error adding symbols while compiling gdcm - gcc

I wanted to compile gdcm from source code on eOS 0.3/Ubuntu 14.04, and add python support. Therefore I installed swig, and afterwards ran ccmake (for configuring the make file) and make. Unfortunately I get the error:
../../bin/libgdcmMEXD.a: error adding symbols
How can I fix that?

I would try to build using shared libs instead. From the ccmake interface you should see something like
GDCM_BUILD_SHARED_LIBS ON
Then rebuild:
$ make clean && make

Related

Linking libxml with MinGW using OMNETPP shell on windows 10

How can I link libxml on MinGW when using an omnetpp shell?
I am using omnetpp on a windows 10 machine.
My problem happens when I am trying to install the 3rd party package from here
I think that there is a problem in the Makefile failing to locate the libxml library
Following Rudi's answer (following the question) I changed the Makefile libxml path to I/mingw64/include/libxml2 but I still
get a undefined reference to 'xmlFunctionName' error (for many function names)
I tried to isolate the problem and to compile a sample of code from libxml2
Following the compilation guide: using gcc `xml2-config --cflags --libs` -o tree2 tree2.c
I got a fatal error: 'libxml/parser.h' file not found
When I replaced xml2-config --cflags --libs with -I/mingw64/include/libxml2
I got the same error as before undefined reference to 'xmlFunctionName'
what can I do to resolve that issue?
To this specific problem: libxml2 is actually already present as OMNET 5.x also uses it. All dependencies and tools are available in the tools/win64/mingw64 directory. The problem is that (for unknown reasons) the include file of the include/libxml2/libxml folder. The configure script correctly detects this and makes it available in the Makefile.inc as XML_CFLAGS= = -I/mingw64/include/libxml2
This must be added to the compiler flags for each file where you want to use the XML parser. (the library files are in the /mingw64/lib folder) so those are detected and can be used without additional config.
Generally, third party libraries should be available in the /mingw64/include and /mingw64/lib folders. You can either copy them manually there or try to install it with the mingw package manager (however that will most likely ruin your omnet installation as mingw64 is not particularly consistent and it is a rolling release - i.e. this is highly not recommended).

Using local makefile for CLion instead of CMake

Is there a way to configure CLion to use a local makefile to compile code, rather than CMake? I can't seem to find the way to do it from the build options.
Update: If you are using CLion 2020.2, then it already supports Makefiles. If you are using an older version, read on.
Even though currently only CMake is supported, you can instruct CMake to call make with your custom Makefile. Edit your CMakeLists.txt adding one of these two commands:
add_custom_target
add_custom_command
When you tell CLion to run your program, it will try to find an executable with the same name of the target in the directory pointed by PROJECT_BINARY_DIR. So as long as your make generates the file where CLion expects, there will be no problem.
Here is a working example:
Tell CLion to pass its $(PROJECT_BINARY_DIR) to make
This is the sample CMakeLists.txt:
cmake_minimum_required(VERSION 2.8.4)
project(mytest)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
add_custom_target(mytest COMMAND make -C ${mytest_SOURCE_DIR}
CLION_EXE_DIR=${PROJECT_BINARY_DIR})
Tell make to generate the executable in CLion's directory
This is the sample Makefile:
all:
echo Compiling $(CLION_EXE_DIR)/$# ...
g++ mytest.cpp -o $(CLION_EXE_DIR)/mytest
That is all, you may also want to change your program's working directory so it executes as it is when you run make from inside your directory. For this edit: Run -> Edit Configurations ... -> mytest -> Working directory
While this is one of the most voted feature requests, there is one plugin available, by Victor Kropp, that adds support to makefiles:
Makefile support plugin for IntelliJ IDEA
Install
You can install directly from the official repository:
Settings > Plugins > search for makefile > Search in repositories > Install > Restart
Use
There are at least three different ways to run:
Right click on a makefile and select Run
Have the makefile open in the editor, put the cursor over one target (anywhere on the line), hit alt + enter, then select make target
Hit ctrl/cmd + shift + F10 on a target (although this one didn't work for me on a mac).
It opens a pane named Run target with the output.
Newest version has better support literally for any generated Makefiles, through the compiledb
Three steps:
install compiledb
pip install compiledb
run a dry make
compiledb -n make
(do the autogen, configure if needed)
there will be a compile_commands.json file generated
open the project and you will see CLion will load info from the json file.
If you your CLion still try to find CMakeLists.txt and cannot read compile_commands.json, try to remove the entire folder, re-download the source files, and redo step 1,2,3
Orignal post: Working with Makefiles in CLion using Compilation DB
To totally avoid using CMAKE, you can simply:
Build your project as you normally with Make through the terminal.
Change your CLion configurations, go to (in top bar) :
Run -> Edit Configurations -> yourProjectFolder
Change the Executable to the one generated with Make
Change the Working directory to the folder holding your executable (if needed)
Remove the Build task in the Before launch:Activate tool window box
And you're all set! You can now use the debug button after your manual build.
Currently, only CMake is supported by CLion. Others build systems will be added in the future, but currently, you can only use CMake.
An importer tool has been implemented to help you to use CMake.
Edit:
Source : http://blog.jetbrains.com/clion/2014/09/clion-answers-frequently-asked-questions/
I am not very familiar with CMake and could not use Mondkin's solution directly.
Here is what I came up with in my CMakeLists.txt using the latest version of CLion (1.2.4) and MinGW on Windows (I guess you will just need to replace all:
g++ mytest.cpp -o bin/mytest by make if you are not using the same setup):
cmake_minimum_required(VERSION 3.3)
project(mytest)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
add_custom_target(mytest ALL COMMAND mingw32-make WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
And the custom Makefile is like this (it is located at the root of my project and generates the executable in a bin directory):
all:
g++ mytest.cpp -o bin/mytest
I am able to build the executable and errors in the log window are clickable.
Hints in the IDE are quite limited through, which is a big limitation compared to pure CMake projects...

