Is there a way to add an outline in scene kit? - xcode

I've been making a game in scene kit, but the edges of objects are difficult to see, making some of the games details impossible to see. Is there a way to make a black outline around all the game objects?

you could use an SCNTechnique as mentioned in another answer (you can have a look at this article about cel shading, which has an edge-detection pass) but full-frame post-processes are quite expensive.
On OS X you can also leverage geometry shaders (see this article). But it's not available on iOS and might be harder to implement and get right.
I would go with a much easier technique, which only involves vertex and fragment shaders. You can take a look at this article, which gives an example that's easy to re-create in SceneKit using SCNProgram or shader modifiers.

There is an example of making a glowing outline for nodes that uses SCNTechnique here:
https://github.com/laanlabs/SCNTechniqueGlow
You could modify the color and blur method to achieve an stroked outline effect.

Another SCNTechnique example, as referenced here: https://www.nurfacegames.com/everything-you-wanted-to-know-about-outline-shaders/, is to render your node slightly larger behind then again in front at regular size.
Here's a playground example of that: https://github.com/mackhowell/scenekit-outline-shader-scntechnique.

Related

Creating frosted glass three webgl

I'm having trouble to find how to create a material with the look of frosted glass. I haven't found anything on the web that looks what I want to do.
I've tried a lot of settings for the material.
In this link you can see what I'm trying to get..
Does anybody have an idea how to solve this?
Regards
Rikard
One way I've encountered that worked well for me in the past performed a Blit on the portion of the framebuffer you want frosted with the blur algo or normal pattern of your choice. A stencil mask as part of the glass shader is used to determine which portion should be affected and which should not.
This article has a nice writeup on glass refraction which, when used with a blur will give a good effect.
https://beclamide.medium.com/advanced-realtime-glass-refraction-simulation-with-webgl-71bdce7ab825
I know It's not WebGL per se, but I've used the below Unity frosted glass shader before, to great effect. You may be able to extract the pertinent pieces from it and use that knowledge to assemble a WebGL version. https://github.com/andydbc/unity-frosted-glass
I'm about to undertake this myself, and will update this answer with actual code 'if' I succeed.

Is there a way to create simple animations "on the fly" in modern OpenGL?

