Prolog, finding largest value from a setOf list - prolog

I have a predicate which purpose is to print out which country that has the biggest area(one with biggest border = biggest area). This is how my predicate looks like:
/* If I write get_country(X, 'Europe'). then all the countries in Europe
that isn't bordering a sea gets printed out.
However as you can see I am creating a list
with all of the countries and then I want to
take the largest country from all of these
and print that one out. But instead
all of the countries gets printed out
with their length, ex: X = hungary ; 359 (length) ... */
get_country(Country, Region):-
encompasses(Country,Region,_),
not(geo_sea(_,Country,_)),
setof(Length, country_circumference(Country,Length), Cs),
largest(Cs, X),
write(X).
The predicates used within that predicate follows:
country_circumference(Country, X):-
setof(Length, get_border_length(Country, Length), Cs),
sum(Cs, X).
largest([X],X).
largest([X|Xs],R) :-
largest(Xs,Y),
R is max(X,Y).
Can anyone tell me what I am doing wrong here? How do I simply get all of my countries into the list and then traverse through the list to find the one with the biggest border instead of just printing them out one after one as I put them into the list? Thanks in advance.

Prolog defines a natural order of terms. For example, the following are true:
foo(3, z) #< foo(10, x)
bar(2, 9) #< foo(3, 1)
Note the use of the term comparison operator #< versus the numeric comparison <. The predicate, setof/3, will do term comparison.
If you want to find the country that has the longest border, then you can do so by taking advantage of the term comparison and collect like terms in setof/3 that have the item you want to sort by as the first argument. In this case, we'd want the circumference first. In addition, if I'm understanding the intended meaning of your get_country predicate correctly, you need to include the queries that define the countries you want to consider as part of the query in the setof/3:
get_country(Country, Region):-
setof(L-C-R, X^Y^Z^( encompasses(C, R, X),
\+ geo_sea(Y, C, Z),
country_circumference(C, L) ), Cs),
reverse(Cs, HighToLowAreas),
member(_-Country-Region, HighToLowAreas), !.
The member/2 at the end of the predicate clause will find the first element in the list HighToLowAreas that matches _-Country-Region, which will be the first element if Country and Region are initially uninstantiated.
The existential quantifiers X^Y^Z^ are needed to exclude these from being selectors in the query. Using _ won't do that in the context of setof/3. Here, we're using the term form, -(-(X,Y),Z) since it's conveniently written, X-Y-Z. But you could just as well use, foo(X, Y, Z) here. The reverse/2 puts the list Cs in descending order, and we just pick off the Country and Region from the head of that list with, [_-Country-Region].

Related

How to make a list of pairs from facts in SWI-Prolog?

Assuming I have some facts like the following
person(jessica,19,usa).
person(james,18,uk).
person(eric,34,italy).
person(jake,24,france).
how can I create a predicate that creates a large list of pairs of all the names and their corresponding country like so:
?-filter(L).
L=[(jessica,usa),(james,uk),(eric,italy),(jake,france)]
The best solution is this one:
?- bagof((P,C), Age^person(P,Age,C), People).
People = [(jessica, usa), (james, uk), (eric, italy), (jake, france)].
This gives you the same result as findall/3, because findall/3 implicitly assumes existential quantification on all variables not present in the template ((P,C) is the template). In your case you only have one, the age variable. Notice what happens if you don't include that:
?- bagof((P,C), person(P,_,C), People).
People = [(james, uk)] ;
People = [(jessica, usa)] ;
People = [(jake, france)] ;
People = [(eric, italy)].
What happened here? The value of the second parameter was the same across each solution because we didn't inform bagof/3 that we didn't care what it was bound to or even if it was bound to just one thing. This property of bagof/3 and setof/3 (but not findall/3) sometimes turns out to be surprisingly useful, so I tend to prefer using bagof/3 over findall/3 if I only need to mark a variable or two.
It's more obvious if we add another person the same age to the database:
person(janet,18,australia).
?- bagof((P,C), person(P,Age,C), People).
Age = 18,
People = [(james, uk), (janet, australia)] .
?- bagof((P,C), person(P,_,C), People).
People = [(james, uk), (janet, australia)] ;
Assuming person/3 is ground and terminates, you can implement it without setof as:
notin(_, []).
notin(X, [Y|Ys]) :-
dif(X,Y),
notin(X,Ys).
lt_list(_, []).
lt_list(X, [Y|Ys]) :-
X #< Y,
lt_list(X,Ys).
f( [ Name-Location | Rest], Acc) :-
person(Name, _, Location),
lt_list( Name-Location, Acc ),
f(Rest, [Name-Location | Acc]).
f( [], Acc) :-
\+ (person(Name,_,Location), notin(Name-Location,Acc)).
When we query f, we get our solutions:
?- f(Xs,[]).
Xs = [jessica-usa, james-uk, jake-france, eric-italy] ;
false.
I used X-Y instead of (X,Y) for better readability. The predicate notin describes an element that is not contained in a list and lt_list describes an element that is smaller than anything in the list by the standard term order.
The idea is that the first rule generates persons that I have not seen yet. Using the term order makes sure that we don't generate all permutations of the list (try replacing lt_list by notin to see what happens). The second rule makes sure we only terminate if there are no more solutions to generate. Be aware that the rule contains negation, which can have some unwanted side-effects. Most of them are filtered out by only looking at ground terms, but I have not thought well, how bad the impact is in this solution.

