Grid sweeps (traversal) represented with flat vector - algorithm

I have a grid represented with a flat vector, that is:
-------------
| 6 | 7 | 8 |
-------------
| 3 | 4 | 5 |
-------------
| 0 | 1 | 2 |
-------------
I access the elements with the indices from 0 to grid.size()-1. I want to implement the Fast Sweeping Method. The main purpose of that method is that it does sweeps, that is, grid traversals in specific directions. For the 2D case:
Sweep 1: Right-top
for [row = 0 : nrows-1]
for [col = 0 : ncols-1] --> Result: 0 1 2 3 4 5 6 7 8
Sweep 2: Left-top
for [row = 0 : nrows-1]
for [col = ncols-1 : 0] --> Result: 2 1 0 5 4 3 8 7 6
Sweep 3: Right-bottom
for [row = nrows-1 : 0]
for [col = 0 : ncols-1] --> Result: 6 7 8 3 4 5 0 1 2
Sweep 4: Left-bottom
for [row = nrows-1 : 0]
for [col = ncols-1 : 0] --> Result: 8 7 6 5 4 3 2 1 0
And then computing idx = row*ncols + col.
This implementation is straightforward and its generalization to n dimensions as well, when just nesting for loops. However, I am working on a n-dimensional implementation and I am trying to generalize it in just 2 loops:
while (keepSweeping)
++sweep;
for (idx = init, idx == end, idx += inc)
// Traverse the grid
Computing init, end and inc is being really challenging. Also inc depends on ncols and changes dynamically. For instance, for sweep 2 inc = -1, but every ncols times inc = -1 + 2*ncols, so I achieve to go from 0 to 5.
Any help on how to do it? I am focusing firstly on the 2D case.
EDIT: I saw these threads http://www.cplusplus.com/forum/beginner/68434/ variable nested for loops that suggest to implement the loops recursively. Since I am looking for maximum performance, do you think that is a good idea?
Thank you!

Ok here is my try to answer your problem in the 2D case, using only one loop. Hopefully this is not too far from what you are looking for:
// ****** INITIALIZATION ******
int ncols = 4; // number of columns
int nrows = 3; // number of rows
boolean right = true; // direction of sweep on horizontal axis
boolean top = true; // direction of sweep on vertical axis
int counter = 0; // number of positions explored
if (right) {
colIterator = 0;
}
else {
colIterator = ncols - 1;
}
if (top) {
rowIterator = 0;
}
else {
rowIterator = nrows - 1;
}
// ****** CONTINUATION CONDITION ******
while (counter != nrows*ncols) {
// ****** DO SOMETHING ******
System.out.println(rowIterator*ncols + colIterator);
// ****** PROGRESSION PHASE ******
counter++;
// Have we completed a row?
if ((counter % ncols) == 0) {
if (top) {
// We have to move up
rowIterator++;
}
else {
// we have to move down
rowIterator--;
}
if (right) {
colIterator = 0;
}
else {
colIterator = ncols - 1;
}
}
else {
// We have not yet completed a row
if (right) {
// We have to move right
colIterator++;
}
else {
// or left
colIterator--;
}
}
}
Note: this code has been tested with Groovy.
A bit of upper-level explanation: it works with one loop because in 2D, we can find a global metric of the advancement of the work we want to do (here this metric is the counter variable) and can use the metric to determine, at each iteration of the loop, if we have completed a row (or not) by using the modulus operation.
I don't think it is mathematically possible to generalize this algorithm to upper dimensions (i.e. above 2) with only one loop, because there will be no mathematical operator that will tell us if we have finished part of the work on one given dimension and should start working on the outter dimensions (here, the modulus tells us that we have to modify the rowIterator because we have reached a border of the grid, but in dimension 3 or above 3, what would be the mathematical operator to use?).
Good luck and please post what you find, it's an interesting challenge.

Related

Rotate Image - Java

I am doing a question where, given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation. This my my code:
class Solution {
public void rotate(int[][] matrix) {
int size = matrix.length;
for(int i = 0 ; i < matrix.length; i++){
for(int y = 0 ; y < matrix[0].length ; y++){
matrix[i][y] = matrix[size - y - 1][i];
System.out.println(size - y - 1);
System.out.println(i);
System.out.println("");
}
}
}
}
This is the input and output results:
input matrix: [[1,2,3],[4,5,6],[7,8,9]]
output matrix: [[7,4,7],[8,5,4],[9,4,7]]
expected matrix: [[7,4,1],[8,5,2],[9,6,3]]
I do not really understand why I am getting duplicates in my output such as the number seven 3 times. On my System.out.println statement, I am getting the correct list of indexes :
2
0
1
0
0
0
2
1
1
1
0
1
2
2
What can be wrong?
I have found a solution. I will try my best to explain it.
Let us consider an array of size 4.
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Now lets look at the numbers present only on the outside of the array:
1 2 3 4
5 8
9 12
13 14 15 16
We will proceed by storing the first element 1 in a temporary variable. Next we will replace 1 by 13, 13 by 16, 16 by 4 and at last 4 by 1 (whose value we already stored in the temporary variable).
We will do the same for all the elements of the first row.
Here is a pseudocode if you just want to rotate this outer ring, lets call it an outer ring:
for i = 0 to n-1
{
temp = A[0][i];
A[0][i] = A[n-1-i][0];
A[n-1-i][0] = A[n-1-0][n-1-i];
A[n-1-0][n-1-i] = A[i][n-1-0];
A[i][n-1-0] = temp;
}
The code runs for a total of n times. Once for each element of first row. Implement this code an run it. You will see only the outer ring is rotated. Now lets look at the inner ring:
6 7
10 11
Now the loop in pseudocode only needs to run for 2 times and also our range of indexes has decreased. For outer ring, the loop started from i = 0 and ended at i = n-1. However, for the inner ring the for loop need to run from i = 1 to i = n-2.
If you had an array of size n, to rotate the xth ring of the array, the loop needs to run from i = x to i = n-1-x.
Here is the code to rotate the entire array:
x = 0;
int temp;
while (x < n/2)
{
for (int i = x;i < n-1-x;i++)
{
temp = arr[x][i];
arr[x][i] = arr[n-1-i][x];
arr[n-1-i][x] = arr[n-1-x][n-1-i];
arr[n-1-x][n-1-i] = arr[i][n-1-x];
arr[i][n-1-x] = temp;
}
x++;
}
Here each value of x denotes the xth ring.
0 <= x <= n-1
The reason why the outer loop runs only for x < n/2 times is because each array has n/2 rings when n is even and n/2 + 1 rings if n is odd.
I hope I have helped you. Do comment if face any problems with the solution or its explanation.

Algorithm for equiprobable random square binary matrices with two non-adjacent non-zeros in each row and column

It would be great if someone could point me towards an algorithm that would allow me to :
create a random square matrix, with entries 0 and 1, such that
every row and every column contain exactly two non-zero entries,
two non-zero entries cannot be adjacent,
all possible matrices are equiprobable.
