I want to read a barcode from a scanned image that I printed. The image format is not relevant. I found that the scanned images are of very low quality and can understand why it normal barcodes fail.
My idea is to create a non standard and very simple barcode at the top of each page printed. It will be 20 squares in a row forming a simple binary code.Filled = 1, open = 0. It will be large enough on aA4 to make detection easy.
At this stage I need to load the image and find the barcode somewhere at the top. It will not be exactly at the same spot as it is scanned in. Step into each block and build the ID.
Any knowledge or links to info would be awesome.
If you can preset a region of interest that contains the code and nothing else, then detection is pretty easy. Scan a few rays across this region and find the white/black and black/white transitions. Then, knowing where the "cells" should be, you known their polarity.
For this to work, you need to frame your cells with two black ones on both ends to make sure to know where it starts/stops (if the scale is fixed, you can do with just a start cell, but I would not recommend this).
You could have a look at https://github.com/zxing/zxing. I would suggest to use a 1D bar code, but wide enough to match the low resolution of the scanner.
You could also invent your own bar code encoding and try to parse it your self. Use thick bars for 1 and thin lines for 0. A thick bar would be for instance 2 white pixels, 4 black pixels. A thin line would be 2 white pixels, 2 black pixels and 2 white pixels. The last two pixels encode the bit value.
The pixel should be the size of the scanned image pixel.
You then process the image scan line by scan line, trying to locate the bar code.
We locate the bar code by comparing a given pixel value sequence with a pattern. This is performed by computing a score function. The sum of squared difference is a good pick. When computing the score we ignore the two pixels encoding the bit value.
When the score is below a threshold, we found a matching pattern. It is good to add parity bits to the encoded value so that it's validity can be checked.
Computing a sum of square on a sliding window can be optimized.
Related
Here is an example of binary images, i.e. as input we have an imageByteArray with 2 possible values: 0 and 255.
Example1:
Example2:
The image contains some document edge on a background.
The task is to remove, decrease amount of background pixels with minimal impact on edge pixels.
The question is what modern algorithms, techniques exist to do this?
What I do not expect as an answer: use Gaussian blur to get rid of background noise, use bitonal algorithm (Canny, Sobel, etc.) thresholds or use Hough (Hough linearization goes crazy on such noise no matter what options are set)
The simplest solution is to detect all contours and filter out ones with the lowest length. This works good, but sometimes depending on an image it will also erase useful edge pixels pretty much.
Update:
As input I have standard RGB image with a document (driver license ID, check, bill, credit card, ...) on some background. The main task is to detect document edges. Next steps are pretty known: greyscale, blur, Sobel binarization, Hough probabilistic, find rectangle or trapezium (if trapezium shape found then go to perspective transformation). On simple contrast backgrounds it all works fine. The reason why I am asking about noise reduction is that I have to work with thousands of backgrounds and some of them give noise no matter what options used. The noise will cause additional lines no matter how Hough is configured and additional lines may fool subsequent logic and seriously affect performance. (It is implemented in java script, no OpenCV or GPU support).
It's hard to know whether this approach will work with all your images since you only provided one, but a Hough Line detection with ImageMagick and these parameters in the Terminal command-line produces this:
convert card.jpg \
\( +clone -background none -fill red -stroke red \
-strokewidth 2 -hough-lines 49x49+100 -write lines.mvg \
\) -composite hough.png
and the file lines.mvg contains 4 lines as follows:
# Hough line transform: 49x49+100
viewbox 0 0 1024 765
line 168.14,0 141.425,765 # 215
line 0,155.493 1024,191.252 # 226
line 0,653.606 1024,671.48 # 266
line 940.741,0 927.388,765 # 158
ImageMagick is installed on most Linux distros and is available for OSX and Windows from here.
I assume you did mean binary image instead of bitonic...
Do flood fill based segmentation
scan image for set pixels (color=255)
for each set pixel create a mask/map of its area
Just flood fill set pixels with 4 or 8 neighbor connection and count how many pixels you filled.
for each filled area compute its bounding box
detect edge lines
edge lines have rectangular bounding box so test its aspect ratio if close to square then this is not edge line
also too small bounding box means not an edge line
too small filled pixels count in comparison to bounding box bigger side size then area is also not an edge line
You can make this more robust if you regress line for set pixels of each area and compute the average distance between regressed line and each set pixel. If too high area is not edge line ...
recolor not edge lines areas to black
so either substract the mask from image or flood fill with black again ...
