I am trying to figure out what the time complexity of my algorithm is, I have algorithm with binary search, which is in general O(log n), I know. But I search between two constants, namely x=1 and x = 2^31 - 1 (size of integer). I think that in the worst case my time complexity is log2(2^31) = 31, so binary search takes 31 steps in the worst case. However every step in binary search I call a function, which has O(n) runtime (just one loop of the size of the input). Will my algorithm simply be of order O(31n)=O(n)?
The input of my algorithm: a key, two arrays a and b of size n.
In code it will look something like this:
binarySearch(key, a, b)
min = 0, max = 2^31 - 1
mid = (min + max) / 2
while (min<=max) {
x = function(mid, a, b); //this function has O(n)
if (x==key) {
return mid;
} else if (x < key) {
min = mid + 1
} else {
max = mid - 1
}
mid = (min + max) / 2
}
return KEY_NOT_FOUND
I just want to be sure, please if you come with a time complexity (reduced ones) explain your answer.
Update
Yes, You are absolutely right.
In the worst case function() will be invoked 31 times, and each invocation requires time O(n), hence the running time of your algorithm is simply given by 31 * O(n) = O(n).
Solution for the original question where x = function(mid)
Your question is a bit fishy, the time complexity of your algorithm should be O(1).
One important point when we talk about the time complexity of an algorithm is that:
We always consider the time that the algorithm requires with respect to the size of it's input.
In the following snippet:
x = function(mid); //this function has O(n)
While function() may be a linear time function, but in your case, function() only takes input (mid) from the set {0, 1, ..., 230}, so in the worst case function() computes in time max{T(0), T(1), ..., T(230)} = T, which is a constant!
So in the worst case, your while loop will invoke function() 31 times, so in the worst case your algorithm runs in time 31 * T, which is a constant.
Note that the input of your algorithm is key, and the worst case running time of your algorithm is 31 * T, which is actually independent of the size of your input key! So the time complexity is O(1).
In your case, I don't think talking about time complexity in terms of big-O notation is appropriate. I would suggest you to talk about the numbers of computation steps required in the worst case.
Related
I saw some videos about O(log n) time complexity,
but then I tried a couple of binary search method on the Internet tutorial,
and I am more confused now.
In computer science, big O notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows.
An example binary search:
https://jsfiddle.net/Hoyly/mhynk7gp/3/
function binarySearch(sortedArray, key){
let start = 0;
let end = sortedArray.length - 1;
while (start <= end) {
let middle = Math.floor((start + end) / 2);
console.log('count',++count,sortedArray[middle]);
if (sortedArray[middle] === key) {
return middle;
} else if (sortedArray[middle] < key) {
start = middle + 1;
} else {
end = middle - 1;
}
}
return -1;
}
let count= 0;
console.log('first 1:');
let res1 = binarySearch([1,2,3,4,5,6,7,8],8);
console.log('first 2:');
let res2 = binarySearch([1,2,3,4,5,6,7,8],1);
console.log('answer:',res1,res2);
As you can see in the jsfiddle
If I try to find "1" in 8-length array
The method calling count is 3
2^3 = 8
It is how people call it is a O(log n) function
But If I try to find "8"
The calling count is 4
2^4 != 8
It is definitely not O(log n) definition from the worst case
The time complexity is O(log n), not log n without the big O. I won't explain the full meaning of big-O here; see the definition on Wikipedia for that.
Suffice to say that it only gives an upper bound on the growth rate of the runtime as n grows, and only when n is big enough. Even if n = 8 resulted in 1000 calls, the algorithm could still be O(log n).
The binary search here can do one extra step depending on which half of the array you are searching in. If it used Math.ceil instead of Math.floor then 8 would be found in three steps, while 1 would be found in four.
If we expand this to 128 items, then the last item would be found in 7 or 8 steps (again, depending on which half). In general, the real worst case for the steps taken would be log n + 1. However, for big O, we do not consider the constants, only the growth rate of the function. O(log n + 1) simplifies to O(log n). The same way how O(2n) is still O(n).
According to Wikipedia, partition-based selection algorithms such as quickselect have runtime of O(n), but I am not convinced by it. Can anyone explain why it is O(n)?
In the normal quick-sort, the runtime is O(n log n). Every time we partition the branch into two branches (greater than the pivot and lesser than the pivot), we need to continue the process in both branches, whereas quickselect only needs to process one branch. I totally understand these points.
However, if you think in the Binary Search algorithm, after we chose the middle element, we are also searching only one side of the branch. So does that make the algorithm O(1)? No, of course, the Binary Search Algorithm is still O(log N) instead of O(1). This is also the same thing as the search element in a Binary Search Tree. We only search for one side, but we still consider O(log n) instead of O(1).