Right now I manage to achieve points 1 and 2 doing the following : such a matrix can be transformed, using suitable permutations of rows and columns, into a diagonal block matrix with blocks of the form
1 1 0 0 ... 0
0 1 1 0 ... 0
0 0 1 1 ... 0
.............
1 0 0 0 ... 1
So I start from such a matrix using a partition of [0, ..., n-1] and scramble it by permuting rows and columns randomly. Unfortunately, I can't find a way to integrate the adjacency condition, and I am quite sure that my algorithm won't treat all the matrices equally.
Update
I have managed to achieve point 3. The answer was actually straight under my nose : the block matrix I am creating contains all the information needed to take into account the adjacency condition. First some properties and definitions:
a suitable matrix defines permutations of [1, ..., n] that can be build like so: select a 1 in row 1. The column containing this entry contains exactly one other entry equal to 1 on a row a different from 1. Again, row a contains another entry 1 in a column which contains a second entry 1 on a row b, and so on. This starts a permutation 1 -> a -> b ....
For instance, with the following matrix, starting with the marked entry
v
1 0 1 0 0 0 | 1
0 1 0 0 0 1 | 2
1 0 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 5
0 1 0 0 1 0 | 6
------------+--
1 2 3 4 5 6 |
we get permutation 1 -> 3 -> 5 -> 2 -> 6 -> 4 -> 1.
the cycles of such a permutation lead to the block matrix I mentioned earlier. I also mentioned scrambling the block matrix using arbitrary permutations on the rows and columns to rebuild a matrix compatible with the requirements.
But I was using any permutation, which led to some adjacent non-zero entries. To avoid that, I have to choose permutations that separate rows (and columns) that are adjacent in the block matrix. Actually, to be more precise, if two rows belong to a same block and are cyclically consecutive (the first and last rows of a block are considered consecutive too), then the permutation I want to apply has to move these rows into non-consecutive rows of the final matrix (I will call two rows incompatible in that case).
So the question becomes : How to build all such permutations ?
The simplest idea is to build a permutation progressively by randomly adding rows that are compatible with the previous one. As an example, consider the case n = 6 using partition 6 = 3 + 3 and the corresponding block matrix
1 1 0 0 0 0 | 1
0 1 1 0 0 0 | 2
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
0 0 0 0 1 1 | 5
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Here rows 1, 2 and 3 are mutually incompatible, as are 4, 5 and 6. Choose a random row, say 3.
We will write a permutation as an array: [2, 5, 6, 4, 3, 1] meaning 1 -> 2, 2 -> 5, 3 -> 6, ... This means that row 2 of the block matrix will become the first row of the final matrix, row 5 will become the second row, and so on.
Now let's build a suitable permutation by choosing randomly a row, say 3:
p = [3, ...]
The next row will then be chosen randomly among the remaining rows that are compatible with 3 : 4, 5and 6. Say we choose 4:
p = [3, 4, ...]
Next choice has to be made among 1 and 2, for instance 1:
p = [3, 4, 1, ...]
And so on: p = [3, 4, 1, 5, 2, 6].
Applying this permutation to the block matrix, we get:
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
1 1 0 0 0 0 | 1
0 0 0 0 1 1 | 5
0 1 1 0 0 0 | 2
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Doing so, we manage to vertically isolate all non-zero entries. Same has to be done with the columns, for instance by using permutation p' = [6, 3, 5, 1, 4, 2] to finally get
0 1 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 1
1 0 1 0 0 0 | 5
0 1 0 0 0 1 | 2
1 0 0 0 1 0 | 6
------------+--
6 3 5 1 4 2 |
So this seems to work quite efficiently, but building these permutations needs to be done with caution, because one can easily be stuck: for instance, with n=6 and partition 6 = 2 + 2 + 2, following the construction rules set up earlier can lead to p = [1, 3, 2, 4, ...]. Unfortunately, 5 and 6 are incompatible, so choosing one or the other makes the last choice impossible. I think I've found all situations that lead to a dead end. I will denote by r the set of remaining choices:
p = [..., x, ?], r = {y} with x and y incompatible
p = [..., x, ?, ?], r = {y, z} with y and z being both incompatible with x (no choice can be made)
p = [..., ?, ?], r = {x, y} with x and y incompatible (any choice would lead to situation 1)
p = [..., ?, ?, ?], r = {x, y, z} with x, y and z being cyclically consecutive (choosing x or z would lead to situation 2, choosing y to situation 3)
p = [..., w, ?, ?, ?], r = {x, y, z} with xwy being a 3-cycle (neither x nor y can be chosen, choosing z would lead to situation 3)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with wxyz being a 4-cycle (any choice would lead to situation 4)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with xyz being a 3-cycle (choosing w would lead to situation 4, choosing any other would lead to situation 4)
Now it seems that the following algorithm gives all suitable permutations:
As long as there are strictly more than 5 numbers to choose, choose randomly among the compatible ones.
If there are 5 numbers left to choose: if the remaining numbers contain a 3-cycle or a 4-cycle, break that cycle (i.e. choose a number belonging to that cycle).
If there are 4 numbers left to choose: if the remaining numbers contain three cyclically consecutive numbers, choose one of them.
If there are 3 numbers left to choose: if the remaining numbers contain two cyclically consecutive numbers, choose one of them.
I am quite sure that this allows me to generate all suitable permutations and, hence, all suitable matrices.
Unfortunately, every matrix will be obtained several times, depending on the partition that was chosen.
Intro
Here is some prototype-approach, trying to solve the more general task of
uniform combinatorial sampling, which for our approach here means: we can use this approach for everything which we can formulate as SAT-problem.
It's not exploiting your problem directly and takes a heavy detour. This detour to the SAT-problem can help in regards to theory (more powerful general theoretical results) and efficiency (SAT-solvers).
That being said, it's not an approach if you want to sample within seconds or less (in my experiments), at least while being concerned about uniformity.
Theory
The approach, based on results from complexity-theory, follows this work:
GOMES, Carla P.; SABHARWAL, Ashish; SELMAN, Bart. Near-uniform sampling of combinatorial spaces using XOR constraints. In: Advances In Neural Information Processing Systems. 2007. S. 481-488.
The basic idea:
formulate the problem as SAT-problem
add randomly generated xors to the problem (acting on the decision-variables only! that's important in practice)
this will reduce the number of solutions (some solutions will get impossible)
do that in a loop (with tuned parameters) until only one solution is left!
search for some solution is being done by SAT-solvers or #SAT-solvers (=model-counting)
if there is more than one solution: no xors will be added but a complete restart will be done: add random-xors to the start-problem!
The guarantees:
when tuning the parameters right, this approach achieves near-uniform sampling
this tuning can be costly, as it's based on approximating the number of possible solutions
empirically this can also be costly!
Ante's answer, mentioning the number sequence A001499 actually gives a nice upper bound on the solution-space (as it's just ignoring adjacency-constraints!)