[notes]
Sometimes step #5 can mess the inside of document. In that case you do not recolor anything instead you remember all the regressed lines for edge areas. Then after whole process is done join together all lines that are parallel and close to same axis (infinite line) that should reduce to 4 big lines determining document rectangle. So now fill with black all outside pixels (by geometric approach)
For such tasks you would usually carefully examine input data and try to figure out what cues can you utilize. But unfortunately you have provided only one example, which makes this approach pretty useless. Besides, this representation is not really comfortable to work with - have you done some preprocessing, or this is what you get as input? In first case, you may get better advice if you can show us real input.
Next, if your goal is noise reduction and not document/background segmentation - you are really limited in options. Similar to what you said, I would try to detect connected components with 255 intensity (instead of detecting contours, which can be less robust) and remove ones with small area. That may fail on certain instances.
Besides, on image you have provided you can use local statistics to suppress areas of regular noise. This will reduce background clutter if you select neighborhood size appropriately.
But again, if you are doing this for document detection - there may be more robust approaches.
For example, if you know the foreground object (driver's ID) - you can try to collect a dataset of ID images, and calculate the 'typical' color histogram - it may be rather characteristic. After that, you can backproject this histogram on input image and get either rough region of interest, or maybe even precise mask. Then you may binarize it and try to detect contours. You may try different color spaces and bin sizes to see which fits best.
If you have to work in different lighting conditions you can try to equalize histogram or do some other preprocessing to reduce color variation caused by lighting.
Strictly answering the question for the binary image (i.e. after the harm as been made):
What seems characteristic of the edge pixels as opposed to noise is that they form (relatively) long and smooth chains.
So far I see no better way than tracing all chains of 8-connected pixels, for instance with a contour following algorithm, and detect the straight sections, for example by Douglas-Peucker simplification.
As the noise is only on the outside of the card, the outline of the blobs will have at least one "clean" section. Keep the sections that are long enough.
This may destroy the curved corners as well and actually you should look for the "smooth" paths that are long enough.
Unfortunately, I cannot advise of any specific algorithm to address that. It should probably be based on graph analysis combined to geometry (enumerating long paths in a graph and checking the local/global curvature).
As far as I know (after reading thousands related articles), this is nowhere addressed in the literature.
None of the previous answers would really work, the only thing that can work here is a blob filter, filter it so that blobs below a certain size get deleted.
I've this picture:
(this is just subimage of bigger image but only this part is for me important). I need algorithm for finding all these yellow objects in the image and find from them the object which contains the most yellow points. This is just one picture of thousands of similar pictures with more or less these yellow objects. What is the way to do this? I found that the scanline algorithm is good for this, but I haven't found some example which would help me. If you have some ideas or even algorithm it would be perfect. Those color lines are not important I just put them as some border in which I need to find the yellow objects.
Thanks a lot for answers
There are two basic steps:
Thresholding: Generate an array of yellow and not-yellow pixels. If the images you're working with are all like the example you provided, this should be very easy, but try adaptive thresholding if you have to deal with varying shades and hues. Store, e.g., a value of -1 for pixels that are yellow, and 0 everywhere else.
Segmentation: Initialize an ID value to 1. Scan every pixel of the thresholded image. When you encounter a pixel with a value of -1 (i.e., a yellow pixel), use a flood fill routine to write the ID value into this pixel and all the yellow pixels connected to it. Before the flood fill routine exits, you can store information such as the number of pixels it found and the average X and Y coordinates in an array indexed by the ID value. Then increment the ID value and resume scanning until you've covered the entire image.
Then search the data generated by the flood fill routine to find which yellow areas were the largest, and where they were located.
Here's a program that does something quite similar with red objects instead of yellow ones, and then draws circles around them.
It looks like OpenCV has blob detection options. I found this article showing how to detect the blobs using greyscale value, which you should be able to change to use the color value of your target color. It also mentions using the area of the blob as a threshold, so you should be able to use that to find the largest one in the image.
http://www.learnopencv.com/blob-detection-using-opencv-python-c/
One approach would be to generate a quad-tree of the image. Using this quad-tree it's pretty simple to find conjunct pieces that form a blob (even with holes) and calculate the size of these.
I'm building a photographic film scanner. The electronic hardware is done now I have to finish the mechanical advance mechanism then I'm almost done.