Prolog - Using Bagof

I've been stuck on a past paper question while studying for my exams.
The question is:
https://gyazo.com/ee2fcd88d67068e8cf7d478a98f486a0
I figured I've got to use findall/bagof/setof because I need to collect a set of solutions. Furthermore, setof seems appropriate because the list needs to be presented in descending order.
My solution so far is:
teams(List) :-
setof((Team, A),
(Team^team(Team, _, Wins, Draws, _), A is Wins*3 + Draws*1),
List).
However the problem is I don't quite get the answers all in one list. I'm very likely using Team^ incorrectly. I'd really appreciate pointers on how I can get a list of ordered tuples in terms of points. The output it gives me is:
X = [(queenspark,43)] ? ;
X = [(stirling,26)] ? ;
X = [(clyde,25)] ? ;
X = [(peterhead,35)] ? ;
X = [(rangers,63)] ? ;
Also, it's not really apparent what kind of order, if any it's in, so I'm also lost as to how setof is ordering.
Whats the best way to approach this question using setof?
Thanks.
Firstly, I would suggest to change (Team,A) to a pair representation A-Team with the A being in front since this is the total score of the team and thus the key you want to use for sorting. Then you would like to prefix the variables that should not be in the list with a ^ in front of the query you want to aggregate. See the following example:
?- setof(A-Team, P^Wins^Draws^L^(team(Team, P, Wins, Draws, L), A is Wins*3 + Draws*1), List).
List = [25-clyde,26-stirling,35-peterhead,43-queenspark,63-rangers]
Since you asked, consider the following query with the pair ordering flipped to Team-A for comparison reasons:
?- setof(Team-A,P^Wins^Draws^L^(team(Team,P,Wins,Draws,L), A is Wins*3 + Draws*1),List).
List = [clyde-25,peterhead-35,queenspark-43,rangers-63,stirling-26]
Now the resulting list is sorted with respect to the teamnames. So A-Team is the opportune choice. You could then use the predicate lists:reverse/2 to reverse the order to a descending list and then define an auxilary predicate pair_second/2 that you can use with apply:maplist/3 to get rid of the leading scores in the pairs:
:- use_module(library(lists)).
:- use_module(library(apply)).
% team(+Name, +Played, +Won, +Drawn, +Lost)
team(clyde,26,7,4,15).
team(peterhead,26,9,8,9).
team(queenspark,24,12,7,5).
team(rangers,26,19,6,1).
team(stirling,25,7,5,13).
pair_second(A-B,B). % 2nd argument is 2nd element of pair
teams(Results) :-
setof(A-Team,
P^Wins^Draws^L^(team(Team, P, Wins, Draws, L), A is Wins*3 + Draws*1),
List),
reverse(List,RList),
maplist(pair_second,RList,Results). % apply pair_second/2 to RList
If you query the predicate now you get the desired results:
?- teams(T).
T = [rangers,queenspark,peterhead,stirling,clyde]
Concerning your question in the comments: Yes, of course that is possible. You can write a predicate that describes a relation between a list of pairs and a list than only consists of the second element of the pairs. Let's call it pairlist_namelist/2:
pairlist_namelist([],[]).
pairlist_namelist([S-N|SNs],[N|Ns]) :-
pairlist_namelist(SNs,Ns).
Then you can define teams/1 like so:
teams(Results) :-
setof(A-Team,
P^Wins^Draws^L^(team(Team, P, Wins, Draws, L), A is Wins*3 + Draws*1),
List),
reverse(List,RList),
pairlist_namelist(RList,Results).
In this case, besides maplist/3, you don't need pair_second/2 either. Also you don't need to include :- use_module(library(apply)). The example query above yields the same result with this version.