The drawbacks:
inefficient for large problems (in general; not necessarily compared to the alternatives like MCMC and co.)
need to change / reduce parameters to produce samples
those reduced parameters lose the theoretical guarantees
but empirically: good results are still possible!
Parameters:
In practice, the parameters are:
N: number of xors added
L: minimum number of variables part of one xor-constraint
U: maximum number of variables part of one xor-constraint
N is important to reduce the number of possible solutions. Given N constant, the other variables of course also have some effect on that.
Theory says (if i interpret correctly), that we should use L = R = 0.5 * #dec-vars.
This is impossible in practice here, as xor-constraints hurt SAT-solvers a lot!
Here some more scientific slides about the impact of L and U.
They call xors of size 8-20 short-XORS, while we will need to use even shorter ones later!
Implementation
Final version
Here is a pretty hacky implementation in python, using the XorSample scripts from here.
The underlying SAT-solver in use is Cryptominisat.
The code basically boils down to:
Transform the problem to conjunctive normal-form
as DIMACS-CNF
Implement the sampling-approach:
Calls XorSample (pipe-based + file-based)
Call SAT-solver (file-based)
Add samples to some file for later analysis
Code: (i hope i did warn you already about the code-quality)
from itertools import count
from time import time
import subprocess
import numpy as np
import os
import shelve
import uuid
import pickle
from random import SystemRandom
cryptogen = SystemRandom()
""" Helper functions """
# K-ARY CONSTRAINT GENERATION
# ###########################
# SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints.
# CP, 2005, 3709. Jg., S. 827-831.
def next_var_index(start):
next_var = start
while(True):
yield next_var
next_var += 1
class s_index():
def __init__(self, start_index):
self.firstEnvVar = start_index
def next(self,i,j,k):
return self.firstEnvVar + i*k +j
def gen_seq_circuit(k, input_indices, next_var_index_gen):
cnf_string = ''
s_index_gen = s_index(next_var_index_gen.next())
# write clauses of first partial sum (i.e. i=0)
cnf_string += (str(-input_indices[0]) + ' ' + str(s_index_gen.next(0,0,k)) + ' 0\n')
for i in range(1, k):
cnf_string += (str(-s_index_gen.next(0, i, k)) + ' 0\n')
# write clauses for general case (i.e. 0 < i < n-1)
for i in range(1, len(input_indices)-1):
cnf_string += (str(-input_indices[i]) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, 0, k)) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
for u in range(1, k):
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, u-1, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, u, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, k-1, k)) + ' 0\n')
# last clause for last variable
cnf_string += (str(-input_indices[-1]) + ' ' + str(-s_index_gen.next(len(input_indices)-2, k-1, k)) + ' 0\n')
return (cnf_string, (len(input_indices)-1)*k, 2*len(input_indices)*k + len(input_indices) - 3*k - 1)
# K=2 clause GENERATION
# #####################
def gen_at_most_2_constraints(vars, start_var):
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(2, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
def gen_at_least_2_constraints(vars, start_var):
k = len(vars) - 2
vars = [-var for var in vars]
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(k, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
# Adjacency conflicts
# ###################
def get_all_adjacency_conflicts_4_neighborhood(N, X):
conflicts = set()
for x in range(N):
for y in range(N):
if x < (N-1):
conflicts.add(((x,y),(x+1,y)))
if y < (N-1):
conflicts.add(((x,y),(x,y+1)))
cnf = '' # slow string appends
for (var_a, var_b) in conflicts:
var_a_ = X[var_a]
var_b_ = X[var_b]
cnf += '-' + var_a_ + ' ' + '-' + var_b_ + ' 0 \n'
return cnf, len(conflicts)
# Build SAT-CNF
#############
def build_cnf(N, verbose=False):
var_counter = count(1)
N_CLAUSES = 0
X = np.zeros((N, N), dtype=object)
for a in range(N):
for b in range(N):
X[a,b] = str(next(var_counter))
# Adjacency constraints
CNF, N_CLAUSES = get_all_adjacency_conflicts_4_neighborhood(N, X)
# k=2 constraints
NEXT_VAR = N*N+1
for row in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
for col in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
# build final cnf
CNF = 'p cnf ' + str(NEXT_VAR-1) + ' ' + str(N_CLAUSES) + '\n' + CNF
return X, CNF, NEXT_VAR-1
# External tools
# ##############
def get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_ALL_VARS, s, min_l, max_l):
# .cnf not part of arg!
p = subprocess.Popen(['./gen-wff', CNF_IN_fp,
str(N_DEC_VARS), str(N_ALL_VARS),
str(s), str(min_l), str(max_l), 'xored'],
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
result = p.communicate()
os.remove(CNF_IN_fp + '-str-xored.xor') # file not needed
return CNF_IN_fp + '-str-xored.cnf'
def solve(CNF_IN_fp, N_DEC_VARS):
seed = cryptogen.randint(0, 2147483647) # actually no reason to do it; but can't hurt either
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
# solution found!
vars = parse_solution(result)[:N_DEC_VARS]
# forbid solution (DeMorgan)
negated_vars = list(map(lambda x: x*(-1), vars))
with open(CNF_IN_fp, 'a') as f:
f.write( (str(negated_vars)[1:-1] + ' 0\n').replace(',', ''))
# assume solve is treating last constraint despite not changing header!
# solve again
seed = cryptogen.randint(0, 2147483647)
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
os.remove(CNF_IN_fp) # not needed anymore
return True, False, None
else:
return True, True, vars
else:
return False, False, None
def parse_solution(output):
# assumes there is one
vars = []
for line in output.split("\n"):
if line:
if line[0] == 'v':
line_vars = list(map(lambda x: int(x), line.split()[1:]))
vars.extend(line_vars)
return vars
# Core-algorithm
# ##############
def xorsample(X, CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l):
start_time = time()
while True:
# add s random XOR constraints to F
xored_cnf_fp = get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l)
state_lvl1, state_lvl2, var_sol = solve(xored_cnf_fp, N_DEC_VARS)
print('------------')
if state_lvl1 and state_lvl2:
print('FOUND')
d = shelve.open('N_15_70_4_6_TO_PLOT')
d[str(uuid.uuid4())] = (pickle.dumps(var_sol), time() - start_time)
d.close()
return True
else:
if state_lvl1:
print('sol not unique')
else:
print('no sol found')
print('------------')
""" Run """
N = 15
N_DEC_VARS = N*N
X, CNF, N_VARS = build_cnf(N)
with open('my_problem.cnf', 'w') as f:
f.write(CNF)
counter = 0
while True:
print('sample: ', counter)
xorsample(X, 'my_problem', N_DEC_VARS, N_VARS, 70, 4, 6)
counter += 1
Output will look like (removed some warnings):
------------
no sol found
------------
------------
no sol found
------------
------------
no sol found
------------
------------
sol not unique
------------
------------
FOUND
Core: CNF-formulation
We introduce one variable for every cell of the matrix. N=20 means 400 binary-variables.
