3)|_G1271] .
?- f(1, L, 3).
L = [ (1, 3)|_G1250] ;
L = [_G1249, (1, 3)|_G1253] ;
L = [_G1249, _G1252, (1, 3)|_G1256] .

How do I change position of two elements in a list(PROLOG)

predicate change_pos(E1, E2,Lin,Lout).
The Lin has any number of elements, and I need to change all occurences of E1 to E2, and vice-versa. And return in Lout.
I was thinking to do something like this:
change(X, Y, [], []).
change(X, Y, [X|L], [Y,L1]):- change(X,Y,L,L1).
change(X, Y, [Z|L], [Z,L1]:- X \== Z, change(X,Y,L,L1).
But this way is not swiping two number of the list
I'm supposing, since this is homework, it's an exercise to learn list processing and recursion. But in Prolog, a common tool for processing each term in turn in a list is maplist:
% Rule for changing one element
change_element(X, Y, X, Y).
change_element(X, Y, Y, X).
change_element(X, Y, Z, Z) :- dif(X, Z), dif(Y, Z).
% Rule for changing a list
change(X, Y, L1, L2) :-
maplist(change_element(X, Y), L1, L2).
Which yields:
?- change(a, b, [a,b,c,b,a], L).
L = [b, a, c, a, b] ? ;
no
?-
For a determinate solution, you can use if_/3:
change1(X, Y, A, B) :-
if_(=(Y, A), B = X, A = B).
change2(X, Y, A, B) :-
if_(=(X, A), B = Y, change1(X, Y, A, B)).
change(X, Y, L1, L2) :- maplist(change2(X, Y), L1, L2).
Which yields:
?- change(a, b, [a,b,c,b,a], L).
L = [b, a, c, a, b].
?-
You're almost there. Your base case (the empty lists) and your second rule (swap X for Y) are basically fine (apart from the details pointed out in the comments). However, you are missing a rule for vice-versa (swap Y for X). And in your last rule you likely want to make sure that Z differs not only from X but also from Y, otherwise Z would be subject to rule two or three.
change(X, Y, [], []).
change(X, Y, [X|L], [Y|L1]) :-
change(X,Y,L,L1).
change(X, Y, [Y|L], [X|L1]) :- % <- vice versa case
change(X,Y,L,L1).
change(X, Y, [Z|L], [Z|L1]) :-
dif(X,Z), % <- neither X=Z
dif(Y,Z), % <- nor vice versa
change(X,Y,L,L1).
Here are some example queries. What does [1,2,3,4] look like after swapping 1 with 2 and vice versa?
?- change(1,2,[1,2,3,4],L).
L = [2,1,3,4] ? ;
no
What did [2,1,3,4] look like before swapping 1 with 2 and vice versa?
?- change(1,2,L,[2,1,3,4]).
L = [1,2,3,4] ? ;
no
Which elements have been swapped in [1,2,3,4] if the resulting list is [2,1,3,4] ?
?- change(X,Y,[1,2,3,4],[2,1,3,4]).
X = 1,
Y = 2 ? ;
X = 2,
Y = 1 ? ;
no

Prolog Zip Function

Im in rew to Prolog. I'm trying to write a zip function. The question goes like this.
zip(L1, L2, X): The list X is formed by “zipping” the first 2 arguments.
the result should be like this:
?- zip([a, b, c], [x, y, z], X).
L = [a, x, b, y, c, z]
?- zip([a, b], [x, y, z], X).
false
?- zip([a, b, c, d], X, [a, p, b, q, c, r, d, s]).
X = [p, q, r, s]
I have done this so far.
I can get the result for 1st 3rd but not the 2nd one. Can anybody can help me solving it for the 2nd one? thank you
zip([X],[Y],[X,Y]).
zip([], [], []).
zip([X|Xs], [Y|Ys], [X,Y|Zs]) :-
zip(Xs,Ys,Zs).
zip([X|Xs],[],[X|Xs]).
zip([Y|Ys],[],[Y|Ys]).
zip(Xs, [], Xs).
zip([], Ys, Ys).
How do I define this function where:
allsame(L): The list L contains identical elements.
I should get this.
?- allsame([b, b, b]).
true
?- allsame([c, c, c, Y, c, c, X, c]).
X = c, Y = c
You had it:
zip([], [], []).
zip([X|Xs], [Y|Ys], [X,Y|Zs]) :- zip(Xs,Ys,Zs).
This alone is enough to define the relation you're seeking. The extra clauses don't help.
Test:
?- zip([a, b, c], [x, y, z], X).
X = [a, x, b, y, c, z].
?- zip([a, b], [x, y, z], X).
false.
?- zip([a, b, c, d], X, [a, p, b, q, c, r, d, s]).
X = [p, q, r, s].
#m09 gave the correct answer. But I'd like to explain why what you have isn't correct:
(1) zip([X],[Y],[X,Y]).
This rule says that [X,Y] is what you get when you zip [X] with [Y]. That is correct, and will not lead to a problem. The rule is simply redundant with the rules below (which I'll explain...).
(2) zip([], [], []).
This rule says [] is what you get when you zip [] with [] which is correct and as simple a rule as you can have for zip.
(3) zip([X|Xs], [Y|Ys], [X,Y|Zs]) :-
zip(Xs,Ys,Zs).
This rule says that [X,Y|Zs] is what you get when you zip [X|Xs] with [Y|Ys] if Zs is what you get when you zip Xs with Ys. That is also logical and correct. Notice that zip([X], [Y], [X,Y]) is zip([X|[]], [Y|[]], [X,Y|[]]). so it can be derived from rules (2) and (3). It would match rule (3) first, zip([X|[]], [Y|[]], [X,Y|Zs]) :- zip([], [], Zs)., then Zs would become [] by rule (2)`.
(4) zip([X|Xs],[],[X|Xs]).
(5) zip([Y|Ys],[],[Y|Ys]).
Rule (4) says [X|Xs] is what you get when you zip [X|Xs] with []. Rule (5) says exactly the same thing, logically, only with a different variable name. These are incorrect, since that would mean, for example, zip([a,b,c], [], Z) would be true if Z = [a,b,c].
(6) zip(Xs, [], Xs).
This rule says that Xs is what you get when you zip Xs with []. Or stated another way, any input, zipped with [], would be that input value again. It wouldn't even have to be a list! This is clearly incorrect. Queries like zip(x, [], Z) would succeed with Z = x, and zip(friend(bill,mary), [], Z) would succeed with Z = friend(bill,mary).
(7) zip([], Ys, Ys).
This rule says that Ys is what you get when you zip [] with Ys. It is incorrect for the same reason (6) is incorrect. In fact, this rule, combined with (2) and (3) are why the query zip([a, b], [x, y, z], X). will yield a result rather than fail. Rules (2) and (3) will recurse to zip([b], [y,z], [b,y|T]) :- zip([], [z], T). and then zip([], [z], T) will finally succeed on rule (7) with T = [z], and ultimately yielding a final result to zip([a, b], [x, y, z], X) of X = [a, x, b, y, z].

