valid 0 and 1 String recursion - algorithm

I want to write a recursive algorithm that evaluates a string of ones and zeros and determines if the string is valid. The string is invalid if the string contains 3 zeroes in a row.
For example :
1010010001 invalid
1111101101 valid
1000111101 invalid
I have no idea how to write this algorithm. Thank you for any help.

You can do something like this ( assuming str is your string and n is its length and indexing is 0 based )
func ( index )
if index >= n
return true
if index < 2
return func(index+1)
if str[index] is 0 and str[index-1] is 0 and str[index-2] is 0
return false
return func(index+1)
// call func(0) , assuming str is global , also answer is boolean
answer = func(0)
Time complexity is O(n). Just for completeness for such a strightforward
thing I would just write it iteratively using a loop.
//This is in c/c++
bool answer = true;
for(i = 2;i < n;i++)
{
if(str[i] == '0' && str[i-1] == '0' && str[i-2] == '0')
answer = false;
}

public static boolean isValid(String s){
return isValidInt(s)==3;
}
private static int isValidInt(String s){
if( s == null || s.length() ==0)
return 0;
int prevSum=isValidInt(s.substring(1));
if( prevSum == 3 )
return 3;
return s.charAt(0) != '0' ?0:1+prevSum;
}

Related

Karatsuba algorithm

I keep getting these errors when I run my program, can anyone spot the mistake? I am not experienced with using recursion and I might have messed up base case. My testing consists of two numbers of the same length, and my goal is to multiply two Big numbers without using the built in class. The method add just takes in two strings which are numbers and adds them, I checked and it works no matter how big the numbers are.
Error NumberFormatException: For input string: ""
Integer.parseInt(Integer.java:592)
public static String mu (String value1, String value2){
int length1 = value1.length();
int length2 = value2.length();
//If one value has more digits than the other, add zeroes to the front...
int temp1;
int temp2;
int multiply;
if (length1==1 || length2 ==1){
temp1 = Integer.parseInt(value1);
temp2 = Integer.parseInt(value2);
multiply = temp1*temp2;
return multiply +"" ;
}else if (length1 ==0 || length2 ==0){
return "";
}
int firstHalf = length1/2;
int secondHalf = length1 - firstHalf;
String value1First = value1.substring(0, firstHalf);
String value1Second = value1.substring(firstHalf, secondHalf);
String value2First = value2.substring(0, firstHalf);
String value2Second = value2.substring(firstHalf, secondHalf);
String ac = mu (value1First, value2First);
String ad = mu (value1First, value2Second);
String bc = mu(value1Second, value2First);
String bd = mu(value1Second, value2Second);
String zeroesToAdd= null;
String zeroesToAdd2 = null;
for (int i=0; i<length1; i++){
zeroesToAdd = "0"+ zeroesToAdd;
}
for (int i=0; i<length1/2; i++){
zeroesToAdd2 = "0"+ zeroesToAdd2;
}
String firstPart = ac + zeroesToAdd;
String secondPart = (add(ad,bc))+zeroesToAdd2;
String thirdPart = bd;
String add1 = add(firstPart, secondPart);
String add2;
return add(add1, thirdPart);
}
Error NumberFormatException: For input string: ""
Integer.parseInt(Integer.java:592)
is caused by the code
Integer.parseInt(value1) or
Integer.parseInt(value2)
You might want to try add more cases for combination of str lengths (1,1) (1,0) (0,1) (0,0). Following code might help!
if (length1==1 && length2 ==1){
temp1 = Integer.parseInt(value1);
temp2 = Integer.parseInt(value2);
multiply = temp1*temp2;
return multiply +"" ;
}else if (length1 ==0 && length2 ==0){
return "";
}
else if (length1 ==0 && length2 ==1){
return value2;
}
else if (length1 ==1 && length2 ==0){
return value1;
}
Hope it helps!