Adjancency:
Precalculate all symmetry-reduced conflicts and add conflict-clauses.
Basic theory:
a -> !b
<->
!a v !b (propositional logic)
Row/Col-wise Cardinality:
This is tough to express in CNF and naive approaches need an exponential number
of constraints.
We use some adder-circuit based encoding (SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints) which introduces new auxiliary-variables.
Remark:
sum(var_set) <= k
<->
sum(negated(var_set)) >= len(var_set) - k
These SAT-encodings can be put into exact model-counters (for small N; e.g. < 9). The number of solutions equals Ante's results, which is a strong indication for a correct transformation!
There are also interesting approximate model-counters (also heavily based on xor-constraints) like approxMC which shows one more thing we can do with the SAT-formulation. But in practice i have not been able to use these (approxMC = autoconf; no comment).
Other experiments
I did also build a version using pblib, to use more powerful cardinality-formulations
for the SAT-CNF formulation. I did not try to use the C++-based API, but only the reduced pbencoder, which automatically selects some best encoding, which was way worse than my encoding used above (which is best is still a research-problem; often even redundant-constraints can help).
Empirical analysis
For the sake of obtaining some sample-size (given my patience), i only computed samples for N=15. In this case we used:
N=70 xors
L,U = 4,6
I also computed some samples for N=20 with (100,3,6), but this takes a few mins and we reduced the lower bound!
Visualization
Here some animation (strengthening my love-hate relationship with matplotlib):
Edit: And a (reduced) comparison to brute-force uniform-sampling with N=5 (NXOR,L,U = 4, 10, 30):
(I have not yet decided on the addition of the plotting-code. It's as ugly as the above one and people might look too much into my statistical shambles; normalizations and co.)
Theory
Statistical analysis is probably hard to do as the underlying problem is of such combinatoric nature. It's even not entirely obvious how that final cell-PDF should look like. In the case of N=odd, it's probably non-uniform and looks like a chess-board (i did brute-force check N=5 to observe this).
One thing we can be sure about (imho): symmetry!
Given a cell-PDF matrix, we should expect, that the matrix is symmetric (A = A.T).
This is checked in the visualization and the euclidean-norm of differences over time is plotted.
We can do the same on some other observation: observed pairings.
For N=3, we can observe the following pairs:
0,1
0,2
1,2
Now we can do this per-row and per-column and should expect symmetry too!
Sadly, it's probably not easy to say something about the variance and therefore the needed samples to speak about confidence!
Observation
According to my simplified perception, current-samples and the cell-PDF look good, although convergence is not achieved yet (or we are far away from uniformity).
The more important aspect are probably the two norms, nicely decreasing towards 0.
(yes; one could tune some algorithm for that by transposing with prob=0.5; but this is not done here as it would defeat it's purpose).
Potential next steps
Tune parameters
Check out the approach using #SAT-solvers / Model-counters instead of SAT-solvers
Try different CNF-formulations, especially in regards to cardinality-encodings and xor-encodings
XorSample is by default using tseitin-like encoding to get around exponentially grow
for smaller xors (as used) it might be a good idea to use naive encoding (which propagates faster)
XorSample supports that in theory; but the script's work differently in practice
Cryptominisat is known for dedicated XOR-handling (as it was build for analyzing cryptography including many xors) and might gain something by naive encoding (as inferring xors from blown-up CNFs is much harder)
More statistical-analysis
Get rid of XorSample scripts (shell + perl...)
Summary
The approach is very general
This code produces feasible samples
It should be not hard to prove, that every feasible solution can be sampled
Others have proven theoretical guarantees for uniformity for some params
does not hold for our params
Others have empirically / theoretically analyzed smaller parameters (in use here)
(Updated test results, example run-through and code snippets below.)
You can use dynamic programming to calculate the number of solutions resulting from every state (in a much more efficient way than a brute-force algorithm), and use those (pre-calculated) values to create equiprobable random solutions.
Consider the example of a 7x7 matrix; at the start, the state is:
0,0,0,0,0,0,0
meaning that there are seven adjacent unused columns. After adding two ones to the first row, the state could be e.g.:
0,1,0,0,1,0,0
with two columns that now have a one in them. After adding ones to the second row, the state could be e.g.:
0,1,1,0,1,0,1
After three rows are filled, there is a possibility that a column will have its maximum of two ones; this effectively splits the matrix into two independent zones:
1,1,1,0,2,0,1 -> 1,1,1,0 + 0,1
These zones are independent in the sense that the no-adjacent-ones rule has no effect when adding ones to different zones, and the order of the zones has no effect on the number of solutions.
In order to use these states as signatures for types of solutions, we have to transform them into a canonical notation. First, we have to take into account the fact that columns with only 1 one in them may be unusable in the next row, because they contain a one in the current row. So instead of a binary notation, we have to use a ternary notation, e.g.:
2,1,1,0 + 0,1
where the 2 means that this column was used in the current row (and not that there are 2 ones in the column). At the next step, we should then convert the twos back into ones.
Additionally, we can also mirror the seperate groups to put them into their lexicographically smallest notation:
2,1,1,0 + 0,1 -> 0,1,1,2 + 0,1
Lastly, we sort the seperate groups from small to large, and then lexicographically, so that a state in a larger matrix may be e.g.:
0,0 + 0,1 + 0,0,2 + 0,1,0 + 0,1,0,1
Then, when calculating the number of solutions resulting from each state, we can use memoization using the canonical notation of each state as a key.
Creating a dictionary of the states and the number of solutions for each of them only needs to be done once, and a table for larger matrices can probably be used for smaller matrices too.
Practically, you'd generate a random number between 0 and the total number of solutions, and then for every row, you'd look at the different states you could create from the current state, look at the number of unique solutions each one would generate, and see which option leads to the solution that corresponds with your randomly generated number.
Note that every state and the corresponding key can only occur in a particular row, so you can store the keys in seperate dictionaries per row.
TEST RESULTS
A first test using unoptimized JavaScript gave very promising results. With dynamic programming, calculating the number of solutions for a 10x10 matrix now takes a second, where a brute-force algorithm took several hours (and this is the part of the algorithm that only needs to be done once). The size of the dictionary with the signatures and numbers of solutions grows with a diminishing factor approaching 2.5 for each step in size; the time to generate it grows with a factor of around 3.