Can someone explain why in quickselect, if we continue the search in one side of pivot, it is considered O(1) instead of O(log n)? I consider the algorithm to be O(n log n), O(N) for the partitioning, and O(log n) for the number of times to continue finding.
There are several different selection algorithms, from the much simpler quickselect (expected O(n), worst-case O(n2)) to the more complex median-of-medians algorithm (Θ(n)). Both of these algorithms work by using a quicksort partitioning step (time O(n)) to rearrange the elements and position one element into its proper position. If that element is at the index in question, we're done and can just return that element. Otherwise, we determine which side to recurse on and recurse there.
Let's now make a very strong assumption - suppose that we're using quickselect (pick the pivot randomly) and on each iteration we manage to guess the exact middle of the array. In that case, our algorithm will work like this: we do a partition step, throw away half of the array, then recursively process one half of the array. This means that on each recursive call we end up doing work proportional to the length of the array at that level, but that length keeps decreasing by a factor of two on each iteration. If we work out the math (ignoring constant factors, etc.) we end up getting the following time:
Work at the first level: n
Work after one recursive call: n / 2
Work after two recursive calls: n / 4
Work after three recursive calls: n / 8
...
This means that the total work done is given by
n + n / 2 + n / 4 + n / 8 + n / 16 + ... = n (1 + 1/2 + 1/4 + 1/8 + ...)
Notice that this last term is n times the sum of 1, 1/2, 1/4, 1/8, etc. If you work out this infinite sum, despite the fact that there are infinitely many terms, the total sum is exactly 2. This means that the total work is
n + n / 2 + n / 4 + n / 8 + n / 16 + ... = n (1 + 1/2 + 1/4 + 1/8 + ...) = 2n
This may seem weird, but the idea is that if we do linear work on each level but keep cutting the array in half, we end up doing only roughly 2n work.
An important detail here is that there are indeed O(log n) different iterations here, but not all of them are doing an equal amount of work. Indeed, each iteration does half as much work as the previous iteration. If we ignore the fact that the work is decreasing, you can conclude that the work is O(n log n), which is correct but not a tight bound. This more precise analysis, which uses the fact that the work done keeps decreasing on each iteration, gives the O(n) runtime.
Of course, this is a very optimistic assumption - we almost never get a 50/50 split! - but using a more powerful version of this analysis, you can say that if you can guarantee any constant factor split, the total work done is only some constant multiple of n. If we pick a totally random element on each iteration (as we do in quickselect), then on expectation we only need to pick two elements before we end up picking some pivot element in the middle 50% of the array, which means that, on expectation, only two rounds of picking a pivot are required before we end up picking something that gives a 25/75 split. This is where the expected runtime of O(n) for quickselect comes from.
A formal analysis of the median-of-medians algorithm is much harder because the recurrence is difficult and not easy to analyze. Intuitively, the algorithm works by doing a small amount of work to guarantee a good pivot is chosen. However, because there are two different recursive calls made, an analysis like the above won't work correctly. You can either use an advanced result called the Akra-Bazzi theorem, or use the formal definition of big-O to explicitly prove that the runtime is O(n). For a more detailed analysis, check out "Introduction to Algorithms, Third Edition" by Cormen, Leisserson, Rivest, and Stein.
Let me try to explain the difference between selection & binary search.
Binary search algorithm in each step does O(1) operations. Totally there are log(N) steps and this makes it O(log(N))
Selection algorithm in each step performs O(n) operations. But this 'n' keeps on reducing by half each time. There are totally log(N) steps.
This makes it N + N/2 + N/4 + ... + 1 (log(N) times) = 2N = O(N)
For binary search it is 1 + 1 + ... (log(N) times) = O(logN)
In Quicksort, the recursion tree is lg(N) levels deep and each of these levels requires O(N) amount of work. So the total running time is O(NlgN).
In Quickselect, the recurision tree is lg(N) levels deep and each level requires only half the work of the level above it. This produces the following:
N * (1/1 + 1/2 + 1/4 + 1/8 + ...)
or
N * Summation(1/i^2)
1 < i <= lgN
The important thing to note here is that i goes from 1 to lgN, but not from 1 to N and also not from 1 to infinity.
The summation evaluates to 2. Hence Quickselect = O(2N).
Quicksort does not have a big-O of nlogn - it's worst case runtime is n^2.
I assume you're asking about Hoare's Selection Algorithm (or quickselect) not the naive selection algorithm that is O(kn). Like quicksort, quickselect has a worst case runtime of O(n^2) (if bad pivots are chosen), not O(n). It can run in expectation time n because it's only sorting one side, as you point out.
Because for selection, you're not sorting, necessarily. You can simply count how many items there are which have any given value. So an O(n) median can be performed by counting how many times each value comes up, and picking the value that has 50% of items above and below it. It's 1 pass through the array, simply incrementing a counter for each element in the array, so it's O(n).