Algorithm ABBA(SRM 663, DIV 2, 500)

I am doing a problem from this blog
One day, Jamie noticed that many English words only use the letters A and B. Examples of such words include "AB" (short for abdominal), "BAA" (the noise a sheep makes), "AA" (a type of lava), and "ABBA" (a Swedish pop sensation).
Inspired by this observation, Jamie created a simple game. You are given two Strings: initial and target. The goal of the game is to find a sequence of valid moves that will change initial into target. There are two types of valid moves:
Add the letter A to the end of the string.
Reverse the string and then add the letter B to the end of the string.
Return "Possible" (quotes for clarity) if there is a sequence of valid moves that will change initial into target. Otherwise, return "Impossible".
My Questions:
My solution follows example steps: Firstly, reverse and append 'B', then append 'A'. I have no idea whether I need to use another order of the step(firstly, append 'A', then reverse and append 'B') at same time.
I got "ABBA" which should return "Possible", but "Impossible" was returned.
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(canContain("B","ABBA"));
}
public static String canContain(String Initial, String Target){
char[] target = new char[1000];
char[] initial1 = new char[1000];
int flag = 0;
boolean possible = false;
int InitialLength = Initial.length();
int TargetLength = Target.length();
System.out.println("Initial:");
int countInitial = -1;
for(char x : Initial.toCharArray()){
countInitial++;
if(x=='A')initial1[countInitial]='A';
if(x=='B')initial1[countInitial]='B';
System.out.print(x+"->"+initial1[countInitial]+" ");
}
int countTarget = -1;
System.out.println("\nTarget:");
for(char y : Target.toCharArray()){
countTarget++;
if(y=='A')target[countTarget]='A';
if(y=='B')target[countTarget]='B';
System.out.print(y+"->"+target[countTarget]+" ");
}
System.out.print("\n");
//Check Initial char[]
System.out.print("---------------");
System.out.print("\n");
for(int t1 = 0; t1 <= countInitial; t1++){
System.out.print(initial1[t1]+"-");
}
System.out.print("\n");
for(int t3 = 0; t3 <= countTarget; t3++){
System.out.print(target[t3]+"-");
}
while(countInitial != countTarget){
if(flag == 0 && Initial != Target){
System.out.println("\n_______A_______");
countInitial++;
System.out.println("countInitial = "+countInitial);
initial1[countInitial] = 'A';
System.out.println(initial1[countInitial]);
for(int t1 = 0; t1 <= countInitial; t1++){
System.out.print(initial1[t1]+"-");
}
flag = 1;
}else if(flag == 1 && Initial != Target){
System.out.println("\n_______R_+_B_______");
int ct = 0;
char[] temp = new char[1000];
for(int i = countInitial; i >= 0; i--){
System.out.println("countInitial = "+countInitial);
temp[ct] = initial1[i];
System.out.println("ct = "+ct);
ct++;
}
initial1 = temp;
countInitial++;
initial1[countInitial] = 'B';
for(int t1 = 0; t1 < countInitial; t1++){
System.out.print(initial1[t1]+"-");
}
flag = 0;
}
}
if(initial1.equals(target)){
return "Possible";
}else{
return "Impossible";
}
}
Your immediate problem is that you apply rules in the particular order. However it is not forbidden to use the same rule multiple times in a row. So to get the target string from the initial you need to inspect all possible sequences of rule applications. This is known as combinatorial explosion.
Problems like this is usually easier to solve working backwards. If the target string is xyzA it may only be obtained by rule 1 from xyz. If the target string is xyzB it may only be obtained by rule 2 from zyx. So in pseudocode,
while length(target) > length(initial)
remove the last letter from target
if removed letter is "B"
reverse target
if target == initial
print "Possible"
else
print "Impossible"
Of course, reversal doesn't have to be explicit.
Here's a solution which will run for a linear time O(n). The idea is that you start from the target string and try to revert the operations until you reach a string with the same length as the initial string. Then you compare these 2 strings. Here's the solution:
private static final char A = 'A';
private static final String POSSIBLE = "Possible";
private static final String IMPOSSIBLE = "Impossible";
public String canObtain(String initial, String target) {
if (initial == null ||
initial.trim().length() < 1 ||
initial.trim().length() > 999) {
return IMPOSSIBLE;
}
if (target == null ||
target.trim().length() < 2 ||
target.trim().length() > 1000) {
return IMPOSSIBLE;
}
return isPossible(initial, target) ? POSSIBLE : IMPOSSIBLE;
}
private boolean isPossible(String initial, String target) {
final StringBuilder sb = new StringBuilder(target);
while (initial.length() != sb.length()) {
char targetLastChar = sb.charAt(sb.length() - 1);
if (targetLastChar == A) {
unApplyA(sb);
} else {
unApplyRevB(sb);
}
}
return initial.equals(sb.toString());
}
private void unApplyA(StringBuilder sb) {
sb.deleteCharAt(sb.length() - 1);
}
private void unApplyRevB(StringBuilder sb) {
sb.deleteCharAt(sb.length() - 1);
sb.reverse();
}
A little late to the party but this is a concise solution in Python that runs in linear time:
class ABBA:
def canObtain(self, initial, target):
if initial == target:
return 'Possible'
if len(initial) == len(target):
return 'Impossible'
if target[-1] == 'A':
return self.canObtain(initial, target[:-1])
if target[-1] == 'B':
return self.canObtain(initial, target[:-1][::-1])