These are the number of solutions, states, signatures (total size of the dictionaries), and maximum number of signatures per row (largest dictionary per row) that are created:
size unique solutions states signatures max/row
4x4 2 9 6 2
5x5 16 73 26 8
6x6 722 514 107 40
7x7 33,988 2,870 411 152
8x8 2,215,764 13,485 1,411 596
9x9 179,431,924 56,375 4,510 1,983
10x10 17,849,077,140 218,038 13,453 5,672
11x11 2,138,979,146,276 801,266 38,314 14,491
12x12 304,243,884,374,412 2,847,885 104,764 35,803
13x13 50,702,643,217,809,908 9,901,431 278,561 96,414
14x14 9,789,567,606,147,948,364 33,911,578 723,306 238,359
15x15 2,168,538,331,223,656,364,084 114,897,838 1,845,861 548,409
16x16 546,386,962,452,256,865,969,596 ... 4,952,501 1,444,487
17x17 155,420,047,516,794,379,573,558,433 12,837,870 3,754,040
18x18 48,614,566,676,379,251,956,711,945,475 31,452,747 8,992,972
19x19 17,139,174,923,928,277,182,879,888,254,495 74,818,773 20,929,008
20x20 6,688,262,914,418,168,812,086,412,204,858,650 175,678,000 50,094,203
(Additional results obtained with C++, using a simple 128-bit integer implementation. To count the states, the code had to be run using each state as a seperate signature, which I was unable to do for the largest sizes. )
EXAMPLE
The dictionary for a 5x5 matrix looks like this:
row 0: 00000 -> 16 row 3: 101 -> 0
1112 -> 1
row 1: 20002 -> 2 1121 -> 1
00202 -> 4 1+01 -> 0
02002 -> 2 11+12 -> 2
02020 -> 2 1+121 -> 1
0+1+1 -> 0
row 2: 10212 -> 1 1+112 -> 1
12012 -> 1
12021 -> 2 row 4: 0 -> 0
12102 -> 1 11 -> 0
21012 -> 0 12 -> 0
02121 -> 3 1+1 -> 1
01212 -> 1 1+2 -> 0
The total number of solutions is 16; if we randomly pick a number from 0 to 15, e.g. 13, we can find the corresponding (i.e. the 14th) solution like this:
state: 00000
options: 10100 10010 10001 01010 01001 00101
signature: 00202 02002 20002 02020 02002 00202
solutions: 4 2 2 2 2 4
This tells us that the 14th solution is the 2nd solution of option 00101. The next step is:
state: 00101
options: 10010 01010
signature: 12102 02121
solutions: 1 3
This tells us that the 2nd solution is the 1st solution of option 01010. The next step is:
state: 01111
options: 10100 10001 00101
signature: 11+12 1112 1+01
solutions: 2 1 0
This tells us that the 1st solution is the 1st solution of option 10100. The next step is:
state: 11211
options: 01010 01001
signature: 1+1 1+1
solutions: 1 1
This tells us that the 1st solutions is the 1st solution of option 01010. The last step is:
state: 12221
options: 10001
And the 5x5 matrix corresponding to randomly chosen number 13 is:
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 0 0 1
And here's a quick'n'dirty code example; run the snippet to generate the signature and solution count dictionary, and generate a random 10x10 matrix (it takes a second to generate the dictionary; once that is done, it generates random solutions in half a millisecond):
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
function random_matrix(n, memo) {
var matrix = [], empty = [], state = [], prev = [];
for (var i = 0; i < n; i++) empty[i] = state[i] = prev[i] = 0;
var total = memo[0][signature(empty, empty)];
var pick = Math.floor(Math.random() * total);
document.write("solution " + pick.toLocaleString('en-US') +
" from a total of " + total.toLocaleString('en-US') + "<br>");
for (var row = 1; row <= n; row++) {
var options = find_options(state, prev);
for (var i in options) {
var state_copy = state.slice();
for (var j in state_copy) state_copy[j] += options[i][j];
var sig = signature(state_copy, options[i]);
var solutions = memo[row][sig];
if (pick < solutions) {
matrix.push(options[i].slice());
prev = options[i].slice();
state = state_copy.slice();
break;
}
else pick -= solutions;
}
}
return matrix;
function find_options(state, prev) {
var options = [];
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var option = empty.slice();
++option[i]; ++option[j];
options.push(option);
}
}
return options;
}
}
var size = 10;
var memo = memoize(size);
var matrix = random_matrix(size, memo);
for (var row in matrix) document.write(matrix[row] + "<br>");
The code snippet below shows the dictionary of signatures and solution counts for a matrix of size 10x10. I've used a slightly different signature format from the explanation above: the zones are delimited by a '2' instead of a plus sign, and a column which has a one in the previous row is marked with a '3' instead of a '2'. This shows how the keys could be stored in a file as integers with 2×N bits (padded with 2's).
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
var memo = memoize(10);
for (var i in memo) {
document.write("row " + i + ":<br>");
for (var j in memo[i]) {
document.write(""" + j + "": " + memo[i][j] + "<br>");
}
}
Just few thoughts. Number of matrices satisfying conditions for n <= 10:
3 0
4 2
5 16
6 722
7 33988
8 2215764
9 179431924
10 17849077140
Unfortunatelly there is no sequence with these numbers in OEIS.
There is one similar (A001499), without condition for neighbouring one's. Number of nxn matrices in this case is 'of order' as A001499's number of (n-1)x(n-1) matrices. That is to be expected since number
of ways to fill one row in this case, position 2 one's in n places with at least one zero between them is ((n-1) choose 2). Same as to position 2 one's in (n-1) places without the restriction.
I don't think there is an easy connection between these matrix of order n and A001499 matrix of order n-1, meaning that if we have A001499 matrix than we can construct some of these matrices.
With this, for n=20, number of matrices is >10^30. Quite a lot :-/
This solution use recursion in order to set the cell of the matrix one by one. If the random walk finish with an impossible solution then we rollback one step in the tree and we continue the random walk.
The algorithm is efficient and i think that the generated data are highly equiprobable.
package rndsqmatrix;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.IntStream;
public class RndSqMatrix {
/**
* Generate a random matrix
* #param size the size of the matrix
* #return the matrix encoded in 1d array i=(x+y*size)
*/
public static int[] generate(final int size) {
return generate(size, new int[size * size], new int[size],
new int[size]);
}
/**
* Build a matrix recursivly with a random walk
* #param size the size of the matrix
* #param matrix the matrix encoded in 1d array i=(x+y*size)
* #param rowSum
* #param colSum
* #return
*/
private static int[] generate(final int size, final int[] matrix,
final int[] rowSum, final int[] colSum) {
// generate list of valid positions
final List<Integer> positions = new ArrayList();
for (int y = 0; y < size; y++) {
if (rowSum[y] < 2) {
for (int x = 0; x < size; x++) {
if (colSum[x] < 2) {
final int p = x + y * size;
if (matrix[p] == 0
&& (x == 0 || matrix[p - 1] == 0)
&& (x == size - 1 || matrix[p + 1] == 0)
&& (y == 0 || matrix[p - size] == 0)
&& (y == size - 1 || matrix[p + size] == 0)) {
positions.add(p);
}
}
}
}
}
// no valid positions ?
