How to do text analysis in Spark - hadoop

I'm quite familiar with Hadoop but totally new to Apache Spark. Currently I'm using LDA (Latent Dirichlet Allocation) algorithm implemented in Mahout to do topic discovery. However as I need to make the process faster I'd like to use spark, however the LDA (or CVB) algorithm is not implemented in Spark MLib. Does this mean that I have to implement it from scratch by myself? If so, does Spark provide some tools that make it easier?

LDA has been added to Spark very recently. It is not part of the current 1.2.1 release.
Yet, you can find an example on the current SNAPSHOT version: LDAExample.scala
You can also read interesting information about the SPARK-1405 issue.
So how can I use it?
The simplest way while it is not released is probably to copy the following classes in your project, as if you coded them yourself:
LDA.scala
LDAModel.scala

Actually Spark 1.3.0 is out now so LDA is available !!
c.f. https://issues.apache.org/jira/browse/SPARK-1405
Regards,

Regarding how to use the new Spark LDA API in 1.3:
Here is an article describing the new API:Topic modeling with LDA: MLlib meets GraphX
And, it links to example code showing how to vectorize text input: Github LDA Example

Related

lazy evaluation in Apache Spark

I'm trying to understand lazy evaluation in Apache spark.
My understanding says:
Lets say am having Text file in hardrive.
Steps:
1) First I'll create RDD1, that is nothing but a data definition right now.(No data loaded into memory right now)
2) I apply some transformation logic on RDD1 and creates RDD2, still here RDD2 is data definition (Still no data loaded into memory)
3) Then I apply filter on RDD2 and creates RDD3 (Still no data loaded into memory and RDD3 is also an data definition)
4) I perform an action so that I could get RDD3 output in text file. So the moment I perform this action where am expecting output something from memory, then spark loads data into memory creates RDD1, 2 and 3 and produce output.
So laziness of RDDs in spark says just keep making the roadmap(RDDs) until they dont get the approval to make it or produce it live.
Is my understanding correct upto here...?
My second question here is, its said that its(Lazy Evaluation) one of the reason that the spark is powerful than Hadoop, May I know please how because am not much aware of Hadoop ? What happens in hadoop in this scenario ?
Thanks :)
Yes, your understanding is fine. A graph of actions (a DAG) is built via transformations, and they computed all at once upon an action. This is what is meant by lazy execution.
Hadoop only provides a filesystem (HDFS), a resource manager (YARN), and the libraries which allow you to run MapReduce. Spark only concerns itself with being more optimal than the latter, given enough memory
Apache Pig is another framework in the Hadoop ecosystem that allows for lazy evaluation, but it has its own scripting language compared to the wide programmability of Spark in the languages it supports. Pig supports running MapReduce, Tez, or Spark actions for computations. Spark only runs and optimizes its own code.
What happens in actual MapReduce code is that you need to procedurally write out each stage of an action to disk or memory in order to accomplish relatively large tasks
Spark is not a replacement for "Hadoop" it's a compliment.

Is there a way to do collaborative learning with h2o.ai (flow)?

Relatively new to ML and h2o. Is there a way to do collaborative learning/training with h2o? Would prefer a way that uses the flow UI, else woud be using python.
My use case is that there would be new feature samples x=[a, b, c, d] periodically coming into a system where an h2o algorithm (say, running from a java program using a MOJO) assigns a binary class that users should be able to manually reclassify as either good(0) or bad(1), at which point these samples (with their newly assigned responses) get sent back to theh h2o algorithm to be used to further train it.
Thanks
FLOW UI is great for prototyping something very quick with H2O without writing a single like of code. You can ingest the data, build desired model and the evaluate the results. Unfortunately FLOW UI is can not be extended for the reason you asked, and FLOW is limited for that reason.
For collaborative learning you can write your whole application directly in python or R and it will work as expected.

Hadoop use-case scenario

I would like to have some expert views on the use of a Big Data platform like Hadoop in one of my project scenarios. I am a complete novice in this technology although I understand databases like MySQL well.
We are creating a product which would be used to analyse data from social media. So the input data would be a large volume of tweets, facebook posts, user profiles, YouTube data and data from blogs etc. On top of this I would be having a web application to help me view and analyse this data. As the requirement makes it clear, I would be needing a sort of real time system. So if I have a tweet coming in, I would like to have it available to my web app readily for processing. Batch data processing may not be a suitable choice for my application.
My questions are:
Is a Hadoop engine a good choice for me?
What are the parameter I should base my decision on?
Is it also a good option to use a Multi Cluster MySQL engine as opposed to Hadoop?
Is there any benchmarking in terms of Size and velocity of data in which Hadoop becomes a good choice?
Hadoop is not appropriate for near real time / interactive analysis. Hadoop was designed to do big batch processing of say a few hours of data plus. I used to use Hadoop to process any dataset that was around 10 GB or more (which is still a bit overkill), once it get's to 100 GB then you defo want something like Hadoop.
Now my recommendation would be for Spark as this is much more modern, much faster, more flexible, more powerful, and has a SparkStreaming module for achieving closer to real time analysis. Read all about it! https://spark.apache.org/
In this case I prefer the Lambda Architecture.
With Lambda Architecture you have two routes: A fast route with a noSQL database for the current informations, and a batch route with hadoop-hdfs for the archive data, and with a merge component you can merge the two datasources in one query, so you receive a whole amount of data, which is near real time.
http://lambda-architecture.net/
Image about lambda architecture: http://i.stack.imgur.com/eofRW.png
We created a PoC Project with Lambda Architecture (also for Twitter analysis), and its working fine.
Spark will be the best solution for your problem.You can also look other in-memory databases.