Minimum number of swap of operator to complement expression tree evaluation

I have an expression tree where each leaf node contains 0 or 1 as value, and all the internal nodes contain "&" or "||" as operator. Now I need to evaluate the tree; the result will be either 0 or 1.
The question is minimum number of swap of internal node required to complement the result of original expression tree. Any internal node can be flipped; e.g. if it is a "&", we can make it "||", and vice versa.
To solve this I tried the following technique but I didn't succeed in it:
My approach was that I would check the root whether it is a "&" or "||" operator and whether the result of evaluation tree 0 or 1, depending on that I went forward with the evaluation.
i'm not sure if i understood you question. if it's how do evaluate the whole tree my answer is:
try a recursion.
something like this:
evalute() {
if_the_root_is_an_operator() {
l= evaluate(left operant)
r= evaluate(right operant)
return calculate(l,r) // depending on what operator it was
}
// not an operator, so it'S a leaf
return value;
}
optimizations could be, to check if l or r are values, and skip the evaluation if their values already define the final result.
"0 AND (subtree)" is surely 0,
"1 OR (subtree)" is 1, so subtree doesn't need to be evaluated
evalute() {
if (the_root_is_an_operator()) {
if ( operator_is_and() &&
(left_is_leaf() && value(left)==0) ||
(right_is_leaf() && value(right)==0))
return 0;
if ( operator_is_or() &&
(left_is_leaf() && value(left)==1) ||
(right_is_leaf() && value(right)==1))
return 1;
l= evaluate(left operant)
r= evaluate(right operant)
return calculate(l,r) // depending on what operator it was
}
// not an operator, so it'S a leaf
return value;
}
This is an example of problem asked in question.
OR
/ \
OR AND
/ \ / \
1 0 1 1
Output is 1. Need to found min numbers of operands to be changed to change the output to 0.
Min number of operators required to be changed are 2.
class A {
int min=Integer.max;
int minNumber(Tree node) {
if(node==null) return Math.max;
if(node.left==null && node.right==null) return Math.max;
String c = node.data;
int l = evaluate(node.left);
int r = evaluate(node.right);
if(l || r==0) { min_number = 1; }
else {
if(l && r == 1 )
{
min_number = 0;
}
else if(l && r == 0)
{
min_number = 0;
}
int left = min_number + minNumber(node.left)
int right = min_number + minNumber(node.right);
min_number = Math.min(left,right);
}
if(min_number<min) min = min_number; return min;
}