if (positions.isEmpty()) {
// if the matrix is incomplete => return null
for (int i = 0; i < size; i++) {
if (rowSum[i] != 2 || colSum[i] != 2) {
return null;
}
}
// the matrix is complete => return it
return matrix;
}
// random walk
Collections.shuffle(positions);
for (int p : positions) {
// set '1' and continue recursivly the exploration
matrix[p] = 1;
rowSum[p / size]++;
colSum[p % size]++;
final int[] solMatrix = generate(size, matrix, rowSum, colSum);
if (solMatrix != null) {
return solMatrix;
}
// rollback
matrix[p] = 0;
rowSum[p / size]--;
colSum[p % size]--;
}
// we can't find a valid matrix from here => return null
return null;
}
public static void printMatrix(final int size, final int[] matrix) {
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
System.out.print(matrix[x + y * size]);
System.out.print(" ");
}
System.out.println();
}
}
public static void printStatistics(final int size, final int count) {
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
printMatrix(size, sumMatrix);
}
public static void checkAlgorithm() {
final int size = 8;
final int count = 2215764;
final int divisor = 122;
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count/divisor ; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
int total = 0;
for(int i=0; i < sumMatrix.length; i++) {
total += sumMatrix[i];
}
final double factor = (double)total / (count/divisor);
System.out.println("Factor=" + factor + " (theory=16.0)");
}
public static void benchmark(final int size, final int count,
final boolean parallel) {
final long begin = System.currentTimeMillis();
if (!parallel) {
for (int i = 0; i < count; i++) {
generate(size);
}
} else {
IntStream.range(0, count).parallel().forEach(i -> generate(size));
}
final long end = System.currentTimeMillis();
System.out.println("rate="
+ (double) (end - begin) / count + "ms/matrix");
}
public static void main(String[] args) {
checkAlgorithm();
benchmark(8, 10000, true);
//printStatistics(8, 2215764/36);
printStatistics(8, 2215764);
}
}
The output is:
Factor=16.0 (theory=16.0)
rate=0.2835ms/matrix
552969 554643 552895 554632 555680 552753 554567 553389
554071 554847 553441 553315 553425 553883 554485 554061
554272 552633 555130 553699 553604 554298 553864 554028
554118 554299 553565 552986 553786 554473 553530 554771
554474 553604 554473 554231 553617 553556 553581 553992
554960 554572 552861 552732 553782 554039 553921 554661
553578 553253 555721 554235 554107 553676 553776 553182
553086 553677 553442 555698 553527 554850 553804 553444
Here is a very fast approach of generating the matrix row by row, written in Java:
public static void main(String[] args) throws Exception {
int n = 100;
Random rnd = new Random();
byte[] mat = new byte[n*n];
byte[] colCount = new byte[n];
//generate row by row
for (int x = 0; x < n; x++) {
//generate a random first bit
int b1 = rnd.nextInt(n);
while ( (x > 0 && mat[(x-1)*n + b1] == 1) || //not adjacent to the one above
(colCount[b1] == 2) //not in a column which has 2
) b1 = rnd.nextInt(n);
//generate a second bit, not equal to the first one
int b2 = rnd.nextInt(n);
while ( (b2 == b1) || //not the same as bit 1
(x > 0 && mat[(x-1)*n + b2] == 1) || //not adjacent to the one above
(colCount[b2] == 2) || //not in a column which has 2
(b2 == b1 - 1) || //not adjacent to b1
(b2 == b1 + 1)
) b2 = rnd.nextInt(n);
//fill the matrix values and increment column counts
mat[x*n + b1] = 1;
mat[x*n + b2] = 1;
colCount[b1]++;
colCount[b2]++;
}
String arr = Arrays.toString(mat).substring(1, n*n*3 - 1);
System.out.println(arr.replaceAll("(.{" + n*3 + "})", "$1\n"));
}
It essentially generates each a random row at a time. If the row will violate any of the conditions, it is generated again (again randomly). I believe this will satisfy condition 4 as well.
Adding a quick note that it will spin forever for N-s where there is no solutions (like N=3).

trouble to understand how to make the matrix match the AR Marker

My goal is to know how to create my own marker and use it
I'm having trouble to understand how to make the matrix matches the AR Marker PNG.
Id really love someone to either explain how this and the PNG are working together,
Actually Im a bit embarrassed as on further reading it is not hamming code,
but based on hamming code Still possibly someone familiar with hamming code might be able to help this is
(the whole tutorial link is at the bottom of the post)
The main difference with the hamming code is that the first bit (parity of bits 3 and 5) is inverted. So, ID 0 (which in hamming code is 00000) becomes 10000 in our code. The idea is to prevent a completely black rectangle from being a valid marker ID, with the goal of reducing the likelihood of false positives with objects of the environment.
As there are four possible orientations of the marker picture, we have to find the correct marker position. Remember, we introduced three parity bits for each two bits of information. With their help we can find the hamming distance for each possible marker orientation. The correct marker position will have zero hamming distance error, while the other rotations won't.
Here is a code snippet that rotates the bit matrix four times and finds the correct marker orientation:
//check all possible rotations
cv::Mat rotations[4];
int distances[4];
rotations[0] = bitMatrix;
distances[0] = hammDistMarker(rotations[0]);
std::pair<int,int> minDist(distances[0],0);
for (int i=1; i<4; i++)
{
//get the hamming distance to the nearest possible word
rotations[i] = rotate(rotations[i-1]);
distances[i] = hammDistMarker(rotations[i]);
if (distances[i] < minDist.first)
{
minDist.first = distances[i];
minDist.second = i;
}
}
This code finds the orientation of the bit matrix in such a way that it gives minimal error for the hamming distance metric. This error should be zero for correct marker ID; if it's not, it means that we encountered a wrong marker pattern (corrupted image or false-positive marker detection).
**this is the code that I think is relating to the Marker png shown
can anyone help me to understand the matrix so I can use it.
ALL diagrams, thoughts and explanations happily accepted for a non maths person to get an understanding of this quite complex problem ;P !
![the working AR marker when view from iPad][4]
//
// Marker.cpp
// Example_MarkerBasedAR
//
// Created by Ievgen Khvedchenia on 3/13/12.
// Copyright (c) 2012 Ievgen Khvedchenia. All rights reserved.
