Why does accessing coefficients following estimation with nl require slightly different syntax than for other estimation commands? - syntax

Following most estimation commands in Stata (e.g. reg, logit, probit, etc.) one may access the estimates using the _b[ParameterName] syntax (or the synonymous _coef[ParameterName]). For example:
regress y x
followed by
di _b[x]
will display the estimate of the coefficient of x. di _b[_cons] will display the coefficient of the estimated intercept (assuming the regress command was successful), etc.
But if I use the nonlinear least squares command nl I (seemingly) have to do something slightly different. Now (leaving aside that for this example model there is absolutely no need to use a NLLS regression):
nl (y = {_cons} + {x}*x)
followed by (notice the forward slash)
di _b[/x]
will display the estimate of the coefficient of x.
Why does accessing parameter estimates following nl require a different syntax? Are there subtleties to be aware of?

"leaving aside that for this example model there is absolutely no need to use a NLLS regression": I think that's what you can't do here....
The question is about why the syntax is as it is. That's a matter of logic and a matter of history. Why a particular syntax was chosen is ultimately a question for the programmers at StataCorp who chose it. Here is one limited take on your question.
The main syntax for regression-type models grows out of a syntax designed for linear regression models in which by default the parameters include an intercept, as you know.
The original syntax for nonlinear regression models (in the sense of being estimated by nonlinear least-squares) matches a need to estimate a bundle of parameters specified by the user, which need not include an intercept at all.
Otherwise put, there is no question of an intercept being a natural default; no parameterisation is a natural default and each model estimated by nl is sui generis.
A helpful feature is that users can choose the names they find natural for the parameters, within the constraints of what counts as a legal name in Stata, say alpha, beta, gamma, a, b, c, etc. If you choose _cons for the intercept in nl that is a legal name but otherwise not special and just your choice; nl won't take it as a signal that it should flip into using regress conventions.
The syntax you cite is part of what was made possible by a major redesign of nl but it is consistent with the original philosophy.
That the syntax is different because it needs to be may not be the answer you seek, but I guess you'll get a fuller answer only from StataCorp; developers do hang out on Statalist, but they don't make themselves visible here.

Related

Generate a Random number in Uppaal

My question is Can I generate a random number in Uppaal?
I would like to generate a number from a range of values. Even more, I would like to generate not just integers I would like to generate double values as well.
for example: double [7.25,18.3]
I found this question that were talking about the same. I tried it.
However, I got this error: syntax error unexpected T_SELECT.
It doesn't work. I'm pretty new in Uppaal world, I would appreciate any help that you can provide me.
Regards,
This is a common and misunderstood question in Uppaal.
Simple answer:
double val; // declaration
val = random(18.3-7.25)+7.25; // use in update, works in SMC (Uppaal v4.1)
Verbose answer:
Uppaal supports symbolic analysis as well as statistical and the treatment and possibilities are radically different. So one has to decide first what kind of analysis is needed. Usually one starts with simple symbolic analysis and then augment with stochastic features, sometimes stochastic behavior needs also to be checked symbolically.
In symbolic analysis (queries A[], A<>, E<>, E[] etc), random is synonymous with non-deterministic, i.e. if the model contains some "random" behavior, then verification should check all of them any way. Therefore such behavior is modelled as non-deterministic choices between edges. It is easy to setup a set of edges over an integer range by using select statement on the edge where a temporary variable is declared and its value can be used in guards, synchronization and update. Symbolic analysis supports only integer data types (no floating point types like double) and continuous ranges over clocks (specified by constraints in guards and invariants).
Statistical analysis (via Monte-Carlo simulations, queries like Pr[...](<> p), E[...](max: var), simulate, etc) supports double types and floating point functions like sin, cos, sqrt, random(MAX) (uniform distribution over [0, MAX)), random_normal(mean, dev) etc. in addition to int data types. Clock variables can also be treated as floating point type, except that their derivative is set to 1 by default (can be changed in the invariants which allow ODEs -- ordinary differential equations).
It is possible to create models with floating point operations (including random) and still apply symbolic analysis provided that the floating point variables do not influence/constrain the model behavior, and act merely as a cost function over the state space. Here are systematic rules to achieve this:
a) the clocks used in ODEs must be declared of hybrid clock type.
b) hybrid clock and double type variables cannot appear in guard and invariant constraints. Only ODEs are allowed over the hybrid clocks in the invariant.

How to recognize variables that don't affect the output of a program?