Prolog program to return atoms in a proposition formula

I am a newbie to prolog and am trying to write a program which returns the atoms in a well formed propositional formula. For instance the query ats(and(q, imp(or(p, q), neg(p))), As). should return [p,q] for As. Below is my code which returns the formula as As. I dont know what to do to split the single F in ats in the F1 and F2 in wff so wff/2 never gets called. Please I need help to proceed from here. Thanks.
CODE
logical_atom( A ) :-
atom( A ),
atom_codes( A, [AH|_] ),
AH >= 97,
AH =< 122.
wff(A):- ground(A),
logical_atom(A).
wff(neg(A)) :- ground(A),wff(A).
wff(or(F1,F2)) :-
wff(F1),
wff(F2).
wff(and(F1,F2)) :-
wff(F1),
wff(F2).
wff(imp(F1,F2)) :-
wff(F1),
wff(F2).
ats(F, As):- wff(F), setof(F, logical_atom(F), As).
First, consider using a cleaner representation: Currently, you cannot distinguish atoms by a common functor. So, wrap them for example in a(Atom).
Second, use a DCG to describe the relation between a well-formed formula and the list of its atoms, like in:
wff_atoms(a(A)) --> [A].
wff_atoms(neg(F)) --> wff_atoms(F).
wff_atoms(or(F1,F2)) --> wff_atoms(F1), wff_atoms(F2).
wff_atoms(and(F1,F2)) --> wff_atoms(F1), wff_atoms(F2).
wff_atoms(imp(F1,F2)) --> wff_atoms(F1), wff_atoms(F2).
Example query and its result:
?- phrase(wff_atoms(and(a(q), imp(or(a(p), a(q)), neg(a(p))))), As).
As = [q, p, q, p].
This should do what you want. It extracts the unique set of atoms found in any arbitrary prolog term.
I'll leave it up to you, though, to determine what constitutes a "well formed propositional formula", as you put it in your problem statement (You might want to take a look at DCG's for parsing and validation).
The bulk of the work is done by this "worker predicate". It simply extracts, one at a time via backtracking, any atoms found in the parse tree and discards anything else:
expression_atom( [T|_] , T ) :- % Case #1: head of list is an ordinary atom
atom(T) , % - verify that the head of the list is an atom.
T \= [] % - and not an empty list
. %
expression_atom( [T|_] , A ) :- % Case #2: head of listl is a compound term
compound(T) , % - verify that the head of the list is a compound term
T =.. [_|Ts] , % - decompose it, discarding the functor and keeping the arguments
expression_atom(Ts,A) % - recurse down on the term's arguments
. %
expression_atom( [_|Ts] , A ) :- % Finally, on backtracking,
expression_atom(Ts,A) % - we simply discard the head and recurse down on the tail
. %
Then, at the top level, we have this simple predicate that accepts any [compound] prolog term and extracts the unique set of atoms found within by the worker predicate via setof/3:
expression_atoms( T , As ) :- % To get the set of unique atoms in an arbitrary term,
compound(T) , % - ensure that's its a compound term,
T =.. [_|Ts] , % - decompose it, discarding the functor and keeping the arguments
setof(A,expression_atom(Ts,A),As) % - invoke the worker predicate via setof/3
. % Easy!
I'd approach this problem using the "univ" operator =../2 and explicit recursion. Note that this solution will not generate and is not "logically correct" in that it will not process a structure with holes generously, so it will produce different results if conditions are reordered. Please see #mat's comments below.
I'm using cuts instead of if statements for personal aesthetics; you would certainly find better performance with a large explicit conditional tree. I'm not sure you'd want a predicate such as this to generate in the first place.
Univ is handy because it lets you treat Prolog terms similarly to how you would treat a complex s-expression in Lisp: it converts terms to lists of atoms. This lets you traverse Prolog terms as lists, which is handy if you aren't sure exactly what you'll be processing. It saves me from having to look for your boolean operators explicitly.
atoms_of_prop(Prop, Atoms) :-
% discard the head of the term ('and', 'imp', etc.)
Prop =.. [_|PropItems],
collect_atoms(PropItems, AtomsUnsorted),
% sorting makes the list unique in Prolog
sort(AtomsUnsorted, Atoms).
The helper predicate collect_atoms/2 processes lists of terms (univ only dismantles the outermost layer) and is mutually recursive with atoms_of_prop/2 when it finds terms. If it finds atoms, it just adds them to the result.
% base case
collect_atoms([], []).
% handle atoms
collect_atoms([A|Ps], [A|Rest]) :-
% you could replace the next test with logical_atom/1
atom(A), !,
collect_atoms(Ps, Rest).
% handle terms
collect_atoms([P|Ps], Rest) :-
compound(P), !, % compound/1 tests for terms
atoms_of_prop(P, PAtoms),
collect_atoms(Ps, PsAtoms),
append(PAtoms, PsAtoms, Rest).
% ignore everything else
collect_atoms([_|Ps], Rest) :- atoms_of_prop(Ps, Rest).
This works for your example as-is:
?- atoms_of_prop(ats(and(q, imp(or(p, q), neg(p))), As), Atoms).
Atoms = [p, q].