I think this requires a bit of background information:
I have been modding Minecraft for a while now, but I alway wanted to make my own game, so I started digging into the freshly released LWJGL3 to actually get things done. Yes, I know it's a bit ow level and I should use an engine and stuff...indeed, I already tried some engines and they never quite match what I want to do, so I decided I want to tackle the problem at its root.
So far, I kind of understand how to render meshes, move the "camera", etc. and I'm willing to take the learning curve.
But the thing is, at some point all the tutorials start to explain how to load models and create skeletal animations and so on...but I think I do not really want to go that way. A lot of things in working with Minecraft code was awful, but I liked how I could create models and animations from Java code. Sure, it did not look super realistic, but since I'm not great with Blender either, I doubt having "classic" models and animations would help. Anyway, in that code, I could rotate a box around to make a creature look at a player, I could use a sinus function to move legs and arms (or wings, in my case) and that was working, since Minecraft used immediate mode and Java could directly tell the graphics card where to draw each vertex.
So, actual question(s): Is there any good way to make dynamic animations in modern (3.3+) OpenGL? My models would basically be a hierarchy of shapes (boxes or whatever) and I want to be able to rotate them on the fly. But I'm not sure how to organize that. Would I store all the translation/rotation-matrices for each sub-shape? Would that put a hard limit on the amount of sub-shapes a model could have? Did anyone try something like that?
Edit: For clarification, what I did looked something like this:
Create a model: https://github.com/TheOnlySilverClaw/Birdmod/blob/master/src/main/java/silverclaw/birds/client/model/ModelOstrich.java
The model is created as a bunch of boxes in the constructor, the render and setRotationAngles methods set scale and rotations.
You should follow one opengl tutorial in order to understand the basics.
Let me suggest "Learning Modern 3D Graphics Programming", and especially this chapter, where you move one robot arm with multiple joints.
I did a port in java using jogl here, but you can easily port it over lwjgl.
What you are looking for is exactly skeletal animation, the only difference being the fact you do not want to load animations for your bones but want to compute / generate transforms on the fly.
You basically have a hierarchy of bones, and geometry attached to it. It looks like you want to manipulate this geometry "rigidly", so before sending your meshes / transforms to the GPU (the classic way), you want to start by computing the new transforms in model or world space, then send those freshly computed matrices to draw your geometries on the gpu the standard way.
As Sorin said, to compute each transform you simply have to iterate over your hierarchy and accumulate transforms given the transform of the parent bone and your local transform w.r.t the parent.
Yes and no.
You can have your hierarchy of shapes and store a relative transform for each.
For example the "player" whould have a translation to 100,100, 10 (where the player is), and then the "head" subcomponent would have an additional translation of 0,0,5 (just a bit higher on the z axis).
You can store these as matrices (they can encode translation, roation and scaling) and use glPushMatrix and glPop matrix to add and remove a matrix to a stack maintained by openGL.
The draw() function(or whatever you call it) should look something like :
glPushMatrix();
glMultMatrix(my_transform); // You can also just have glTranslate, glRotate or anything else.
// Draw my mesh
for (child : children) { child.draw(); }
glPopMatrix();
This gives you a hierarchical setup so that objects move with their parent. Alternatively you can have a stack in the main memory and do the multiplications yourself (use a library). I think the openGL stack may have a limit (implementation dependent), but if you handle it yourself the only limit is the amount of ram you can use. Once all the matrices are multiplied rendering is done in the same amount of time, that is it doesn't matter for performance how deep a mesh is in the hierarchy.
For actual animations you need to compute the intermediate transformations. For example for a crouch animation you probably want to have a few frames in between so that the camera doesn't just jump to the low position. You can do this with a time based linear interpolation between the start and end positions, but this only covers simple animations and you still have to implement it yourself.
Anything more complicated (i.e. modify the mesh based on the bone links) you would need to implement yourself.

I don't fully understand D2D1_FIGURE_BEGIN: why is it needed, what's the difference, and why does Microsoft's sample code mismatch types anyway?