Sometimes the value of a variable accessed within the control-flow of a program cannot possibly have any effect on a its output. For example:
global var_1
global var_2
start program hello(var_3, var_4)
if (var_2 < 0) then
save-log-to-disk (var_1, var_3, var_4)
end-if
return ("Hello " + var_3 + ", my name is " + var_1)
end program
Here only var_1 and var_3 have any influence on the output, while var_2 and var_4 are only used for side effects.
Do variables such as var_1 and var_3 have a name in dataflow-theory/compiler-theory?
Which static dataflow analysis techniques can be used to discover them?
References to academic literature on the subject would be particularly appreciated.
The problem that you stated is undecidable in general,
even for the following very narrow special case:
Given a single routine P(x), where x is a parameter of type integer. Is the output of P(x) independent of the value of x, i.e., does
P(0) = P(1) = P(2) = ...?
We can reduce the following still undecidable version of the halting problem to the question above: Given a Turing machine M(), does the program
never stop on the empty input?
I assume that we use a (Turing-complete) language in which we can build a "Turing machine simulator":
Given the program M(), construct this routine:
P(x):
if x == 0:
return 0
Run M() for x steps
if M() has terminated then:
return 1
else:
return 0
Now:
P(0) = P(1) = P(2) = ...
=>
M() does not terminate.
M() does terminate
=> P(x) = 1 for a sufficiently large x
=> P(x) != P(0) = 0
So, it is very difficult for a compiler to decide whether a variable actually does not influence the return value of a routine; in your example, the "side effect routine" might manipulate one of its values (or even loop infinitely, which would most definitely change the return value of the routine ;-)
Of course overapproximations are still possible. For example, one might conclude that a variable does not influence the return value if it does not appear in the routine body at all. You can also see some classical compiler analyses (like Expression Simplification, Constant propagation) having the side effect of eliminating appearances of such redundant variables.
Pachelbel has discussed the fact that you cannot do this perfectly. OK, I'm an engineer, I'm willing to accept some dirt in my answer.
The classic way to answer you question is to do dataflow tracing from program outputs back to program inputs. A dataflow is the connection of a program assignment (or sideeffect) to a variable value, to a place in the application that consumes that value.
If there is (transitive) dataflow from a program output that you care about (in your example, the printed text stream) to an input you supplied (var2), then that input "affects" the output. A variable that does not flow from the input to your desired output is useless from your point of view.
If you focus your attention only the computations involved in the dataflows, and display them, you get what is generally called a "program slice" . There are (very few) commercial tools that can show this to you.
Grammatech has a good reputation here for C and C++.
There are standard compiler algorithms for constructing such dataflow graphs; see any competent compiler book.
They all suffer from some limitation due to Turing's impossibility proofs as pointed out by Pachelbel. When you implement such a dataflow algorithm, there will be places that it cannot know the right answer; simply pick one.
If your algorithm chooses to answer "there is no dataflow" in certain places where it is not sure, then it may miss a valid dataflow and it might report that a variable does not affect the answer incorrectly. (This is called a "false negative"). This occasional error may be satisfactory if
the algorithm has some other nice properties, e.g, it runs really fast on a millions of code. (The trivial algorithm simply says "no dataflow" in all places, and it is really fast :)
If your algorithm chooses to answer "yes there is a dataflow", then it may claim that some variable affects the answer when it does not. (This is called a "false positive").
You get to decide which is more important; many people prefer false positives when looking for a problem, because then you have to at least look at possibilities detected by the tool. A false negative means it didn't report something you might care about. YMMV.
Here's a starting reference: http://en.wikipedia.org/wiki/Data-flow_analysis
Any of the books on that page will be pretty good. I have Muchnick's book and like it lot. See also this page: (http://en.wikipedia.org/wiki/Program_slicing)
You will discover that implementing this is pretty big effort, for any real langauge. You are probably better off finding a tool framework that does most or all this for you already.
I use the following algorithm: a variable is used if it is a parameter or it occurs anywhere in an expression, excluding as the LHS of an assignment. First, count the number of uses of all variables. Delete unused variables and assignments to unused variables. Repeat until no variables are deleted.
This algorithm only implements a subset of the OP's requirement, it is horribly inefficient because it requires multiple passes. A garbage collection may be faster but is harder to write: my algorithm only requires a list of variables with usage counts. Each pass is linear in the size of the program. The algorithm effectively does a limited kind of dataflow analysis by elimination of the tail of a flow ending in an assignment.
For my language the elimination of side effects in the RHS of an assignment to an unused variable is mandated by the language specification, it may not be suitable for other languages. Effectiveness is improved by running before inlining to reduce the cost of inlining unused function applications, then running it again afterwards which eliminates parameters of inlined functions.
Just as an example of the utility of the language specification, the library constructs a thread pool and assigns a pointer to it to a global variable. If the thread pool is not used, the assignment is deleted, and hence the construction of the thread pool elided.
IMHO compiler optimisations are almost invariably heuristics whose performance matters more than effectiveness achieving a theoretical goal (like removing unused variables). Simple reductions are useful not only because they're fast and easy to write, but because a programmer using a language who understand basics of the compiler operation can leverage this knowledge to help the compiler. The most well known example of this is probably the refactoring of recursive functions to place the recursion in tail position: a pointless exercise unless the programmer knows the compiler can do tail-recursion optimisation.