Comparing list element structures to each other in Prolog

I am working through sample questions while studying, using SWI-Prolog. I have reached the last section of this question, where I have to recursively (I hope) compare elements of a list containing 'researcher' structures to determine whether or not the researchers have the same surname, and, if they do, return the Forename and Surname of the group leader for that list.
There is only one list that meets this criteria and it has four members, all with the same surname. However, the correct answer is returned FOUR times. I feel my solution is inelegant and is lacking. Here is the question:
The following Prolog database represents subject teaching teams.
% A research group structure takes the form
% group(Crew, Leader, Assistant_leader).
%
% Crew is a list of researcher structures,
% but excludes the researcher structures for Leader
% and Assistant_leader.
%
% researcher structures take the form
% researcher(Surname, First_name, expertise(Level, Area)).
group([researcher(giles,will,expertise(3,engineering)),
researcher(ford,bertha,expertise(2,computing))],
researcher(mcelvey,bob,expertise(5,biology)),
researcher(pike,michelle,expertise(4,physics))).
group([researcher(davis,owen,expertise(4,mathematics)),
researcher(raleigh,sophie,expertise(4,physics))],
researcher(beattie,katy,expertise(5,engineering)),
researcher(deane,fergus,expertise(4,chemistry))).
group([researcher(hardy,dan,expertise(4,biology))],
researcher(mellon,paul,expertise(4,computing)),
researcher(halls,antonia,expertise(3,physics))).
group([researcher(doone,pat,expertise(2,computing)),
researcher(doone,burt,expertise(5,computing)),
researcher(doone,celia,expertise(4,computing)),
researcher(doone,norma,expertise(2,computing))],
researcher(maine,jack,expertise(3,biology)),
researcher(havilland,olive,expertise(5,chemistry))).
Given this information, write Prolog rules (and any additional predicates required) that can be used to return the following:
the first name and surname of any leader whose crew members number more than one and who all have the same surname. [4 marks]
This is the solution I presently have using recursion, though it's unnecessarily inefficient as for every member of the list, it compares that member to every other member. So, as the correct list is four members long, it returns 'jack maine' four times.
surname(researcher(S,_,_),S).
checkSurname([],Surname):-
Surname==Surname. % base case
checkSurname([Researcher|List],Surname):-
surname(Researcher,SameSurname),
Surname == SameSurname,
checkSurname(List,SameSurname).
q4(Forename,Surname):-
group(Crew,researcher(Surname,Forename,_),_),
length(Crew,Length),
Length > 1,
member(researcher(SameSurname,_,_),Crew),
checkSurname(Crew,SameSurname).
How could I do this without the duplicate results and without redundantly comparing each member to every other member each time? For every approach I've taken I am snagged each time with 'SameSurname' being left as a singleton, hence having to force use of it twice in the q4 predicate.
Current output
13 ?- q4(X,Y).
X = jack,
Y = maine ; x4
A compact and efficient solution:
q4(F, S) :-
group([researcher(First,_,_), researcher(Second,_,_)| Crew], researcher(S, F, _), _),
\+ (member(researcher(Surname, _, _), [researcher(Second,_,_)| Crew]), First \== Surname).
Example call (resulting in a single solution):
?- q4(X,Y).
X = jack,
Y = maine.
You are doing it more complicated than it has to be. Your q4/2 could be even simpler:
q4(First_name, Surname) :-
group(Crew, researcher(Surname, First_name, _E), _A),
length(Crew, Len), Len > 1,
all_same_surname(Crew).
Now you only need to define all_same_surname/1. The idea is simple: take the surname of the first crew member and compare it to the surnames of the rest:
all_same_surname([researcher(Surname, _FN, _E)|Rest]) :-
rest_same_surname(Rest, Surname).
rest_same_surname([], _Surname).
rest_same_surname([researcher(Surname, _FN, _E)|Rest), Surname) :-
rest_same_surname(Rest, Surname).
(Obviously, all_same_surname/1 fails immediately if there are no members of the crew)
This should be it, unless I misunderstood the problem statement.
?- q4(F, S).
F = jack,
S = maine.
How about that?
Note: The solution just takes the most straight-forward approach to answering the question and being easy to write and read. There is a lot of stuff that could be done otherwise. Since there is no reason not to, I used pattern matching and unification in the heads of the predicates, and not comparison in the body or extra predicates for extracting arguments from the compound terms.
P.S. Think about what member/2 does (look up its definition in the library, even), and you will see where all the extra choice points in your solution are coming from.
Boris did answer this question already, but I want to show the most concise solution I could come with. It's just for the educational purposes (promoting findall/3 and maplist/2):
q4(F, S) :-
group(Crew, researcher(S, F, _), _),
findall(Surname, member(researcher(Surname, _, _), Crew), Surnames),
Surnames = [ First, Second | Rest ],
maplist(=(First), [ Second | Rest ]).