building my own gcc version

My distro (CentOS 6.3) comes with gcc 4.4.6. Since I wanted to try out the Fortran2003 features I decided to compile gcc 4.7.
I followed the steps I found online: compiled separately first gmp, mpc, mpfr, ppl and cloog and the compiled gcc.
I run the configured script as:
configure --prefix=... --with-gmp=... --with-mpfr=... --with-mpc=... --program-suffix=-4.7 --enable-cloog-backend=isl --with-ppl=... --with-cloog=... --disable-multilib
This worked all right and I was able to compile with make & make install.
Now, when trying my new compiler with a simple test program (a hello world kind of thing) I get the error:
gfortran-4.7 -o test test.F90
/home/amcastro/gcc-4.7/output/libexec/gcc/x86_64-unknown-linux-gnu/4.7.0/f951: error while loading shared libraries: libcloog-isl.so.1: cannot open shared object file: No such file or directory
So I decide to set LD_LIBRARY_PATH=/home/amcastro/gcc-4.7/output/lib
and then I can compile.
When running I get the error:
./test
./test: error while loading shared libraries: libquadmath.so.0: cannot open shared object file: No such file or directory
So I set LD_LIBRARY_PATH=/home/amcastro/gcc-4.7/output/lib:/home/amcastro/gcc-4.7/output/lib64
and now the program runs normally.
The question is: Why is that my distro version of gcc (4.4.6) does not need me to set LD_LIBRARY_PATH? how does the distro gcc know where to look for these dynamically liked libraries? should I somehow make them to link statically?
I read also that setting LD_LIBRARY_FLAG is not a good idea. Is there another solution?
Thank you in advance
A.

How to build boost with mpi support on homebrew?