For example, if you have an array "a" of 8 bit numbers, you can do the following:
int histogram [ 256 ];
for (i = 0; i < 256; i++)
{
histogram [ i ] = 0;
}
for (i = 0; i < numItems; i++)
{
histogram [ a [ i ] ]++;
}
i = 0;
sum = 0;
while (sum < (numItems / 2))
{
sum += histogram [ i ];
i++;
}
At the end, the variable "i" will contain the 8-bit value of the median. It was about 1.5 passes through the array "a". Once through the entire array to count the values, and half through it again to get the final value.
Is the time complexity of the following code O(NV^2)?
for i from 1 to N:
for j from 1 to V:
for k from 1 to A[i]://max(A) = V
z = z + k
yeah,whenever we talk about O-notation, we always think about the upper-bound(OR the worst case).
So,the complexity for this code will be equal to
O(N*V*maximum_value_of_A)
=O(N*V*V) // since,maximum value of A=V,so third loop can maximally iterate from 1 to V---V times
=O(N*V^2).
For sure it is O(NV^2) as it means the code is never slower than that. Because max(A) = V, you can say the worst case would be when at every index of A there is V. If so, then the complexity can be limited to O(NV*V).
You can calculate very roughly that the complexity of the for k loop can be O(avg(A)). This allows us to say that the whole function is Omega(NV*avg(A)), where avg(A) <= V.
Theta notation (meaning asympthotical complexity) would can be stated like Theta(NV*O(V)), O(V) representing complexity of a function which will never grow faster than V, but is not constant.
Here is an algorithm for finding kth smallest number in n element array using partition algorithm of Quicksort.
small(a,i,j,k)
{
if(i==j) return(a[i]);
else
{
m=partition(a,i,j);
if(m==k) return(a[m]);
else
{
if(m>k) small(a,i,m-1,k);
else small(a,m+1,j,k);
}
}
}
Where i,j are starting and ending indices of array(j-i=n(no of elements in array)) and k is kth smallest no to be found.
I want to know what is the best case,and average case of above algorithm and how in brief. I know we should not calculate termination condition in best case and also partition algorithm takes O(n). I do not want asymptotic notation but exact mathematical result if possible.
First of all, I'm assuming the array is sorted - something you didn't mention - because that code wouldn't otherwise work. And, well, this looks to me like a regular binary search.
Anyway...
The best case scenario is when either the array is one element long (you return immediately because i == j), or, for large values of n, if the middle position, m, is the same as k; in that case, no recursive calls are made and it returns immediately as well. That makes it O(1) in best case.
For the general case, consider that T(n) denotes the time taken to solve a problem of size n using your algorithm. We know that:
T(1) = c
T(n) = T(n/2) + c
Where c is a constant time operation (for example, the time to compare if i is the same as j, etc.). The general idea is that to solve a problem of size n, we consume some constant time c (to decide if m == k, if m > k, to calculate m, etc.), and then we consume the time taken to solve a problem of half the size.
Expanding the recurrence can help you derive a general formula, although it is pretty intuitive that this is O(log(n)):
T(n) = T(n/2) + c = T(n/4) + c + c = T(n/8) + c + c + c = ... = T(1) + c*log(n) = c*(log(n) + 1)
That should be the exact mathematical result. The algorithm runs in O(log(n)) time. An average case analysis is harder because you need to know the conditions in which the algorithm will be used. What is the typical size of the array? The typical size of k? What is the mos likely position for k in the array? If it's in the middle, for example, the average case may be O(1). It really depends on how you use this.
According to Wikipedia, partition-based selection algorithms such as quickselect have runtime of O(n), but I am not convinced by it. Can anyone explain why it is O(n)?
In the normal quick-sort, the runtime is O(n log n). Every time we partition the branch into two branches (greater than the pivot and lesser than the pivot), we need to continue the process in both branches, whereas quickselect only needs to process one branch. I totally understand these points.
However, if you think in the Binary Search algorithm, after we chose the middle element, we are also searching only one side of the branch. So does that make the algorithm O(1)? No, of course, the Binary Search Algorithm is still O(log N) instead of O(1). This is also the same thing as the search element in a Binary Search Tree. We only search for one side, but we still consider O(log n) instead of O(1).
Can someone explain why in quickselect, if we continue the search in one side of pivot, it is considered O(1) instead of O(log n)? I consider the algorithm to be O(n log n), O(N) for the partitioning, and O(log n) for the number of times to continue finding.
There are several different selection algorithms, from the much simpler quickselect (expected O(n), worst-case O(n2)) to the more complex median-of-medians algorithm (Θ(n)). Both of these algorithms work by using a quicksort partitioning step (time O(n)) to rearrange the elements and position one element into its proper position. If that element is at the index in question, we're done and can just return that element. Otherwise, we determine which side to recurse on and recurse there.