//
#include "Marker.hpp"
#include "DebugHelpers.hpp"
Marker::Marker()
: id(-1)
{
}
bool operator<(const Marker &M1,const Marker&M2)
{
return M1.id<M2.id;
}
cv::Mat Marker::rotate(cv::Mat in)
{
cv::Mat out;
in.copyTo(out);
for (int i=0;i<in.rows;i++)
{
for (int j=0;j<in.cols;j++)
{
out.at<uchar>(i,j)=in.at<uchar>(in.cols-j-1,i);
}
}
return out;
}
int Marker::hammDistMarker(cv::Mat bits)
{
int ids[4][5]=
{
{1,0,0,0,0},
{1,0,1,1,1},
{0,1,0,0,1},
{0,1,1,1,0}
};
int dist=0;
for (int y=0;y<5;y++)
{
int minSum=1e5; //hamming distance to each possible word
for (int p=0;p<4;p++)
{
int sum=0;
//now, count
for (int x=0;x<5;x++)
{
sum += bits.at<uchar>(y,x) == ids[p][x] ? 0 : 1;
}
if (minSum>sum)
minSum=sum;
}
//do the and
dist += minSum;
}
return dist;
}
int Marker::mat2id(const cv::Mat &bits)
{
int val=0;
for (int y=0;y<5;y++)
{
val<<=1;
if ( bits.at<uchar>(y,1)) val|=1;
val<<=1;
if ( bits.at<uchar>(y,3)) val|=1;
}
return val;
}
int Marker::getMarkerId(cv::Mat &markerImage,int &nRotations)
{
assert(markerImage.rows == markerImage.cols);
assert(markerImage.type() == CV_8UC1);
cv::Mat grey = markerImage;
// Threshold image
cv::threshold(grey, grey, 125, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
#ifdef SHOW_DEBUG_IMAGES
cv::showAndSave("Binary marker", grey);
#endif
//Markers are divided in 7x7 regions, of which the inner 5x5 belongs to marker info
//the external border should be entirely black
int cellSize = markerImage.rows / 7;
for (int y=0;y<7;y++)
{
int inc=6;
if (y==0 || y==6) inc=1; //for first and last row, check the whole border
for (int x=0;x<7;x+=inc)
{
int cellX = x * cellSize;
int cellY = y * cellSize;
cv::Mat cell = grey(cv::Rect(cellX,cellY,cellSize,cellSize));
int nZ = cv::countNonZero(cell);
if (nZ > (cellSize*cellSize) / 2)
{
return -1;//can not be a marker because the border element is not black!
}
}
}
cv::Mat bitMatrix = cv::Mat::zeros(5,5,CV_8UC1);
//get information(for each inner square, determine if it is black or white)
for (int y=0;y<5;y++)
{
for (int x=0;x<5;x++)
{
int cellX = (x+1)*cellSize;
int cellY = (y+1)*cellSize;
cv::Mat cell = grey(cv::Rect(cellX,cellY,cellSize,cellSize));
int nZ = cv::countNonZero(cell);
if (nZ> (cellSize*cellSize) /2)
bitMatrix.at<uchar>(y,x) = 1;
}
}
//check all possible rotations
cv::Mat rotations[4];
int distances[4];
rotations[0] = bitMatrix;
distances[0] = hammDistMarker(rotations[0]);
std::pair<int,int> minDist(distances[0],0);
for (int i=1; i<4; i++)
{
//get the hamming distance to the nearest possible word
rotations[i] = rotate(rotations[i-1]);
distances[i] = hammDistMarker(rotations[i]);
if (distances[i] < minDist.first)
{
minDist.first = distances[i];
minDist.second = i;
}
}
nRotations = minDist.second;
if (minDist.first == 0)
{
return mat2id(rotations[minDist.second]);
}
return -1;
}
void Marker::drawContour(cv::Mat& image, cv::Scalar color) const
{
float thickness = 2;
cv::line(image, points[0], points[1], color, thickness, CV_AA);
cv::line(image, points[1], points[2], color, thickness, CV_AA);
cv::line(image, points[2], points[3], color, thickness, CV_AA);
cv::line(image, points[3], points[0], color, thickness, CV_AA);
}
AR tutorial I'm working from
https://www.packtpub.com/books/content/marker-based-augmented-reality-iphone-or-ipad
I don't have an exhaustive answer, but I think I can explain enough to help your confusion since I am familiar with Hamming distance as well as matrix rotations and other transformations.
From what I can tell:
The matrix you have isn't the bitmap for that marker. It is an array of rotations.
In the algorithm as implemented in the article, the hamming distances are computed with 4 rotations of a marker. So the reason you have 4 rows in the matrix is it is 4 rotations.
I could be wrong, or have oversimplified, maybe this answer will trigger discussion and someone better will see it. I'll look closer at the algorithm and article to see if I can understand it. I made an A in Matrix Theory, but that was 18 years ago and I've frankly forgotten how to transform matrices.
I just found out a clue, but not very sure. Here is my thought:
I found the explanation of "Hamming code" via Wiki http://en.wikipedia.org/wiki/Hamming_code, and how to encode.(have no privilege to insert picture, so please visit the link above)
Here is the code from the book《Mastering OpenCV ...》:
int Marker::mat2id(const cv::Mat &bits)
{
int val=0;
for (int y=0;y<5;y++)
{
val<<=1;
if ( bits.at<uchar>(y,1)) val|=1;
val<<=1;
if ( bits.at<uchar>(y,3)) val|=1;
}
return val;
}
I think only bits 1 and 3 are data, so I took a look at the matrix:
int ids[4][5]=
{
{1,0,0,0,0},// 0,0 -> 0
{1,0,1,1,1},// 0,1 -> 1
{0,1,0,0,1},// 1,0 -> 2
{0,1,1,1,0} // 1,1 -> 3
}; ^ ^
| |
So these 4 cols should be the hamming-code of [0][1][2][3](which 2 bits can encode)
The following is my explanation( maybe incorrect~):
//(1):'d' represents data, 'p' represents parity bits. Among [d1~d4],only [d1][d2] are useful
//(2):then place [d1][d2] into [p1][p2][p4],[p1~p3] is calculated following the circle graph(?) in the Wiki webpage.
//(3):next, write the matrix from the high bits
//(4):finally, according to what the book explains:
The main difference with the hamming code is that the first bit (parity of bits
3 and 5) is inverted. So, ID 0 (which in hamming code is 00000) becomes 10000
in our code. The idea is to prevent a completely black rectangle from being a valid
marker ID, with the goal of reducing the likelihood of false positives with objects of
the environment.
//I invert the [p4] , and I got the matrix above.
origin Num d1 d2 d3 d4 p1 p2 p4 p1 d1 p2 d2 p4 p4 d2 p2 d1 p1 p4 d2 p2 d1 p1
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
01 1 0 0 0 1 1 0 => 1 1 1 0 0 => 0 0 1 1 1 => 1 0 1 1 1
10 0 1 0 0 1 0 1 => 1 0 0 1 1 => 1 1 0 0 1 => 0 1 0 0 1
11 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0
[ (1) ] [ (2) ] [ (3) ] [ (4) ]
I do not sure whether this is right, but I got the same result.
If it is true, then we can make our own markers with this matrix.
#Natalie and #mrjoltcola . Hope you can see this~
(this is my first time reply on this forum ,if there are something improper, I`d be glad to receiving advices :) ^_^ )

Maximum Devastation to be caused if a building with height h causes all h-1 buildings to its right to collapse

In a recent interview question I got the following problem.
In a particular city we have a row of buildings with varying heights.
The collapse of a building with height h causes the next h-1 buildings on its right to collapse too.
The height of the buildings can be between 1 and 5000. Given the heights of all the buildings (arranged from left to right ie; for leftmost building index=1 and for rightmost building index=N) we needed to find out the index of the building which would cause the maximum devastation.
For example:
Input:
Number of buildings : 6
Height of Buildings:
2 1 3 3 1 6
Answer should be building at the index 3
The solution I tried was using the brute force technique with a complexity of O(N^2).