Issue in making a String Algorithm

Given a string made up of 'a' and 'b' only,the operation that is allowed is to remove a substring of "abb" if present from the string. My question is after applying this operation any no of times can i make the string empty. I need a O(n) algorithm.
Example ,
abbabb-->yes
aabbbb->yes since aabbbb->abb->empty
aaabbb->no since aaabbb->aab
All that i can think upto now is an O(n^2) algorithm in which i sucessively find the position of the substring using substr() or find() and then remove it until string not empty or not found a "abb" in it.
Here is an example of what I suggested in the comment:
for i = 0 to word.length-1
if word[i] == 'b'
if stack.empty() //no corresponding a
return false
if stack.top() == 'a' //first b after an a
stack.push('b')
else //second b after an a
stack.pop() //pop last two letters
stack.pop()
else
stack.push('a')
return stack.empty()
There might be some boundary conditions that needs to be checked, and of course at any point pop() fails you need to return false. Seems to be working for the possible inputs that occurs to me.
The point that needs to be mathematically proved, I think, is the part where I commented "second b after an a". With the assumption that stack was empty at the beginning, if I did not miss anything that point looks correct.
It is not necessary to store anything but the count of unused pairs of b's at the end of the string, as you read it Right to Left. (And it's solved reading input only once, so O(n) time O(1) space) This is very reminiscent of finding a discrete finite automata for a regular language. If you see two b's, increase count. If you see a single b, add half a pair (update a boolean variable and possibly increment count). If you see an a and have no pair of b's, fail, else count--. If you reach the end of the string and there were no extra b's, the string was valid.
Make use of two counters to avoid using stack. Here is the c++ implementaion hope it works.
bool canBeDone(string s)
{
int aCount = 0;
int bCount = 0;
for(int i=0;i<s.length();++i)
{
if(s[i] == 'a')
{
aCount++;
continue;
}
if(s[i] == 'b' && aCount == 0)
return false;
else
{
bCount += 1;
if(bCount == 2)
{
bCount = 0;
aCount--;
}
}
}
if(!aCount && !bCount)return true;
return false;
}
Very simple and straightforward implementation in Erlang O(n) space and time (unfortunately even clwhisk's algorithm needs O(n) space in Erlang because of lists:reverse/1):
-module(abb).
-export([check/1, clwhisk/1, test/0]).
check(L) when is_list(L) ->
check(L, []).
check(L, "bba" ++ T) -> check(L, T);
check([H|T], S) -> check(T, [H|S]);
check([], S) -> S =:= [].
clwhisk(L) when is_list(L) ->
clwhisk(lists:reverse(L), 0).
clwhisk([$b|T], C) -> clwhisk(T, C+1);
clwhisk([$a|T], C) -> C >= 2 andalso clwhisk(T, C-2);
clwhisk(L, C) -> L =:= [] andalso C =:= 0.
test() ->
true = abb:check("abbabb"),
true = abb:check("aabbbb"),
false = abb:check("aaabbb"),
true = abb:check("ababbb"),
true = abb:clwhisk("abbabb"),
true = abb:clwhisk("aabbbb"),
false = abb:clwhisk("aaabbb"),
true = abb:clwhisk("ababbb"),
ok.
And there is C implementation of clwhisk's algorithm as filter:
#include <stdlib.h>
#include <stdio.h>
static inline const char *last(const char* s){
for(;*s && *s!='\n';s++);
return s-1;
}
static int check(const char* s){
int count=0;
const char *ptr = last(s);
for(; ptr >= s; ptr--)
if(*ptr == 'b') {
count++;
}
else if(*ptr == 'a') {
count -= 2;
if(count < 0)
return 0;
}
else return 0;
return count == 0;
}
int main(void) {
char *line = NULL;
size_t len = 0;
while( getline(&line, &len, stdin) != -1 )
if(*line && *line != '\n' && check(line))
fputs(line, stdout);
return EXIT_SUCCESS;
}

How to find validity of a string of parentheses, curly brackets and square brackets?