constrained regression with many variables

I have around 200 dummies, and wish to run a constrained OLS regression where I impose that the sum of all coefficients on the dummies is equal to 1.
One option is to type:
constraint define 1 dummy_1+dummy_2 +...+dummy_200=1
cnsreg y x_1 x_2 dummy_1-dummy_200, c(1)
...but typing the constraint out would obviously be very painful.
Is there a way to quickly define such a large constraint? The matrix form would be very quick and straightforward, but after much reading online and in Stata guide, it is not clear to me how to do constraints in matrix form, and if they are even possible.
There are at least two sides to this, how to do it and whether it will work in any statistical sense.
How to do it seems easier than you fear as the difficult bit is just inserting "+" signs between the variable names, and that's string manipulation. Something like
unab myvars : dummy_*
local myvars : subinstr local myvars " " "+", all
mac li
constraint 1 `myvars' = 1
should get you started. The macro list is so you can see what you did, especially if it is not what you want.
Whether it will work for you statistically is outside the scope of this forum, but if that's the only constraint note that it's consistent with all kinds of negative and positive coefficients. Perhaps there are special features of your problem that make it a natural constraint, but my intuition is that such a model will be hard to estimate.
I would take a completely different approach. Such constraints typically occur when trying out a different coding scheme for a set of indicator variables. If that is the case then I would use Stata's factor variables, combined with margins with the contrast operators.

Maximum difference between columns using relational algebra

Is it possible to obtain the maximum difference between two columns (for example starting and ending weights)?
Right now I'm leaning towards no as this would require a new column with the difference between the two columns for each row, then taking the max of that. Doing it the way I orginally intended doesn't work either since arithmetic operations are not allowed in the conditions of select operations (e.g. SIGMA (c1 - c2 < c3 - c4)(Table) is not allowed).
Disclosure: this is part of a homework question.
It can be done, exactly in the way you planned, but you need generalized projection for that. The generalized projection is the operator
Π(E1, E2,..., En)R
where R is a relation, and E1...En are expressions in the form a⊕b, where a and b are attributes of R or constants, and ⊕ is an arbitrary binary operator between them. The result is a relation with attributes E1...En.
This would allow you to project the differences into a new relation (R' := Π(x-y)R), then find the maximum on that, just as you planned.
If we're not allowed to use generalized projection, then I think we have no means to actually subtract an attribute from another, or to actually calculate anything from them, as the definition of projection allow only attribute names, and the definition of selection allow only expressions of the form aθb where a and b are attributes or constants and θ is a binary relational operator (this is logical, in its way, because if we have a relation R(X,Y), then we have no idea about the type of X or Y, making operations on them quite meaningless).
I think generalized projection is a great extension to relational algebra. It's obviously immensely useful in real life, and it can be defended even from a more scientific point of view: if we allow binary conditional operators on the values like "X > 50", then we made assumptions on the type already, rendering that point kind of moot. Your instructor may disagree, though.
If you're looking to do this in the real world, you should be able to do this with a subquery (or a view, which amounts to much the same thing), something like:
select max (diff) from (
select high - low as diff from blah blah blah
)
Whether this applies to the abstract world of relational algebra, I couldn't say. I'm too busy fixing those damn real-world problems :-)