Let's now make a very strong assumption - suppose that we're using quickselect (pick the pivot randomly) and on each iteration we manage to guess the exact middle of the array. In that case, our algorithm will work like this: we do a partition step, throw away half of the array, then recursively process one half of the array. This means that on each recursive call we end up doing work proportional to the length of the array at that level, but that length keeps decreasing by a factor of two on each iteration. If we work out the math (ignoring constant factors, etc.) we end up getting the following time:
Work at the first level: n
Work after one recursive call: n / 2
Work after two recursive calls: n / 4
Work after three recursive calls: n / 8
...
This means that the total work done is given by
n + n / 2 + n / 4 + n / 8 + n / 16 + ... = n (1 + 1/2 + 1/4 + 1/8 + ...)
Notice that this last term is n times the sum of 1, 1/2, 1/4, 1/8, etc. If you work out this infinite sum, despite the fact that there are infinitely many terms, the total sum is exactly 2. This means that the total work is
n + n / 2 + n / 4 + n / 8 + n / 16 + ... = n (1 + 1/2 + 1/4 + 1/8 + ...) = 2n
This may seem weird, but the idea is that if we do linear work on each level but keep cutting the array in half, we end up doing only roughly 2n work.
An important detail here is that there are indeed O(log n) different iterations here, but not all of them are doing an equal amount of work. Indeed, each iteration does half as much work as the previous iteration. If we ignore the fact that the work is decreasing, you can conclude that the work is O(n log n), which is correct but not a tight bound. This more precise analysis, which uses the fact that the work done keeps decreasing on each iteration, gives the O(n) runtime.
Of course, this is a very optimistic assumption - we almost never get a 50/50 split! - but using a more powerful version of this analysis, you can say that if you can guarantee any constant factor split, the total work done is only some constant multiple of n. If we pick a totally random element on each iteration (as we do in quickselect), then on expectation we only need to pick two elements before we end up picking some pivot element in the middle 50% of the array, which means that, on expectation, only two rounds of picking a pivot are required before we end up picking something that gives a 25/75 split. This is where the expected runtime of O(n) for quickselect comes from.
A formal analysis of the median-of-medians algorithm is much harder because the recurrence is difficult and not easy to analyze. Intuitively, the algorithm works by doing a small amount of work to guarantee a good pivot is chosen. However, because there are two different recursive calls made, an analysis like the above won't work correctly. You can either use an advanced result called the Akra-Bazzi theorem, or use the formal definition of big-O to explicitly prove that the runtime is O(n). For a more detailed analysis, check out "Introduction to Algorithms, Third Edition" by Cormen, Leisserson, Rivest, and Stein.
Let me try to explain the difference between selection & binary search.
Binary search algorithm in each step does O(1) operations. Totally there are log(N) steps and this makes it O(log(N))
Selection algorithm in each step performs O(n) operations. But this 'n' keeps on reducing by half each time. There are totally log(N) steps.
This makes it N + N/2 + N/4 + ... + 1 (log(N) times) = 2N = O(N)
For binary search it is 1 + 1 + ... (log(N) times) = O(logN)
In Quicksort, the recursion tree is lg(N) levels deep and each of these levels requires O(N) amount of work. So the total running time is O(NlgN).
In Quickselect, the recurision tree is lg(N) levels deep and each level requires only half the work of the level above it. This produces the following:
N * (1/1 + 1/2 + 1/4 + 1/8 + ...)
or
N * Summation(1/i^2)
1 < i <= lgN
The important thing to note here is that i goes from 1 to lgN, but not from 1 to N and also not from 1 to infinity.
The summation evaluates to 2. Hence Quickselect = O(2N).
Quicksort does not have a big-O of nlogn - it's worst case runtime is n^2.
I assume you're asking about Hoare's Selection Algorithm (or quickselect) not the naive selection algorithm that is O(kn). Like quicksort, quickselect has a worst case runtime of O(n^2) (if bad pivots are chosen), not O(n). It can run in expectation time n because it's only sorting one side, as you point out.
Because for selection, you're not sorting, necessarily. You can simply count how many items there are which have any given value. So an O(n) median can be performed by counting how many times each value comes up, and picking the value that has 50% of items above and below it. It's 1 pass through the array, simply incrementing a counter for each element in the array, so it's O(n).
For example, if you have an array "a" of 8 bit numbers, you can do the following:
int histogram [ 256 ];
for (i = 0; i < 256; i++)
{
histogram [ i ] = 0;
}
for (i = 0; i < numItems; i++)
{
histogram [ a [ i ] ]++;
}
i = 0;
sum = 0;
while (sum < (numItems / 2))
{
sum += histogram [ i ];
i++;
}
At the end, the variable "i" will contain the 8-bit value of the median. It was about 1.5 passes through the array "a". Once through the entire array to count the values, and half through it again to get the final value.