I'm using a line scan sensor so it's one pixel width by 2000 height. The data stream I will be sending to the PC over USB with a FTDI FIFO bridge will be just 1 byte values of the pixels. The scanner will pull through an entire strip of 36 frames so I will end up scanning the entire strip. For the beginning I'm willing to manually split them up in Photoshop but I would like to implement something in my program to do this for me. I'm using C++ in VS. So, basically I need to find a way for the PC to detect the near black strips in between the images on the film, isolate the images and save them as individual files.
Could someone give me some advice for this?
That sounds pretty simple compared to the things you've already implemented; you could
calculate an average pixel value per row, and call the resulting signal s(n) (n being the row number).
set a threshold for s(n), setting everything below that threshold to 0 and everything above to 1
Assuming you don't know the exact pixel height of the black bars and the negatives, search for periodicities in s(n). What I describe in the following is total overkill, but that's how I roll:
use FFTw to calculate a discrete fourier transform of s(n), call it S(f) (f being the frequency, i.e. 1/period).
find argmax(abs(S(f))); that f represents the distance between two black bars: number of rows / f is the bar distance.
S(f) is complex, and thus has an argument; arctan(imag(S(f_max))/real(S(f_max)))*number of rows will give you the position of the bars.
To calculate the width of the bars, you could do the same with the second highest peak of abs(S(f)), but it'll probably be easier to just count the average length of 0 around the calculated center positions of the black bars.
To get the exact width of the image strip, only take the pixels in which the image border may lie: r_left(x) would be the signal representing the few pixels in which the actual image might border to the filmstrip material, x being the coordinate along that row). Now, use a simplistic high pass filter (e.g. f(x):= r_left(x)-r_left(x-1)) to find the sharpest edge in that region (argmax(abs(f(x)))). Use the average of these edges as the border location.
By the way, if you want to write a source block that takes your scanned image as input and outputs a stream of pixel row vectors, using GNU Radio would offer you a nice method of having a flow graph of connected signal processing blocks that does exactly what you want, without you having to care about getting data from A to B.
I forgot to add: Use the resulting coordinates with something like openCV, or any other library capable of reading images and specifying sub-images by coordinates as well as saving to new images.
I am currently working on OCR software and my idea is to use templates to try to recognize data inside invoices.
However scanned invoices can have several 'flaws' with them:
Not all invoices, based on a single template, are correctly aligned under the scanner.
People can write on invoices
etc.
Example of invoice: (Have to google it, sadly cannot add a more concrete version as client data is confidential obviously)
I find my data in the invoices based on the x-values of the text.
However I need to know the scale of the invoice and the offset from left/right, before I can do any real calculations with all data that I have retrieved.
What have I tried so far?
1) Making the image monochrome and use the left and right bounds of the first appearance of a black pixel. This fails due to the fact that people can write on invoices.
2) Divide the invoice up in vertical sections, use the sections that have the highest amount of black pixels. Fails due to the fact that the distribution is not always uniform amongst similar templates.
I could really use your help on (1) how to identify important points in invoices and (2) on what I should focus as the important points.
I hope the question is clear enough as it is quite hard to explain.
Detecting rotation
I would suggest you start by detecting straight lines.
Look (perhaps randomly) for small areas with high contrast, i.e. mostly white but a fair amount of very black pixels as well. Then try to fit a line to these black pixels, e.g. using least squares method. Drop the outliers, and fit another line to the remaining points. Iterate this as required. Evaluate how good that fit is, i.e. how many of the pixels in the observed area are really close to the line, and how far that line extends beyond the observed area. Do this process for a number of regions, and you should get a weighted list of lines.
For each line, you can compute the direction of the line itself and the direction orthogonal to that. One of these numbers can be chosen from an interval [0°, 90°), the other will be 90° plus that value, so storing one is enough. Take all these directions, and find one angle which best matches all of them. You can do that using a sliding window of e.g. 5°: slide accross that (cyclic) region and find a value where the maximal number of lines are within the window, then compute the average or median of the angles within that window. All of this computation can be done taking the weights of the lines into account.
Once you have found the direction of lines, you can rotate your image so that the lines are perfectly aligned to the coordinate axes.
Detecting translation
Assuming the image wasn't scaled at any point, you can then try to use a FFT-based correlation of the image to match it to the template. Convert both images to gray, pad them with zeros till the originals take up at most 1/2 the edge length of the padded image, which preferrably should be a power of two. FFT both images in both directions, multiply them element-wise and iFFT back. The resulting image will encode how much the two images would agree for a given shift relative to one another. Simply find the maximum, and you know how to make them match.