I recently came in contact with this interesting problem. You are given a string containing just the characters '(', ')', '{', '}', '[' and ']', for example, "[{()}]", you need to write a function which will check validity of such an input string, function may be like this:
bool isValid(char* s);
these brackets have to close in the correct order, for example "()" and "()[]{}" are all valid but "(]", "([)]" and "{{{{" are not!
I came out with following O(n) time and O(n) space complexity solution, which works fine:
Maintain a stack of characters.
Whenever you find opening braces '(', '{' OR '[' push it on the stack.
Whenever you find closing braces ')', '}' OR ']' , check if top of stack is corresponding opening bracket, if yes, then pop the stack, else break the loop and return false.
Repeat steps 2 - 3 until end of the string.
This works, but can we optimize it for space, may be constant extra space, I understand that time complexity cannot be less than O(n) as we have to look at every character.
So my question is can we solve this problem in O(1) space?
With reference to the excellent answer from Matthieu M., here is an implementation in C# that seems to work beautifully.
/// <summary>
/// Checks to see if brackets are well formed.
/// Passes "Valid parentheses" challenge on www.codeeval.com,
/// which is a programming challenge site much like www.projecteuler.net.
/// </summary>
/// <param name="input">Input string, consisting of nothing but various types of brackets.</param>
/// <returns>True if brackets are well formed, false if not.</returns>
static bool IsWellFormedBrackets(string input)
{
string previous = "";
while (input.Length != previous.Length)
{
previous = input;
input = input
.Replace("()", String.Empty)
.Replace("[]", String.Empty)
.Replace("{}", String.Empty);
}
return (input.Length == 0);
}
Essentially, all it does is remove pairs of brackets until there are none left to remove; if there is anything left the brackets are not well formed.
Examples of well formed brackets:
()[]
{()[]}
Example of malformed brackets:
([)]
{()[}]
Actually, there's a deterministic log-space algorithm due to Ritchie and Springsteel: http://dx.doi.org/10.1016/S0019-9958(72)90205-7 (paywalled, sorry not online). Since we need log bits to index the string, this is space-optimal.
If you're willing to accept one-sided error, then there's an algorithm that uses n polylog(n) time and polylog(n) space: http://www.eccc.uni-trier.de/report/2009/119/
If the input is read-only, I don't think we can do O(1) space. It is a well known fact that any O(1) space decidable language is regular (i.e writeable as a regular expression). The set of strings you have is not a regular language.
Of course, this is about a Turing Machine. I would expect it to be true for fixed word RAM machines too.
Edit: Although simple, this algorithm is actually O(n^2) in terms of character comparisons. To demonstrate it, one can simply generate a string as '(' * n + ')' * n.
I have a simple, though perhaps erroneous idea, that I will submit to your criticisms.
It's a destructive algorithm, which means that if you ever need the string it would not help (since you would need to copy it down).
Otherwise, the algorithm work with a simple index within the current string.
The idea is to remove pairs one after the others:
([{}()])
([()])
([])
()
empty -> OK
It is based on the simple fact that if we have matching pairs, then at least one is of the form () without any pair character in between.
Algorithm:
i := 0
Find a matching pair from i. If none is found, then the string is not valid. If one is found, let i be the index of the first character.
Remove [i:i+1] from the string
If i is at the end of the string, and the string is not empty, it's a failure.
If [i-1:i] is a matching pair, i := i-1 and back to 3.
Else, back to 1.
The algorithm is O(n) in complexity because:
each iteration of the loop removes 2 characters from the string
the step 2., which is linear, is naturally bound (i cannot grow indefinitely)
And it's O(1) in space because only the index is required.
Of course, if you can't afford to destroy the string, then you'll have to copy it, and that's O(n) in space so no real benefit there!