Hadoop and Stata

Does anyone have any experience using Stata and Hadoop? Stata 13 now has a Java Plugin API, so I think it should be straightforward to get them to play nice.
I am particularly interested in being able to parse weblog data to get it into a form suitable for statistical analysis.
This question came up on Statalist recently, but there was no response, so I thought I would try it here where the audience is more likely to have experience with this technology.
Dimitry,
I think it would be easier to do something like this using the ELK Stack (http://www.elastic.co). Logstash (the middle layer) has several parsers/tokenizers/analyzes built on the Apache Lucene engine for cleaning and formatting log data and can push the resulting data into elasticsearch, which exposes an HTTP API that you can curl fairly easily to get results (e.g., use insheetjson and pass the HTTP GET request as the URL and it should be imported into Stata without much problem).
I've been trying to cobble together a program to use the Jackson JSON library to build out more robust JSON I/O capabilities from within Stata and would definitely not mind trying to work with others to get it done.
Hope this helps,
Billy
I'll take an (un?)educated stab at this. From the looks of the java API, the caller seems to treat Stata as essentially a datastore. If that's the case, then I would imagine Stata would fit in to the hadoop world as a database and would be accessed by its own InputFormat and OutputFormat. In your specific case I'd imagine you'd write a StataOutputFormat which your reducer would use to write the parsed data. The only drawback seems to be your referenced comments that Stata apps tend to be I/O bound so I don't know that using hadoop is really going to help you since
you'll have to write all that data anyway, and
that write will be I/O bound, whether you use hadoop or not.

Streaming data and Hadoop? (not Hadoop Streaming)

I'd like to analyze a continuous stream of data (accessed over HTTP) using a MapReduce approach, so I've been looking into Apache Hadoop. Unfortunately, it appears that Hadoop expects to start a job with an input file of fixed size, rather than being able to hand off new data to consumers as it arrives. Is this actually the case, or am I missing something? Is there a different MapReduce tool that works with data being read in from an open socket? Scalability is an issue here, so I'd prefer to let the MapReducer handle the messy parallelization stuff.
I've played around with Cascading and was able to run a job on a static file accessed via HTTP, but this doesn't actually solve my problem. I could use curl as an intermediate step to dump the data somewhere on a Hadoop filesystem and write a watchdog to fire off a new job every time a new chunk of data is ready, but that's a dirty hack; there has to be some more elegant way to do this. Any ideas?
The hack you describe is more or less the standard way to do things -- Hadoop is fundamentally a batch-oriented system (for one thing, if there is no end to the data, Reducers can't ever start, as they must start after the map phase is finished).
Rotate your logs; as you rotate them out, dump them into HDFS. Have a watchdog process (possibly a distributed one, coordinated using ZooKeeper) monitor the dumping grounds and start up new processing jobs. You will want to make sure the jobs run on inputs large enough to warrant the overhead.
Hbase is a BigTable clone in the hadoop ecosystem that may be interesting to you, as it allows for a continuous stream of inserts; you will still need to run analytical queries in batch mode, however.
What about http://s4.io/. It's made for processing streaming data.
Update
A new product is rising: Storm - Distributed and fault-tolerant realtime computation: stream processing, continuous computation, distributed RPC, and more
I think you should take a look over Esper CEP ( http://esper.codehaus.org/ ).
Yahoo S4 http://s4.io/
It provide real time stream computing, like map reduce
Twitter's Storm is what you need, you can have a try!
Multiple options here.
I suggest the combination of Kafka and Storm + (Hadoop or NoSql) as the solution.
We already build our big data platform using those opensource tools, and it works very well.
Your use case sounds similar to the issue of writing a web crawler using Hadoop - the data streams back (slowly) from sockets opened to fetch remote pages via HTTP.
If so, then see Why fetching web pages doesn't map well to map-reduce. And you might want to check out the FetcherBuffer class in Bixo, which implements a threaded approach in a reducer (via Cascading) to solve this type of problem.
As you know the main issues with Hadoop for usage in stream mining are the fact that first, it uses HFDS which is a disk and disk operations bring latency that will result in missing data in stream. second, is that the pipeline is not parallel. Map-reduce generally operates on batches of data and not instances as it is with stream data.
I recently read an article about M3 which tackles the first issue apparently by bypassing HDFS and perform in-memory computations in objects database. And for the second issue, they are using incremental learners which are not anymore performed in batch. Worth checking it out M3
: Stream Processing on
Main-Memory MapReduce. I could not find the source code or API of this M3 anywhere, if somebody found it please share the link here.
Also, Hadoop Online is also another prototype that attemps to solve the same issues as M3 does: Hadoop Online
However, Apache Storm is the key solution to the issue, however it is not enough. You need some euqivalent of map-reduce right, here is why you need a library called SAMOA which actually has great algorithms for online learning that mahout kinda lacks.
Several mature stream processing frameworks and products are available on the market. Open source frameworks are e.g. Apache Storm or Apache Spark (which can both run on top of Hadoop). You can also use products such as IBM InfoSphere Streams or TIBCO StreamBase.
Take a look at this InfoQ article, which explains stream processing and all these frameworks and products in detail: Real Time Stream Processing / Streaming Analytics in Combination with Hadoop. Besides the article also explains how this is complementary to Hadoop.
By the way: Many software vendors such as Oracle or TIBCO call this stream processing / streaming analytics approach "fast data" instead of "big data" as you have to act in real time instead of batch processing.
You should try Apache Spark Streaming.
It should work well for your purposes.

Resources