How to distribute data and computation to maximize locality? - hadoop

Please bear with me, this is a basic architectural question for my first attempt at a "big data" project, but I believe your answers will be of general interest to anyone who is starting out in this field.
I've googled and read the high-level descriptions of Kafka, Storm, Memcached, MongoDB, etc., but now that I'm ready to dig in to start designing my app, I still need some further insight on how in fact the data should be distributed and shared.
The performance of my app is critical, so one objective is to somehow maximize the locality of the data in the RAM of the machines doing the distributed calculations. I need advice for this part of the design.
If my app had some clear criteria for a priori sharding the data and distributing the calculations (such as geographical regions or company divisions) then the solution would be obvious. But unfortunately my app's data access patterns are dynamic and depend on the results of previous calculations.
My app is an analysis program with distinct stages. In the first stage, all the data is accessed once and a metric is calculated for each data object. In the second stage, a subset of the data objects may be accessed, with the probability of access being proportional to each data object's metric that was calculated in the previous stage. In the final stage, a relatively small subset of data objects will be accessed many times for many calculations.
At all stages, it is required that the calculations be distributed across several servers. The calculations are embarassingly parallel, and each distributed calculation only needs to access a few data objects. It is also required that the number of servers can be specified before the app runs (for example, run on one server, or run on fifty servers).
It seems to me that I need some mechanism that distributes the appropriate data objects to the appropriate compute servers, as opposed to just blindly fetching the data from some database service (whether centralized or distributed). Also, it seems to me that some sort of smart caching system might be appropriate, since the data access pattern depends on the previous calculations and cannot be predicted a priori. But as far as I can tell, Memcached is not such a system because the sharding is determined a priori.
I've read many times that the operating system cache performs better than any monkeying around that we may try. I think the ideal solution is that each compute server's RAM cache somehow captures the data objects' dynamic access patterns, but it's not clear to me how this would work with a NoSQL or Memcached service.
Thanks for bearing with me this far. I realize this is a basic question, but the answer eludes me so far. I can't resolve the dynamic access patterns of my app with the a priori sharding of the NoSQL/Memcached packages. Any advice would be greatly appreciated.

I recommend you to take a look at http://tarantool.org. Shard to maximize locality for the most common data access pattern, use Lua for local computations, and net.box to issue a remote RPC when calculation needs to continue on another node. All data is stored in RAM, if you write your computation code carefully it could take advantage of the Just In Time compiler.

Related

Which caching mechanism to use in my spring application in below scenarios

We are using Spring boot application with Maria DB database. We are getting data from difference services and storing in our database. And while calling other service we need to fetch data from db (based on mapping) and call the service.
So to avoid database hit, we want to cache all mapping data in cache and use it to retrieve data and call service API.
So our ask is - Add data in Cache when it gets created in database (could add up-to millions records) and remove from cache when status of one of column value is "xyz" (for example) or based on eviction policy.
Should we use in-memory cache using Hazelcast/ehCache or Redis/Couch base?
Please suggest.
Thanks
I mostly agree with Rick in terms of don't build it until you need it, however it is important these days to think early of where this caching layer would fit later and how to integrate it (for example using interfaces). Adding it into a non-prepared system is always possible but much more expensive (in terms of hours) and complicated.
Ok to the actual question; disclaimer: Hazelcast employee
In general for caching Hazelcast, ehcache, Redis and others are all good candidates. The first question you want to ask yourself though is, "can I hold all necessary records in the memory of a single machine. Especially in terms for ehcache you get replication (all machines hold all information) which means every single node needs to keep them in memory. Depending on the size you want to cache, maybe not optimal. In this case Hazelcast might be the better option as we partition data in a cluster and optimize the access to a single network hop which minimal overhead over network latency.
Second question would be around serialization. Do you want to store information in a highly optimized serialization (which needs code to transform to human readable) or do you want to store as JSON?
Third question is about the number of clients and threads that'll access the data storage. Obviously a local cache like ehcache is always the fastest option, for the tradeoff of lots and lots of memory. Apart from that the most important fact is the treading model the in-memory store uses. It's either multithreaded and nicely scaling or a single-thread concept which becomes a bottleneck when you exhaust this thread. It is to overcome with more processes but it's a workaround to utilize todays systems to the fullest.
In more general terms, each of your mentioned systems would do the job. The best tool however should be selected by a POC / prototype and your real world use case. The important bit is real world, as a single thread behaves amazing under low pressure (obviously way faster) but when exhausted will become a major bottleneck (again obviously delaying responses).
I hope this helps a bit since, at least to me, every answer like "yes we are the best option" would be an immediate no-go for the person who said it.
Build InnoDB with the memcached Plugin
https://dev.mysql.com/doc/refman/5.7/en/innodb-memcached.html