Iterative solving for unknowns in a fluids problem

I am a Mechanical engineer with a computer scientist question. This is an example of what the equations I'm working with are like:
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
The situation is this:
I need r to find x, but I need x to find z. I also need x to find f which is a part of finding z. So I guess a value for x, and then I use that value to find r and f. Then I go back and use the value I found for r and f to find x. I keep doing this until the guess and the calculated are the same.
My question is:
How do I get the computer to do this? I've been using mathcad, but an example in another language like C++ is fine.
The very first thing you should do faced with iterative algorithms is write down on paper the sequence that will result from your idea:
Eg.:
x_0 = ..., f_0 = ..., r_0 = ...
x_1 = ..., f_1 = ..., r_1 = ...
...
x_n = ..., f_n = ..., r_n = ...
Now, you have an idea of what you should implement (even if you don't know how). If you don't manage to find a closed form expression for one of the x_i, r_i or whatever_i, you will need to solve one dimensional equations numerically. This will imply more work.
Now, for the implementation part, if you never wrote a program, you should seriously ask someone live who can help you (or hire an intern and have him write the code). We cannot help you beginning from scratch with, eg. C programming, but we are willing to help you with specific problems which should arise when you write the program.
Please note that your algorithm is not guaranteed to converge, even if you strongly think there is a unique solution. Solving non linear equations is a difficult subject.
It appears that mathcad has many abstractions for iterative algorithms without the need to actually implement them directly using a "lower level" language. Perhaps this question is better suited for the mathcad forums at:
http://communities.ptc.com/index.jspa
If you are using Mathcad, it has the functionality built in. It is called solve block.
Start with the keyword "given"
Given
define the guess values for all unknowns
x:=2
f:=3
r:=2
...
define your constraints
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
calculate the solution
find(x, y, z, r, ...)=
Check Mathcad help or Quicksheets for examples of the exact syntax.
The simple answer to your question is this pseudo-code:
X = startingX;
lastF = Infinity;
F = 0;
tolerance = 1e-10;
while ((lastF - F)^2 > tolerance)
{
lastF = F;
X = ?;
R = ?;
F = FunctionOf(X,R);
}
This may not do what you expect at all. It may give a valid but nonsense answer or it may loop endlessly between alternate wrong answers.
This is standard substitution to convergence. There are more advanced techniques like DIIS but I'm not sure you want to go there. I found this article while figuring out if I want to go there.
In general, it really pays to think about how you can transform your problem into an easier problem.
In my experience it is better to pose your problem as a univariate bounded root-finding problem and use Brent's Method if you can
Next worst option is multivariate minimization with something like BFGS.
Iterative solutions are horrible, but are more easily solved once you think of them as X2 = f(X1) where X is the input vector and you're trying to reduce the difference between X1 and X2.
As the commenters have noted, the mathematical aspects of your question are beyond the scope of the help you can expect here, and are even beyond the help you could be offered based on the detail you posted.
However, I think that even if you understood the mathematics thoroughly there are computer science aspects to your question that should be addressed.
When you write your code, try to make organize it into functions that depend only upon the parameters you are passing in to a subroutine. So write a subroutine that takes in values for y, z, and r and returns you x. Make another that takes in f,L,D,G and returns z. Now you have testable routines that you can check to make sure they are computing correctly. Check the input values to your routines in the routines - for instance in computing x you will get a divide by 0 error if you pass in a 0 for r. Think about how you want to handle this.
If you are going to solve this problem interatively you will need a method that will decide, based on the results of one iteration, what the values for the next iteration will be. This also should be encapsulated within a subroutine. Now if you are using a language that allows only one value to be returned from a subroutine (which is most common computation languages C, C++, Java, C#) you need to package up all your variables into some kind of data structure to return them. You could use an array of reals or doubles, but it would be nicer to choose to make an object and then you can reference the variables by their name and not their position (less chance of error).
Another aspect of iteration is knowing when to stop. Certainly you'll do so when you get a solution that converges. Make this decision into another subroutine. Now when you need to change the convergence criteria there is only one place in the code to go to. But you need to consider other reasons for stopping - what do you do if your solution starts diverging instead of converging? How many iterations will you allow the run to go before giving up?
Another aspect of iteration of a computer is round-off error. Mathematically 10^40/10^38 is 100. Mathematically 10^20 + 1 > 10^20. These statements are not true in most computations. Your calculations may need to take this into account or you will end up with numbers that are garbage. This is an example of a cross-cutting concern that does not lend itself to encapsulation in a subroutine.
I would suggest that you go look at the Python language, and the pythonxy.com extensions. There are people in the associated forums that would be a good resource for helping you learn how to do iterative solving of a system of equations.

Resources