What I did was for each building in the list I found out the number of buildings that it would destroy.
Could a better solution for this question be constructed?
Simply go from the left, collapse the first building, and calculate how much total(*) damage it did.
Do this again and again from the very next building (which hasn't collapsed).
From these, pick the maximum.
Complexity: O(n).
This greedy algorithm works because the whole process is a chain reaction, if building A forces the collapse of B, then you cannot achieve better score starting from B.
(*) You can do this by maintaining one counter which stores how many buildings to the right should be collapsed. counter = max(counter - 1, height of next building).
some areas of the city function as "firewalls" - collapse stops at that point. a little thought shows that these are sections to the left of a value of 1 where height increases (to the left) no more than once per step (if you can have 0 heights that complicates things very slightly).
and the highest scoring region must start just after a firewall (since if it didn't there would be a higher region just to the left).
so scan from the right, finding these firewalls, and then find which section to the right of a firewall has the largest damage. this is O(n) because it's just linear scans (once from right to left and then once for each section, with no overlap).
actually, Karoly's answer is equivalent and simpler to implement.
Start with rightmost index.
The last building shall cause a devastation value of 1.
Iterate leftwards.
Something like (devastation from building i)
D[i] = 1 + min( N-i, max( index[i]-1, 0+D[i+1],1+D[i+2],... to index[i]-1 terms ) )
Same approach as #Karoly's answer. In ruby:
def find_max_damage_index(buildings)
max_damage = 0
max_start_index = nil
current_start_index = nil
current_h = 0
current_damage = 0
buildings.each_with_index{|h,i|
if current_h == 0 #end of batch
if current_damage > max_damage
max_damage = current_damage
max_start_index = current_start_index
end
#start new batch
current_h = h
current_damage = 1
current_start_index = i
else
current_h = h if h > current_h
current_damage += 1
end
current_h -= 1
}
#last batch
if current_damage > max_damage
max_damage = current_damage
max_start_index = current_start_index
end
return max_start_index
end
In Java, without considering subsequent collapses:
public static int collapse(int[] buildings) {
int i, maxDamage, index, currentDamage;
// do not consider the last building, it will cause only its own fall
maxDamage = 1;
index = buildings.length - 1;
for(i = buildings.length - 1; i >= 0; i--) {
// update maximum damage as the mimimum value between the building[i] (the height of the building at index i) and the remaining number of elements from i to the end of the array
currentDamage = Math.min(buildings[i], buildings.length - i);
System.out.println(currentDamage);
if(currentDamage > maxDamage) {
maxDamage = currentDamage;
index = i;
}
}
return index;
}
My final solution is different from the accepted one, which by the way I didn't fully understand.
The idea is to count starting from the rightmost position the number of buildings that the current index will collapse.
index: 7 6 5 4 3 2 1 0
height: 1 3 1 2 4 1 3 2
damage: 1 2 1 2 4 1 3 2
Then I just make a cumulative sum, starting from the rightmost position again. I add to the number of buildings the current position collapses the number of buildings that were collapsed staring from the next building to the right that didn't collapse until the end.
index: 7 6 5 4 3 2 1 0
height: 1 3 1 2 4 1 3 2
damage: 1 2 1 2 5 1 7 8
In the end, I just return the index with the maximum damage.
This solution runs in O(n) but uses an extra O(n) space.
The next code is the complete version (also works for subsequent collapses):
public static int collapse(int[] buildings) {
int i, maxIndex, max;
int damage[] = new int[buildings.length];
for(i = buildings.length - 1; i >= 0; i--) {
// compute damage for each position
damage[i] = Math.min(buildings[i], buildings.length - i);
}
for(i = buildings.length - 1; i >= 0; i--) {
// update total accumulated damage for each position
if(damage[i] > 1) {
if(damage[i] + i - 1 < buildings.length && i != (i + damage[i] - 1) ) {
damage[i] += damage[i + damage[i] - 1] - 1;
}
}
}
max = damage[0];
maxIndex = 0;
for(i = 1; i < buildings.length; i++) {
// find the maximum damage
if(damage[i] > max) {
max = damage[i];
maxIndex = i;
}
}
return maxIndex;
}

Partitioning a no. N into M partitions

I'm trying a problem in which I have to partition a no. N into M partitions as many as possible.
Example:
N=1 M=3 , break 1 into 3 parts
0 0 1
0 1 0
1 0 0
N=3 M=2 , break 3 into 2 parts
2 1
1 2
3 0
0 3
N=4 M=4 , break 4 into 4 parts
0 0 0 4
0 0 4 0
0 4 0 0
4 0 0 0
0 0 1 3
0 1 0 3
0 1 3 0
.
.
.
and so on.
I did code a backtrack algo. which produce all the possible compositions step by step, but it chokes for some larger input.Because many compositions are same differing only in ordering of parts.I want to reduce that.Can anybody help in providing a more efficient method.
My method:
void backt(int* part,int pos,int n) //break N into M parts
{
if(pos==M-1)
{
part[pos]=n;
ppart(part); //print part array
return;
}
if(n==0)
{
part[pos]=0;
backt(part,pos+1,0);
return;
}
for(int i=0;i<=n;i++)
{
part[pos]=i;
backt(part,pos+1,n-i);
}
}
In my algo. n is N and it fill the array part[] for every possible partition of N.
What I want to know is once generating a composition I want to calculate how many times that composition will occur with different ordering.For ex: for N=1 ,M=3 ::: composition is only one : <0,0,1> ,but it occurs 3 times. Thats what I want to know for every possible unique composition.
for another example: N=4 M=4
composition <0 0 0 4> is being repeated 4 times. Similarly, for every unique composition I wanna know exactly how many times it will occur .
Looks like I'm also getting it by explaining here.Thinking.
Thanks.
You can convert an int to a partitioning as follows:
vector<int> part(int i, int n, int m)
{
int r = n; // r is num items remaining to be allocated
vector<int> result(m, 0); // m entries inited to 0
for (int j = 0; j < m-1; j++)
{
if (r == 0) // if none left stop
break;
int k = i % r; // mod out next bucket
i /= r; // divide out bucket
result[j] = k; // assign bucket
r -= k; // remove assigned items from remaining
}
result[m-1] = r; // put remainder in last bucket
return result;
}
So you can use this as follows:
for (int i = 0; true; i++)
{
vector<int> p = part(i, 3, 4);
if (i != 0 && p.back() == 3) // last part
break;
... // use p
};
It should be clear from this how to make an incremental version of part too.
A much simpler and mathematical approach:
This problem is equivalent to finding the co-efficient of x^N in the expression f(x) = (1+x+x^2+x^3+....+x^N)^M
f(x) = ((x^(N-1) - 1)/(x-1))^M
differentiate it M times(d^Nf(x)/dx^N) and the co-efficient will be (1/n!)*(d^Nf(x)/dx^N) at x = 0;
differentiation can be done using any numerical differentiation technique. So the complexity of the algorithm is O(N*complexity_of_differentiation)..

Resources