Unless, of course, I am deeply mistaken somewhere... and perhaps someone could use the original idea (there is a pair somewhere) to better effect.
I doubt you'll find a better solution, since even if you use internal functions to regexp or count occurrences, they still have a O(...) cost. I'd say your solution is the best :)
To optimize for space you could do some run-length encoding on your stack, but I doubt it would gain you very much, except in cases like {{{{{{{{{{}}}}}}}}}}.
http://www.sureinterview.com/shwqst/112007
It is natural to solve this problem with a stack.
If only '(' and ')' are used, the stack is not necessary. We just need to maintain a counter for the unmatched left '('. The expression is valid if the counter is always non-negative during the match and is zero at the end.
In general case, although the stack is still necessary, the depth of the stack can be reduced by using a counter for unmatched braces.
This is an working java code where I filter out the brackets from the string expression and then check the well formedness by replacing wellformed braces by nulls
Sample input = (a+{b+c}-[d-e])+[f]-[g] FilterBrackets will output = ({}[])[][] Then I check for wellformedness.
Comments welcome.
public class ParanString {
public static void main(String[] args) {
String s = FilterBrackets("(a+{b+c}-[d-e])[][]");
while ((s.length()!=0) && (s.contains("[]")||s.contains("()")||s.contains("{}")))
{
//System.out.println(s.length());
//System.out.println(s);
s = s.replace("[]", "");
s = s.replace("()", "");
s = s.replace("{}", "");
}
if(s.length()==0)
{
System.out.println("Well Formed");
}
else
{
System.out.println("Not Well Formed");
}
}
public static String FilterBrackets(String str)
{
int len=str.length();
char arr[] = str.toCharArray();
String filter = "";
for (int i = 0; i < len; i++)
{
if ((arr[i]=='(') || (arr[i]==')') || (arr[i]=='[') || (arr[i]==']') || (arr[i]=='{') || (arr[i]=='}'))
{
filter=filter+arr[i];
}
}
return filter;
}
}
The following modification of Sbusidan's answer is O(n2) time complex but O(log n) space simple.
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
char opposite(char bracket) {
switch(bracket) {
case '[':
return ']';
case '(':
return ')';
}
}
bool is_balanced(int length, char *s) {
int depth, target_depth, index;
char target_bracket;
if(length % 2 != 0) {
return false;
}
for(target_depth = length/2; target_depth > 0; target_depth--) {
depth=0;
for(index = 0; index < length; index++) {
switch(s[index]) {
case '(':
case '[':
depth++;
if(depth == target_depth) target_bracket = opposite(s[index]);
break;
case ')':
case ']':
if(depth == 0) return false;
if(depth == target_depth && s[index] != target_bracket) return false;
depth--;
break;
}
}
}
}
void main(char* argv[]) {
char input[] = "([)[(])]";
char *balanced = is_balanced(strlen(input), input) ? "balanced" : "imbalanced";
printf("%s is %s.\n", input, balanced);
}
If you can overwrite the input string (not reasonable in the use cases I envision, but what the heck...) you can do it in constant space, though I believe the time requirement goes up to O(n2).
Like this:
string s = input
char c = null
int i=0
do
if s[i] isAOpenChar()
c = s[i]
else if
c = isACloseChar()
if closeMatchesOpen(s[i],c)
erase s[i]
while s[--i] != c ;
erase s[i]
c == null
i = 0; // Not optimal! It would be better to back up until you find an opening character
else
return fail
end if
while (s[++i] != EOS)
if c==null
return pass
else
return fail
The essence of this is to use the early part of the input as the stack.
I know I'm a little late to this party; it's also my very first post on StackOverflow.
But when I looked through the answers, I thought I might be able to come up with a better solution.
So my solution is to use a few pointers.
It doesn't even have to use any RAM storage, as registers can be used for this.
I have not tested the code; it's written it on the fly.
You'll need to fix my typos, and debug it, but I believe you'll get the idea.
Memory usage: Only the CPU registers in most cases.
CPU usage: It depends, but approximately twice the time it takes to read the string.
Modifies memory: No.
b: string beginning, e: string end.