SWI-Prolog predicate example part 2

Can someone please help me in transforming this to match this updated requirement?
Define a predicate strikeDuplicates(X,Y) that succeeds if and only the list Y would
be obtained if one were to remove the second and subsequent occurrences of each element
from list X. (You might read strikeDuplicates (X,Y) as list X without duplicates
is list Y.) The strikeDuplicates/2 predicate need not work well when X is an
unbound variable.
I asked a similar question two days ago asking this:
Define a predicate strike(X,Y,Z) that succeeds if and only if the list Z would be
obtained if one were to remove all occurrences of element X from list Y. The
strike/3 predicate need not work well when Y is an unbound variable.
No one helped me so I had to do it by myself. That answer was this:
strike( _ , [] , [] ) .
strike( X , [X|T] , Z ) :- strike(X,T,Z) .
strike( X , [A|T] , [A|Z] ) :- dif(X,A) , strike(X,T,Z) .
dif(X,A).
A simple solution that doesn't preserve order is:
strike_duplicates([], []).
strike_duplicates([X| Xs], List) :-
( member(X, Xs) ->
strike_duplicates(Xs, List)
; List = [X| Tail],
strike_duplicates(Xs, Tail)
).
To preserve order, you need to keep track of the elements found so far while you traverse the list. A solution would be:
strip_duplicates(List, Set) :-
strip_duplicates(List, [], Set).
strip_duplicates([], _, []).
strip_duplicates([X| Xs], Found, List) :-
( member(X, Found) ->
strip_duplicates(Xs, Found, List)
; List = [X| Tail],
strip_duplicates(Xs, [X| Found], Tail)
).
The predicate member/2 is usually either a built-in predicate or available as a library predicate. Check your Prolog system documentation if necessary.
Well, the easy way would be to use the built-in predicate setof/3, but I suspect that's not what your professor wants.
Think about the problem for a second or two. A clear problem statement is often helpful (and in Prolog is often the solution itself):
To make the source list a set (unique elements) instead of a bag (allows duplication), you'll have to
Iterate over the source list
Track items you've already seen (the 'visited' list)
Add each item to the visited list only if the visited list doesn't already contain it.
Once you've done that you've got the desired result.
Here's a hint: a very common prolog idiom is the use of helper predicates that carry with it an accumulator. Often the helper predicate has the same functor, but a different arity. For example, to sum the values in a list (sum/2) we can use a helper sum/3 that carries an accumulator, seeded with 0:
sum(Xs,N) :- sum(Xs,0,N).
sum([],S,S).
sum([N|Ns],T,S) :-
T1 is T+N,
sum(Ns,T1,S)
.
You'll notice how unfication with the result is deferred until the final value has been computed.
You need to do something like that but using as an accumulator an [empty] list that will be extended with the unique values you discover.
Another hint: the built-in predicate member/2 will check if a term is a member of a list. It's written
member(X,[X|Xs]).
member(X,[_|Xs]) :- member(X,Xs).
So member(2,[1,2,3]) is true whilst member(2,[1,3]) is false.
Conversely, one can use member/2 to successively return each element of a list via backtracking: member(X,[1,2,3]) produces
X = 1 ;
X = 2 ;
X = 3 ;
false
Given those two notions, you should be able to figure out the solution. Come back and show us your code and we can help you. There is one other little gotcha, but I'm sure you'll figure it out.

Resources