Replace elements of a list in Prolog

I have a predicate variablize/3 that takes a list and replaces each item, in turn, with a variable, example:
% ?- variablize([a,b,c], X, L).
% L = [[X, b, c], [a, X, c], [a, b, X]]
Now I am trying to extend this predicate to accept a list of variables, example:
% ?- variablize([a,b,c], [X,Y], L).
% L = [[X, Y, c], [X, b, Y], [a, X, Y]]
My code so far is:
replace_at([_|Tail], X, 1, [X|Tail]).
replace_at([Head|Tail], X, N, [Head|R]) :- M is N - 1, replace_at(Tail, X, M, R).
replace_each([], _, _, [], _).
replace_each([_|Next], Orig, X, [Res|L], N) :-
replace_at(Orig, X, N, Res),
M is N + 1,
replace_each(Next, Orig, X, L, M).
variablize(I, X, L) :- replace_each(I, I, X, L, 1).
Any pointers? Do I extend replace_at/4 to have a list of indexes that should be skipped?
A simplified, builtin based way of implementing variablize/3
variablize(I, X, L) :-
bagof(R, U^select(U, I, X, R), L).
put in evidence that instead of select/4 we could have a distribute/3 that applies replacements of elements of X, when X becomes a list. select/4 can be implemented in this way
myselect(B, I, X, R) :-
append(A, [B|C], I), append(A, [X|C], R).
and this form is convenient because we have the part to the right of input list I, where I suppose you need to distribute remaining variables. Then a recursion on X elements should do:
distribute(I, [X|Xs], L) :-
append(A, [_|C], I),
distribute(C, Xs, R),
append(A, [X|R], L).
distribute(I, [], I).
distribute/3 behaves this way:
?- distribute([a,b,c,d],[1,2],X).
X = [1, 2, c, d] ;
X = [1, b, 2, d] ;
X = [1, b, c, 2] ;
X = [a, 1, 2, d] ;
X = [a, 1, c, 2] ;
X = [a, b, 1, 2] ;
false.
thus
variablize_l(I, X, L) :-
bagof(R, distribute(I, X, R), L).
give us:
?- variablize_l([a,b,c],[X,Y],L).
L = [[X, Y, c], [X, b, Y], [a, X, Y]].
edit
I initially wrote this way, for here the evidence of separating the distribution phase from list construction:
replace_v([_|T], X, [X|T]).
replace_v([L|T], X, [L|R]) :-
replace_v(T, X, R).
variablize(I, X, L) :-
bagof(E, replace_v(I, X, E), L).
variablize(L1,L2,L) :-
append(L1,L2,L3),
length(L1,Len1),
length(L2,Len2),
findall(L4,(combination(L3,Len1,L4),var_count(L4,Len2)),L).
combination(X,1,[A]) :-
member(A,X).
combination([A|Y],N,[A|X]) :-
N > 1,
M is N - 1,
combination(Y,M,X).
combination([_|Y],N,A) :-
N > 1,
combination(Y,N,A).
var_count([],0).
var_count([V|R],N) :-
var(V),
var_count(R,N1),
N is N1 + 1,
!.
var_count([A|R],N) :-
var_count(R,N).

Resources