How to saturare Point Cloud Material in Three.js - three.js

I've a point cloud object in Three.js with thousands of 2d geo location points. They are laying on the same z plane.
Currently, with using normal blending with semitransparent points, I can achieve the first result of the image below, blending the colors of the overlapping points to achieve an alpha value of 1.
I'm interested to achieve the saturation of the second image where overlapping points saturate to white. Is it possible using only blending? or I need something else like Effect Composer?
Thanks

Related

Using RGB images and PointCloud, how to generate depth map from the PointClouds? (python)

I am working on fusing Lidar and Camera images in order to perform a classification object algorithm using CNN.
I want to use the KITTI Dataset which provide synchronized lidar and rgb image data. Lidar are 3D-scanners, so the output is a 3D Point Cloud.
I want to use depth information from point cloud as a channel for the CNN. But I have never work with point cloud so I am asking for some help. Is projecting the point cloud into the camera image plane (using projection matrix provide by Kitti) will give me the depth map that I want? Is Python libray pcl useful or I should move to c++ libraries?
If you have any suggestions, thanks you in advance
I'm not sure what projection matrix provide by Kitti includes, so the answer is it depends. If this projection matrix only contains a transformation matrix, you cannot generate depth map from it. The 2D image has distortion that comes from the 2D camera and the point cloud usually doesn't have distortion, so you cannot "precisely" map point cloud to rgb image without intrinsic and extrinsic parameters.
PCL is not required to do this.
Depth map essentially is mapping depth value to rgb image. You can treat each point in point cloud(each laser of lider) as a pixel of the rgb image. Therefore, I think all you need to do is finding which point in point cloud corresponding to the first pixel(top left corner) of the rgb image. Then read the depth value from point cloud based on rgb image resolution.
You have nothing to do with camera. This is all about point cloud data. Lets say you have 10 million of points and each point has x,y,z in meters. If the data is not in meters first convert it. Then you need the position of the lidar. When you subtract position of car from all the points one by one, you will take the position of lidar to the (0,0,0) point, then you can just print the point on a white image. The rest is simple math, there may be many ways to do it. First that comes to my mind: think rgb as binary numbers. Lets say 1cm is scaled to change in 1 blue, 256cm change equals to change in 1 green and 256x256 which is 65536 cm change equals change in 1 red. We know that cam is (0,0,0) if rgb of the point is 1,0,0 then that means 256x256x1+0x256+0x1=65536 cm away from the camera. This could be done in C++. Also you can use interpolation and closest point algorithms to fill blanks if there are

Creating Heatmap Over 3D Model From Vector 3 Point Data

I am attempting to render a flat, dynamically created heatmap on top of a 3D model that is loaded from an OBJ (or STL).
I am currently loading and rendering an OBJ with Three.js. I have vector3 points that I am currently drawing as simple red cubes (image below). These data points are all raycasted to my OBJs mesh and are lying on the surface. The vector3 points are loaded from an external data source and will change depending on what data is being viewed/collected.
I would like to render my vector3 point data into a heatmap on the surface of my OBJ. Here are some examples illustrating the type of visual effects I am trying to achieve:
I feel like vertex coloring is the method of achieving this, but my issue is that my OBJ model does not have enough tessellation to do this. As you can see many red dots fall on each face. I am struggling to find a way to draw over my object's mesh with colors exactly where my red point data is. I was assuming I would need to convert my random vector3 points into a mesh, but cannot find a method to do so.
I've looked at the possibility of generating a texture, but 1) I do not have a UV map for my OBJs and do not see a way to programmatically generate them and 2) I am a bit lost on how I would correlate vector3 point data to UV points.
I've looked at using shaders, but my vector3 point data appears to be too large for using a shader (could be hundreds of thousands of points). I also feel it is not the right approach to render the heatmap every frame and would rather only render it once on load.
I've looked into isosurfaces with point clouds and the marching cubes algorithm, but I didn't think this was the right direction since only my data is a bit like a point cloud, and I am unsure as to how I would keep this smooth along the surface of my OBJ mesh.
Although I would prefer to keep everything in JavaScript for viewing in the browser, I am open to doing server side processing in any language/program with REST so long as it can be automated without human intervention, and pushed back to the browser for rendering.
Any suggestions or guidance is appreciated.
I'm only guessing but it seems like first you need to have UV coordinates that map every triangle to a texture. Rather than do this by hand I'd suggest using a modeling package. Most modeling packages have some way of automatically and uniformly mapping every triangle to a texture. For example in Blender
Next to put the heatmap in the texture by computing which triangles are affected by each dot (your raycasting), looking up their texture coordinates, projecting that dot into texture space and then putting the colors in that part of the texture. I'm only guessing that you need to not just do exact points but probably need to consider adjacent triangles since some heat info that hits near the edge of a triangle needs to bleed over into the adjacent triangle but that adjacent triangle might be using a completely different part of the texture.