l: left position, r: right position.
c: char, m: match char
if r reaches the end of the string, we have a success.
l goes backwards from r towards b.
Whenever r meets a new start kind, set l = r.
when l reaches b, we're done with the block; jump to beginning of next block.
const char *chk(const char *b, int len) /* option 2: remove int len */
{
char c, m;
const char *l, *r;
e = &b[len]; /* option 2: remove. */
l = b;
r = b;
while(r < e) /* option 2: change to while(1) */
{
c = *r++;
/* option 2: if(0 == c) break; */
if('(' == c || '{' == c || '[' == c)
{
l = r;
}
else if(')' == c || ']' == c || '}' == c)
{
/* find 'previous' starting brace */
m = 0;
while(l > b && '(' != m && '[' != m && '{' != m)
{
m = *--l;
}
/* now check if we have the correct one: */
if(((m & 1) + 1 + m) != c) /* cryptic: convert starting kind to ending kind and match with c */
{
return(r - 1); /* point to error */
}
if(l <= b) /* did we reach the beginning of this block ? */
{
b = r; /* set new beginning to 'head' */
l = b; /* obsolete: make left is in range. */
}
}
}
m = 0;
while(l > b && '(' != m && '[' != m && '{' != m)
{
m = *--l;
}
return(m ? l : NULL); /* NULL-pointer for OK */
}
After thinking about this approach for a while, I realized that it will not work as it is right now.
The problem will be that if you have "[()()]", it'll fail when reaching the ']'.
But instead of deleting the proposed solution, I'll leave it here, as it's actually not impossible to make it work, it does require some modification, though.
/**
*
* #author madhusudan
*/
public class Main {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
new Main().validateBraces("()()()()(((((())))))()()()()()()()()");
// TODO code application logic here
}
/**
* #Use this method to validate braces
*/
public void validateBraces(String teststr)
{
StringBuffer teststr1=new StringBuffer(teststr);
int ind=-1;
for(int i=0;i<teststr1.length();)
{
if(teststr1.length()<1)
break;
char ch=teststr1.charAt(0);
if(isClose(ch))
break;
else if(isOpen(ch))
{
ind=teststr1.indexOf(")", i);
if(ind==-1)
break;
teststr1=teststr1.deleteCharAt(ind).deleteCharAt(i);
}
else if(isClose(ch))
{
teststr1=deleteOpenBraces(teststr1,0,i);
}
}
if(teststr1.length()>0)
{
System.out.println("Invalid");
}else
{
System.out.println("Valid");
}
}
public boolean isOpen(char ch)
{
if("(".equals(Character.toString(ch)))
{
return true;
}else
return false;
}
public boolean isClose(char ch)
{
if(")".equals(Character.toString(ch)))
{
return true;
}else
return false;
}
public StringBuffer deleteOpenBraces(StringBuffer str,int start,int end)
{
char ar[]=str.toString().toCharArray();
for(int i=start;i<end;i++)
{
if("(".equals(ar[i]))
str=str.deleteCharAt(i).deleteCharAt(end);
break;
}
return str;
}
}
Instead of putting braces into the stack, you could use two pointers to check the characters of the string. one start from the beginning of the string and the other start from end of the string. something like
bool isValid(char* s) {
start = find_first_brace(s);
end = find_last_brace(s);
while (start <= end) {
if (!IsPair(start,end)) return false;
// move the pointer forward until reach a brace
start = find_next_brace(start);
// move the pointer backward until reach a brace
end = find_prev_brace(end);
}
return true;
}
Note that there are some corner case not handled.
I think that you can implement an O(n) algorithm. Simply you have to initialise an counter variable for each type: curly, square and normal brackets. After than you should iterate the string and should increase the coresponding counter if the bracket is opened, otherwise to decrease it. If the counter is negative return false. AfterI think that you can implement an O(n) algorithm. Simply you have to initialise an counter variable for each type: curly, square and normal brackets. After than you should iterate the string and should increase the coresponding counter if the bracket is opened, otherwise to decrease it. If the counter is negative return false. After you count all brackets, you should check if all counters are zero. In that case, the string is valid and you should return true.
You could provide the value and check if its a valid one, it would print YES otherwise it would print NO