What is the difference and how to choose between distributed queue and distributed computing platform?

there are many files need to process with two computers real-timely,I want to distribute them to the two computers and these tasks need to be completed as soon as possibile(means real-time processing),I am thinking about the below plan:
(1) distributed queue like Gearman
(2)distributed computing platform like hadoop/spark/storm/s4 and so on
I have two questions
(1)what is the advantage and disadvantage between (1) and (2)?
(2) How to choose in (2),hadoop?spark?storm?s4?or other?
thanks!
Maybe I have not described the question clearly. In most case,there are 1000-3000 files with the same format , these files are independent,you do not need to care their order,the size of one file maybe tens to hundreds of KB and in the future, the number of files and size of single file will rise. I have wrote a program , it can process the file and pick up the data and then store the data in mongodb. Now there are only two computers, I just want a solution that can process these files with the program quickly(as soon as possibile) and is easy to extend and maintain
distributed queue is easy to use in my case bur maybe hard to extend and maintain , hadoop/spark is to "big" in the two computers but easy to extend and maintain, which is better, i am confused.
It depends a lot on the nature of your "processing". Some dimensions that apply here are:
Are records independent from each other or you need some form of aggregation? i.e: do you need some pieces of data to go together? Say, all transactions from a single user account.
Is you processing CPU bound? Memory bound? FileSystem bound?
What will be persisted? How will you persist it?
Whenever you see new data, do you need to recompute any of the old?
Can you discard data?
Is the data somewhat ordered?
What is the expected load?
A good solution will depend on answers to these (and possibly others I'm forgetting). For instance:
If computation is simple but storage and retrieval is the main concern, you should maybe look into a distributed DB rather than either of your choices.
It could be that you are best served by just logging things into a distributed filesystem like HDFS and then run batch computations with Spark (should be generally better than plain hadoop).
Maybe not, and you can use Spark Streaming to process as you receive the data.
If order and consistency are important, you might be better served by a publish/subscribe architecture, especially if your load could be more than what your two servers can handle, but there are peak and slow hours where your workers can catch up.
etc. So the answer to "how you choose?" is "by carefully looking at the constraints of your particular problem, estimate the load demands to your system and picking the solution that better matches those". All of these solutions and frameworks dominate the others, that's why they are all alive and kicking. The choice is all in the tradeoffs you are willing/able to make.
Hope it helps.
First of all, dannyhow is right - this is not what real-time processing is about. There is a great book http://www.manning.com/marz/ which says a lot about lambda archtecture.
The two ways you mentioned serves completly different purposes and are connected to the definition of word "task". For example, Spark will take a whole job you got for him and divide it into "tasks", but the outcome of one task is useless for you, you still need to wait for whole job to finish. You can create small jobs working on the same dataset and use spark's caching to speed it up. But then you won't get much advantage from distribution (if they have to be run one after another).
Are the files big? Are there connected somehow to each other? If yes, I'd go with Spark. If no, distributed queue.