Added text will cause no problems at all. This method will work best for large areas, like the company logo and gray background boxes. Thin lines will provide a poorer match, so in those cases you might have to blur the picture before doing the correlation, to broaden the features. You don't have to use the blurred image for further processing; once you know the offset you can return to the rotated but unblurred version.
Now you know both rotation and translation, and assumed no scaling or shearing, so you know exactly which portion of the template corresponds to which portion of the scan. Proceed.
If rotation is solved already, I'd just sum up all pixel color values horizontally and vertically to a single horizontal / vertical "line". This should provide clear spikes where you have horizontal and vertical lines in the form.
p.s. Generated a corresponding horizontal image with Gimp's scaling capabilities, attached below (it's a bit hard to see because it's only one pixel high and may get scaled down because it's > 700 px wide; the url is http://i.stack.imgur.com/Zy8zO.png ).
i'm working in a project to recognize a bit code from an image like this, where black rectangle represents 0 bit, and white (white space, not visible) 1 bit.
Somebody have any idea to process the image in order to extract this informations? My project is written in java, but any solution is accepted.
thanks all for support.
I'm not an expert in image processing, I try to apply Edge Detection using Canny Edge Detector Implementation, free java implementation find here. I used this complete image [http://img257.imageshack.us/img257/5323/colorimg.png], reduce it (scale factor = 0.4) to have fast processing and this is the result [http://img222.imageshack.us/img222/8255/colorimgout.png]. Now, how i can decode white rectangle with 0 bit value, and no rectangle with 1?
The image have 10 line X 16 columns. I don't use python, but i can try to convert it to Java.
Many thanks to support.
This is recognising good old OMR (optical mark recognition).
The solution varies depending on the quality and consistency of the data you get, so noise is important.
Using an image processing library will clearly help.
Simple case: No skew in the image and no stretch or shrinkage
Create a horizontal and vertical profile of the image. i.e. sum up values in all columns and all rows and store in arrays. for an image of MxN (width x height) you will have M cells in horizontal profile and N cells in vertical profile.
Use a thresholding to find out which cells are white (empty) and which are black. This assumes you will get at least a couple of entries in each row or column. So black cells will define a location of interest (where you will expect the marks).
Based on this, you can define in lozenges in the form and you get coordinates of lozenges (rectangles where you have marks) and then you just add up pixel values in each lozenge and based on the number, you can define if it has mark or not.
Case 2: Skew (slant in the image)
Use fourier (FFT) to find the slant value and then transform it.
Case 3: Stretch or shrink
Pretty much the same as 1 but noise is higher and reliability less.
Aliostad has made some good comments.
This is OMR and you will find it much easier to get good consistent results with a good image processing library. www.leptonica.com is a free open source 'C' library that would be a very good place to start. It could process the skew and thresholding tasks for you. Thresholding to B/W would be a good start.
Another option would be IEvolution - http://www.hi-components.com/nievolution.asp for .NET.
To be successful you will need some type of reference / registration marks to allow for skew and stretch especially if you are using document scanning or capturing from a camera image.
I am not familiar with Java, but in Python, you can use the imaging library to open the image. Then load the height and the widths, and segment the image into a grid accordingly, by Height/Rows and Width/Cols. Then, just look for black pixels in those regions, or whatever color PIL registers that black to be. This obviously relies on the grid like nature of the data.
Edit:
Doing Edge Detection may also be Fruitful. First apply an edge detection method like something from wikipedia. I have used the one found at archive.alwaysmovefast.com/basic-edge-detection-in-python.html. Then convert any grayscale value less than 180 (if you want the boxes darker just increase this value) into black and otherwise make it completely white. Then create bounding boxes, lines where the pixels are all white. If data isn't terribly skewed, then this should work pretty well, otherwise you may need to do more work. See here for the results: http://imm.io/2BLd
Edit2:
Denis, how large is your dataset and how large are the images? If you have thousands of these images, then it is not feasible to manually remove the borders (the red background and yellow bars). I think this is important to know before proceeding. Also, I think the prewitt edge detection may prove more useful in this case, since there appears to be less noise:
The previous method of segmenting may be applied, if you do preprocess to bin in the following manner, in which case you need only count the number of black or white pixels and threshold after some training samples.