According to this post (https://github.com/mxcl/homebrew/pull/2953), the flag "--with-mpi" should enable boost_mpi build support for the related homebrew formula, so I am trying to install boost via homebrew like this:
brew install boost --with-mpi
However, the actual boost mpi library is not being build and can not be found.
There is currently some work being done around this, according to: https://github.com/mxcl/homebrew/pull/15689
In summary, I can currently build boost, but it seems the "--with-mpi" flag is being ignored. Could someone please check, if I should be able to build boost (with mpi support) on Mac OS X Mountain Lion (10.8)?
The (verbose) output generates these lines:
MPI auto-detection failed: unknown wrapper compiler mpic++
Please report this error to the Boost mailing list: http://www.boost.org
You will need to manually configure MPI support.
warning: skipping optional Message Passing Interface (MPI) library.
note: to enable MPI support, add "using mpi ;" to user-config.jam.
note: to suppress this message, pass "--without-mpi" to bjam.
note: otherwise, you can safely ignore this message.
Not sure how exactly I can fix this and get the mpi stuff to be build - any ideas?
Just in case this helps anyone else along the line, here's how I fixed this. The main error is MPI auto-detection failed: unknown wrapper compiler mpic++, any typing mpic++ at the command line verified that it was not working properly for me. I used brew to install open-mpi, but the same error was showing in the verbose output for installing boost. A run of brew doctor showed that openmpi was not linked properly, so I fixed those errors and reran brew -v install boost --with-mpi --without-single and it finally built and installed all of the libraries without a problem
To anyone that comes across this, the package migrated to boost-python and boost-mpi separate from boost. Use brew install boost-mpi
Just get it worked on OSX 10.11.5. I've tried brew, but with no luck.
Suppose you already have gcc installed. Here are what I've done:
1. Find and disable (but do not remove) clang
clang alway cause headaches. There would be a lot of warnings when building Boost.
which clang, which should give you /usr/bin/clang
Rename it: sudo mv clang clang_mac_remove, also for clang++: sudo mv clang++ clang++_mac_remove. You can change the names back if you need them in future.
2. Install OpenMPI
If you already installed using brew, uninstall first. Becasue it would have used clang as the compiler wrapper by default. You need to change the wrapper to gcc.
Download the package.
Specify the wrapper compiler to gcc and g++:
./configure CC=gcc CXX=g++ F77=ifort FC=ifort --prefix=/usr/local
Below may take a long time.
make all
sudo make install
Reference: https://wiki.helsinki.fi/display/HUGG/Open+MPI+install+on+Mac+OS+X
3. Install Boost MPI
Download the package.
Run ./bootstrap.sh (can open it first and specify the toolset to gcc, otherwise, the default option is darwin for mac).
Add using mpi ; in project-config.jam file. Then ./b2 —with-mpi will only build the mpi library.
Then, all built libraries can be found in the folder ~/Downloads/boost_1_61_0/stage/lib.
Copy or move them to /usr/local/lib or any other commonly used library path.
Reference: http://www.boost.org/doc/libs/1_61_0/doc/html/mpi/getting_started.html
4. Compile with Boost MPI
LIBRARY DIR = -L/usr/local/lib
INCLUDE = -I/usr/local/include/
LINKER = -lboost_mpi -lboost_serialization
e.g.
mpic++ -std=c++11 -I/usr/local/include/ -c boost_test.cpp -L/usr/local/lib -lboost_mpi -lboost_serialization
Good luck!

Disable -Werror in 'configure' file

While making a project with Makefile, I get this error:
error: implicit declaration of function ‘fatal’ [-Werror=implicit-function-declaration]
cc1: all warnings being treated as errors
The ./configure --help shows:
Optional Features:
--disable-option-checking ignore unrecognized --enable/--with options
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
--enable-FEATURE[=ARG] include FEATURE [ARG=yes]
--disable-dependency-tracking speeds up one-time build
--enable-dependency-tracking do not reject slow dependency extractors
--disable-gtktest do not try to compile and run a test GTK+ program
--enable-debug Turn on debugging
How can I tell configure not to include -Werror?
Werror is a GCC argument, and you cannot remove it directly via ./configure. Otherwise, an option like --disable-error would show up in the help text. However, it's possible.
Set an environment variable:
export CFLAGS="-Wno-error"
That's for C compilers. If the project uses C++, do:
export CXXFLAGS="-Wno-error"
In the very rare case the project does not honor this variables, your last resort is to edit the configure.ac file and search for -Werror and remove it from the string it occurs in (be careful though).
It seems like the feature has been in autotools for many years:
./configure --disable-werror
Unfortunately, I wasn't able to get the following specific case to work:
./configure --enable-wno-error=unused-value
Maybe it could work if one escaped the '=' symbol, assuming it's possible. Like skim says, one can still use CFLAGS or CXXFLAGS.
I had to use --disable-Werror (with an uppercase W) on my module. While sudoman's answer above suggests to use --disable-werror (with a lowercase w).
It may look like a typo, but it is actually dependent on your particular configure setup, especially if configure is generated by autoconf. What needs to be passed to the configure script to disable Werror depends on how the build system was setup.
If your project uses the AX_COMPILER_FLAGS option from the autoconf-archive project, then by default -Werror is enabled.
In another module you may find something like this:
+AC_ARG_ENABLE([werror],
+ AC_HELP_STRING([--disable-werror],
+ [do not build with -Werror]),
And thus you would need to use --disable-werror.
This works for me, compiling curlpp on Lubuntu 16.10:
./configure --disable-ewarning
I ran into this problem, and it turned out that GCC was not installed on my freshly-started EC2 instance running Ubuntu 20.04 (Focal Fossa).
Simply running sudo apt install gcc fixed this issue for me.

Resources