static void Main(string[] args)
{
string value = "(((([{[(}]}]))))";
List<string> jj = new List<string>();
if (!(value.Length % 2 == 0))
{
Console.WriteLine("NO");
}
else
{
bool isValid = true;
List<string> items = new List<string>();
for (int i = 0; i < value.Length; i++)
{
string item = value.Substring(i, 1);
if (item == "(" || item == "{" || item == "[")
{
items.Add(item);
}
else
{
string openItem = items[items.Count - 1];
if (((item == ")" && openItem == "(")) || (item == "}" && openItem == "{") || (item == "]" && openItem == "["))
{
items.RemoveAt(items.Count - 1);
}
else
{
isValid = false;
break;
}
}
}
if (isValid)
{
Console.WriteLine("Yes");
}
else
{
Console.WriteLine("NO");
}
}
Console.ReadKey();
}
var verify = function(text)
{
var symbolsArray = ['[]', '()', '<>'];
var symbolReg = function(n)
{
var reg = [];
for (var i = 0; i < symbolsArray.length; i++) {
reg.push('\\' + symbolsArray[i][n]);
}
return new RegExp('(' + reg.join('|') + ')','g');
};
// openReg matches '(', '[' and '<' and return true or false
var openReg = symbolReg(0);
// closeReg matches ')', ']' and '>' and return true or false
var closeReg = symbolReg(1);
// nestTest matches openSymbol+anyChar+closeSymbol
// and returns an obj with the match str and it's start index
var nestTest = function(symbols, text)
{
var open = symbols[0]
, close = symbols[1]
, reg = new RegExp('(\\' + open + ')([\\s\\S])*(\\' + close + ')','g')
, test = reg.exec(text);
if (test) return {
start: test.index,
str: test[0]
};
else return false;
};
var recursiveCheck = function(text)
{
var i, nestTests = [], test, symbols;
// nestTest with each symbol
for (i = 0; i < symbolsArray.length; i++)
{
symbols = symbolsArray[i];
test = nestTest(symbols, text);
if (test) nestTests.push(test);
}
// sort tests by start index
nestTests.sort(function(a, b)
{
return a.start - b.start;
});
if (nestTests.length)
{
// build nest data: calculate match end index
for (i = 0; i < nestTests.length; i++)
{
test = nestTests[i];
var end = test.start + ( (test.str) ? test.str.length : 0 );
nestTests[i].end = end;
var last = (nestTests[i + 1]) ? nestTests[i + 1].index : text.length;
nestTests[i].pos = text.substring(end, last);
}
for (i = 0; i < nestTests.length; i++)
{
test = nestTests[i];
// recursive checks what's after the nest
if (test.pos.length && !recursiveCheck(test.pos)) return false;
// recursive checks what's in the nest
if (test.str.length) {
test.str = test.str.substring(1, test.str.length - 1);
return recursiveCheck(test.str);
} else return true;
}
} else {
// if no nests then check for orphan symbols
var closeTest = closeReg.test(text);
var openTest = openReg.test(text);
return !(closeTest || openTest);
}
};
return recursiveCheck(text);
};
Using c# OOPS programming... Small and simple solution
Console.WriteLine("Enter the string");
string str = Console.ReadLine();
int length = str.Length;
if (length % 2 == 0)
{
while (length > 0 && str.Length > 0)
{
for (int i = 0; i < str.Length; i++)
{
if (i + 1 < str.Length)
{
switch (str[i])
{
case '{':
if (str[i + 1] == '}')
str = str.Remove(i, 2);
break;
case '(':
if (str[i + 1] == ')')
str = str.Remove(i, 2);
break;
case '[':
if (str[i + 1] == ']')
str = str.Remove(i, 2);
break;
}
}
}
length--;
}
if(str.Length > 0)
Console.WriteLine("Invalid input");
else
Console.WriteLine("Valid input");
}
else
Console.WriteLine("Invalid input");
Console.ReadKey();
This is my solution to the problem.
O(n) is the complexity of time without complexity of space.
Code in C.
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
bool checkBraket(char *s)
{
int curly = 0, rounded = 0, squre = 0;
int i = 0;
char ch = s[0];
while (ch != '\0')
{
if (ch == '{') curly++;
if (ch == '}') {
if (curly == 0) {
return false;
} else {
curly--; }
}
if (ch == '[') squre++;
if (ch == ']') {
if (squre == 0) {
return false;
} else {
squre--;
}
}
if (ch == '(') rounded++;
if (ch == ')') {
if (rounded == 0) {
return false;
} else {
rounded--;
}
}
i++;
ch = s[i];
}
if (curly == 0 && rounded == 0 && squre == 0){
return true;
}
else {
return false;
}
}
void main()
{
char mystring[] = "{{{{{[(())}}]}}}";
int answer = checkBraket(mystring);
printf("my answer is %d\n", answer);
return;
}

Resources