Growing hash-of-queues beyond main memory limits

I have a cluster application, which is divided into a controller and a bunch of workers. The controller runs on a dedicated host, the workers phone in over the network and get handed jobs, so far so normal. (Basically the "divide-and-conquer pipeline" from the zeromq manual, with job-specific wrinkles. That's not important right now.)
The controller's core data structure is unordered_map<string, queue<string>> in pseudo-C++ (the controller is actually implemented in Python, but I am open to the possibility of rewriting it in something else). The strings in the queues define jobs, and the keys of the map are a categorization of the jobs. The controller is seeded with a set of jobs; when a worker starts up, the controller removes one string from one of the queues and hands it out as the worker's first job. The worker may crash during the run, in which case the job gets put back on the appropriate queue (there is an ancillary table of outstanding jobs). If it completes the job successfully, it will send back a list of new job-strings, which the controller will sort into the appropriate queues. Then it will pull another string off some queue and send it to the worker as its next job; usually, but not always, it will pick the same queue as the previous job for that worker.
Now, the question. This data structure currently sits entirely in main memory, which was fine for small-scale test runs, but at full scale is eating all available RAM on the controller, all by itself. And the controller has several other tasks to accomplish, so that's no good.
What approach should I take? So far, I have considered:
a) to convert this to a primarily-on-disk data structure. It could be cached in RAM to some extent for efficiency, but jobs take tens of seconds to complete, so it's okay if it's not that efficient,
b) using a relational database - e.g. SQLite, (but SQL schemas are a very poor fit AFAICT),
c) using a NoSQL database with persistency support, e.g. Redis (data structure maps over trivially, but this still appears very RAM-centric to make me feel confident that the memory-hog problem will actually go away)
Concrete numbers: For a full-scale run, there will be between one and ten million keys in the hash, and less than 100 entries in each queue. String length varies wildly but is unlikely to be more than 250-ish bytes. So, a hypothetical (impossible) zero-overhead data structure would require 234 – 237 bytes of storage.
Ultimately, it all boils down on how you define efficiency needed on part of the controller -- e.g. response times, throughput, memory consumption, disk consumption, scalability... These properties are directly or indirectly related to:
number of requests the controller needs to handle per second (throughput)
acceptable response times
future growth expectations
From your options, here's how I'd evaluate each option:
a) to convert this to a primarily-on-disk data structure. It could be
cached in RAM to some extent for efficiency, but jobs take tens of
seconds to complete, so it's okay if it's not that efficient,
Given the current memory hog requirement, some form of persistent storage seems a reaonsable choice. Caching comes into play if there is a repeatable access pattern, say the same queue is accessed over and over again -- otherwise, caching is likely not to help.
This option makes sense if 1) you cannot find a database that maps trivially to your data structure (unlikely), 2) for some other reason you want to have your own on-disk format, e.g. you find that converting to a database is too much overhead (again, unlikely).
One alternative to databases is to look at persistent queues (e.g. using a RabbitMQ backing store), but I'm not sure what the per-queue or overall size limits are.
b) using a relational database - e.g. SQLite, (but SQL schemas are a
very poor fit AFAICT),
As you mention, SQL is probably not a good fit for your requirements, even though you could surely map your data structure to a relational model somehow.
However, NoSQL databases like MongoDB or CouchDB seem much more appropriate. Either way, a database of some sort seems viable as long as they can meet your throughput requirement. Many if not most NoSQL databases are also a good choice from a scalability perspective, as they include support for sharding data across multiple machines.
c) using a NoSQL database with persistency support, e.g. Redis (data
structure maps over trivially, but this still appears very RAM-centric
to make me feel confident that the memory-hog problem will actually go
away)
An in-memory database like Redis doesn't solve the memory hog problem, unless you set up a cluster of machines that each holds a part of the overall data. This makes sense only if keeping all data in-memory is needed due to low response times requirements. Yet, given the nature of your jobs, taking tens of seconds to complete, response times, respective to workers, hardly matter.
If you find, however, that response times do matter, Redis would be a good choice, as it handles partitioning trivially using either client-side consistent-hashing or at the cluster level, thus also supporting scalability scenarios.
In any case
Before you choose a solution, be sure to clarify your requirements. You mention you want an efficient solution. Since efficiency can only be gauged against some set of requirements, here's the list of questions I would try to answer first:
*Requirements
how many jobs are expected to complete, say per minute or per hour?
how many workers are needed to do so?
concluding from that:
what is the expected load in requestes/per second, and
what response times are expected on part of the controller (handing out jobs, receiving results)?
And looking into the future:
will the workload increase, i.e. does your solution need to scale up (more jobs per time unit, more more data per job?)
will there be a need for persistency of jobs and results, e.g. for auditing purposes?
Again, concluding from that,
how will this influence the number of workers?
what effect will it have on the number of requests/second on part of the controller?
With these answers, you will find yourself in a better position to choose a solution.
I would look into a message queue like RabbitMQ. This way it will first fill up the RAM and then use the disk. I have up to 500,000,000 objects in queues on a single server and it's just plugging away.
RabbitMQ works on Windows and Linux and has simple connectors/SDKs to about any kind of language.
https://www.rabbitmq.com/