ThreeJS - Scale texture's size down (no repeat - using UV-Coords)

Hello i am new to ThreeJS and texture mapping,
Let's say I have a 3D-Plane with the size of (1000x1000x1). When I apply a texture to it, it will be repeated or it will be scaled, to atleast filling the full plane.
What I try to achieve is, to change the scaling of the picture on the plane at runtime. I want the Image to get smaller and stop fitting the full plane.
I know there is a way to map each face to a part of a picture, but is it also possible to map it to a negative number in the picture, so it will be transparent?
My question is:
I UV-Mapped a Model in Blender and imported it with the UV-Coords into my ThreeJS-Code. Now i need to scale the texture down, like described before. Do I have to remap the UV-Cords or do i have to manipulate the image and add an transparent edge?
Further, will I be able on the same way to move the image on the picture?
I already achieved this kind of usage in java3d by manipulating bufferedImages and drawing them onto transparent ones. I am not sure this will be possible using javascript, so i want to know if it is possible by texture-mapping.
Thank you for your time and your suggestions!
This can be done using mapping the 3d -plane to a canvas ,where the image is drawn (fabric.js can be used for canvas drawings).Inshort set the canvas as texture for the 3d model
yourmodel.material.map = document.getElementById("yourCanvas");
Hope it helps :)
Yes. In THREE, there are some controls on the texture object..
texture.repeat, and texture.offset .. they are both Vector2()s.
To repeat the texture twice you can do texture.repeat.set(2,2);
Now if you just want to scale but NOT repeat, there is also the "wrapping mode" for the texture.
texture.wrapS (U axis) and texture.wrapT (V axis) and these can be set to:
texture.wrapS = texture.wrapT = THREE.ClampToEdgeWrapping;
This will make the edge pixels of the texture extend off to infinity when sampling, so you can position a single small texture, anywhere on the surface of your uv mapped object.
https://threejs.org/docs/#api/textures/Texture
Between those two options (including texture.rotation) you can position/repeat a texture pretty flexibly.
If you need something even more complex.. like warping the texture or changing it's colors, you may want to change the UV's in your modeller, or draw your texture image into a canvas, modify the canvas, and use the canvas as your texture image, as described in ArUns answer. Then you can modify it at runtime as well.

Google Maps Polygon Representation

I used google maps to make a project that records flood incident in a certain area. I used polygons to represent those floods, since the project is for planning purposes it is required of us to output all the historical flood data into a single map. My problem is if I simply just output all polygons, it would look messy and cluttered. So I was wondering what method I could use to represent these polygons in a better fashion. We were advised to use heatmaps, but I can't seem to find tutorials on how to make polygons into heatmaps. Any suggestions would be appreciated. Thanks!
To turn a polygon into a heatmap, render the polygons in black with high transparency into a white bitmap. This should result in a grayscale image, which will be darker where many polygons overlap. Then convert the gray values of the bitmap into the hue value of a corresponding semi-transparent color bitmap.
Why did the rendering look messy? Did you try rendering filled polygons with high transparency and no borderline? That should result in areas that are more prone to flooding being more "highlighted".

How to generate one texture from N textures?

Let's say I have N pictures of an object, taken from N know positions. I also have the 3D geometry of the object, and I know all the characteristics of both the camera and the lens.
I want to generate a unique giant picture from the N pictures I have, so that it can be mapped/projected onto the object surface.
Does anybody knows where to start? Articles, references, books?
Not sure if it helps you directly, but these guys have some amazing demos of some related techniques: http://grail.cs.washington.edu/projects/videoenhancement/videoEnhancement.htm.
Generate texture-mapping coords for your geometry
Generate a big blank texture
For each pixel
Figure out the point on the geometry it maps to
Figure out the pixel in each image that projects onto this point
Colour the pixel with a weighted blend of all these pixels, weighted by how much the surface normal is facing the corresponding camera and ignoring those images where there's another piece of geometry between the point and the camera
Apply your completed texture to the geometry
Google up "shadow mapping", as the same problem is solved during that process (images of the scene as seen from some known points are projected onto the 3D geometry in the scene). The problem is well-understood and there is plenty of code.
I'd suspect that this can be done using some variation of projection maps mixed with image reconstruction.
Have a look at cubemapping. It may be useful. You may want to project another convex shape to the cube and use the resulting texture as a conventional cubemap texture.

Resources