Oracle (RAC) vs NoSQL

I am curious if anybody did benchmarks for accessing of data in NoSQL databases vs Oracle (particularly I am talking about Oracle RAC)?
The project requires to work with at least 10mil+ of records, search among them (but not necessary have to be real time), the read is very important for speed, and it's also very important to guarantee HA and reliability (can't lose records!!!)
I can see for myself how say Cassandra/MongoDB might be better fit (because key value storage will provide faster reads than SQL when you go over 10mil records), but I find difficult to articulate all of them nicely. Any links? Suggestions? Bullet points?
Thanks!
10 million records. Assume 250 bytes per record. That is about 2.5 Gb of data, which is well within the capacity of a basic desktop / laptop PC. The data volumes are insignificant (unless each record is sized in Mb, such as picture or audio).
What you do need to talk about is transaction volumes (separated into read and write) and what you consider HA. Read-only HA is easy relative to "Read-write HA". It can be trivial to replicate a read-only data set off to multiple servers at different geographic locations and distribute a query workload on them.
It's much harder to scale out an update heavy workload, which is why you often hear about systems going into meltdown when tickets for a big concert are released. Quite simply there's a fixed number of seats and you can't have ten duplicated systems each selling what they think is available. There has to be a single source of truth, which means a bottleneck (and potentially a single point of failure).
On the HA aspect, RAC is a shared storage technology which generally means your RAC nodes are in close proximity. That can make them vulnerable to localized events such as a building fire or telecoms breakdown. Data Guard is the Oracle technology that relates to off-site replication and failover.
Mostly when you come to comparison of NoSQL vs SQL, you have to understand a very important difference between them. Data in NoSQL may be inconsistent in cost order to achieve HA.
What do I mean by inconsistent? It depends, but usually around 3-5 seconds to propagate the data around nodes. NoSQL database provide mechanism to manage and eliminate that, but if you want all your data be consistent in real time, then you simply use classic SQL, like Oracle RAC.
Coming back to speed comparison: it's simply incomparable which one is faster, because it relays on factors like network infrastructure, computing power and database model etc. But important thing is that at some point you may reach the moment that SQL is economically inefficient to maintain and you have to switch to NoSQL.

Recommendation for a large-scale data warehousing system

I have a large amount of data I need to store, and be able to generate reports on - each one representing an event on a website (we're talking over 50 per second, so clearly older data will need to be aggregated).
I'm evaluating approaches to implementing this, obviously it needs to be reliable, and should be as easy to scale as possible. It should also be possible to generate reports from the data in a flexible and efficient way.
I'm hoping that some SOers have experience of such software and can make a recommendation, and/or point out the pitfalls.
Ideally I'd like to deploy this on EC2.
Wow. You are opening up a huge topic.
A few things right off the top of my head...
think carefully about your schema for inserts in the transactional part and reads in the reporting part, you may be best off keeping them separate if you have really large data volumes
look carefully at the latency that you can tolerate between real-time reporting on your transactions and aggregated reporting on your historical data. Maybe you should have a process which runs periodically and aggregates your transactions.
look carefully at any requirement which sees you reporting across your transactional and aggregated data, either in the same report or as a drill-down from one to the other
prototype with some meaningful queries and some realistic data volumes
get yourself a real production quality, enterprise ready database, i.e. Oracle / MSSQL
think about using someone else's code/product for the reporting e.g. Crystal/BO / Cognos
as I say, huge topic. As I think of more I'll continue adding to my list.
HTH and good luck
#Simon made a lot of excellent points, I'll just add a few and re-iterate/emphasize some others:
Use the right datatype for the Timestamps - make sure the DBMS has the appropriate precision.
Consider queueing for the capture of events, allowing for multiple threads/processes to handle the actual storage of the events.
Separate the schemas for your transactional and data warehouse
Seriously consider a periodic ETL from transactional db to the data warehouse.
Remember that you probably won't have 50 transactions/second 24x7x365 - peak transactions vs. average transactions
Investigate partitioning tables in the DBMS. Oracle and MSSQL will both partition on a value (like date/time).
Have an archiving/data retention policy from the outset. Too many projects just start recording data with no plans in place to remove/archive it.
Im suprised none of the answers here cover Hadoop and HDFS - I would suggest that is because SO is a programmers qa and your question is in fact a data science question.
If youre dealing with a large number of queries and large processing time, you would use HDFS (a distributed storage format on EC) to store your data and run batch queries (I.e. analytics) on commodity hardware.
You would then provision as many EC2 instances as needed (hundreds or thousands depending on how big your data crunching requirements are) and run map reduce queires against.your data to produce reports.
Wow.. This is a huge topic.
Let me begin with databases. First get something good if you are going to have crazy amounts to data. I like Oracle and Teradata.
Second, there is a definitive difference between recording transactional data and reporting/analytics. Put your transactional data in one area and then roll it up on a regular schedule into a reporting area (schema).
I believe you can approach this two ways
Throw money at the problem: Buy best in class software (databases, reporting software) and hire a few slick tech people to help
Take the homegrown approach: Build only what you need right now and grow the whole thing organically. Start with a simple database and build a web reporting framework. There are a lot of descent open-source tools and inexpensive agencies that do this work.
As far as the EC2 approach.. I'm not sure how this would fit into a data storage strategy. The processing is limited which is where EC2 is strong. Your primary goal is effecient storage and retreival.

Resources