I'm reading up on Direct2D before I migrate my GDI code to it, and I'm trying to figure out how paths work. I understand most of the work involved with geometries and geometry sinks, but there's one thing I don't understand: the D2D1_FIGURE_BEGIN type and its parameter to BeginFigure().
First, why is this value even needed? Why does a geometry need to know if it's filled or hollow ahead of time? I don't know nay other drawing API which cares about whether path objects are filled or not ahead of time; you just define the endpoints of the shapes and then call fill() or stroke() to draw your path, so how are geometries any different?
And if this parameter is necessary, how does choosing one value over the other affect the shapes I draw in?
Finally, if I understand the usage of this enumeration correctly, you're supposed to only use filled paths with FillGeometry() and hollow paths with DrawGeometry(). However, the hourglass example here and cited by several method documentation pages (like the BeginFigure() one) creates a filled figure and draws it with both DrawGeometry() and FillGeometry()! Is this undefined behavior? Does it have anything to do with the blue border around the gradient in the example picture, which I don't see anywhere in the code?
Thanks.
EDIT Okay I think I understand what's going on with the gradient's weird outline: the gradient is also transitioning alpha values, and the fill is overlapping the stroke because the stroke is centered on the line, and the fill is drawn after the stroke. That still doesn't explain why I can fill and stroke with a filled geometry, or what the difference between hollow and filled geometries are...
Also I just realized that hollow geometries are documented as not having bounds. Does this mean that hollow geometries are purely an optimization for stroke-only geometries and otherwise behave identically to a filled geometry?
If you want to better understand Direct2D's geometry system, I recommend studying the WPF geometry system. WPF, XPS, Direct2D, Silverlight, and the newer "XAML" frameworks all use the same building blocks (the same "language", if you will). I found it easier to understand the declarative object-oriented API in WPF, and after that it was a breeze to work with the imperative API in Direct2D. You can think of WPF's mutable geometry system as an implementation of the "builder" pattern from Java, where the build() method is behind the scenes (hidden from you) and spits out an immutable Direct2D geometry when it comes time to render things on-screen (WPF uses something called "MIL", which IIRC/AFAICT, Direct2D was forked from. They really are the same thing!) It is also straightforward to write code that converts between the two representations, e.g. walking a WPF PathGeometry and streaming it into a Direct2D geometry sink, and you can also use ID2D1PathGeometry::Stream and a custom ID2D1GeometrySink implementation to reconstitute a WPF PathGeometry.
(BTW this is not theoretical :) It's exactly what I do in Paint.NET 4.0+: I use a WPF-esque declarative, mutable object model that spits out immutable Direct2D geometries at render time. It works really well!)
Okay, anyway, to get directly to your specific question: BeginFigure() and D2D1_FIGURE_BEGIN map directly to the PathFigure.IsFilled property in WPF. In order to get an intuitive understanding of what effect this has, you can use something like KaXAML to play around with some geometries from WPF or Silverlight samples and see what the results look like. And the documentation is definitely better for WPF and Silverlight than for Direct2D.
Another key concept is that DrawGeometry is basically a helper method. You can accomplish the same thing by first widening your geometry with ID2D1Geometry::Widen and then using FillGeometry ("widening" seems like a misnomer to me, btw: in Photoshop or Illustrator you'd probably use a verb like "stroke"). That's not to say that either one always performs better/worse ... be sure to benchmark. I've seen it go both ways. The reason you can think of this as a helper method is dependent on the fact that the lowest level of the rasterization engine can only do one thing: fill a triangle. All other drawing "primitives" must be converted to triangle lists or strips (this is also why ID2D1Mesh is so fast: it bypasses all sorts of processing code!). Filling a geometry requires tessellation of its interior to a list of triangle strips which can then be filled by Direct3D. "Drawing" a geometry requires applying a stroke (width and/or style): even a simple 1-pixel wide straight line must be first converted to 2 filled triangles.
Oh, also, if you want to compute the "real" bounds of a geometry with hollow figures, use ID2D1Geometry::GetWidenedBounds with a strokeWidth of zero. This is a discrepancy between Direct2D and WPF that puzzles me. Geometry.Bounds (in WPF) is equivalent to ID2D1Geometry::GetWidenedBounds(0.0f).

Drawing atop a scrollable, zoomable image in Qt

I'm sorry if my question is somewhat vague. It's been a few years since I did anything with Qt, and back then I never did any fancy image stuff. What I'm asking for below is just some general suggestions on which classes to consider using. I'm trying to avoid barking up the wrong tree from the very start.
The situation: I'm writing a Qt-based program in which I need to display a somewhat large (let's say 5000x5000) raster image. The user should be able to zoom (quickly) in and out, and pan around the image in a way similar to for example Google maps. So far, this is not very different from the Qt ImageViewer example, except perhaps for the requirement that zooming happens quickly. However, I need to draw on the order of 50k simple geometric shapes (let's say circles) on top of the image, and be able to add and remove some of these in a simple way. The circles should have the same size no matter the zoom level, and should thus either be redrawn whenever the user zooms, or should be drawn with vector graphics. Think of the circles as map annotations. These should look the same at any zoom level, and also behave nicely with respect to panning.
I guess my question is twofold:
Can Qt draw vector graphics on top of a raster image?
In general, which classes should I consider for the above?
Thanks in advance. I don't like answering vague questions myself, but maybe someone with experience with Qt's graphics capabilities has an answer.
I suggest you use QGraphicsView and friends for this. It helps handling all the view/world transformation and the vector items can be achieved with various QGraphicsItems.
You can change the sizes of the items whenever the zoom level changes to maintain constant apparent sizes.

What's the best way to "smudge" an image programmatically?

I'm messing around with image manipulation, mostly using Python. I'm not too worried about performance right now, as I'm just doing this for fun. Thus far, I can load bitmaps, merge them (according to some function), and do some REALLY crude analysis (find the brightest/darkest points, that kind of thing).
I'd like to be able to take an image, generate a set of control points (which I can more or less do now), and then smudge the image, starting at a control point and moving in a particular direction. What I'm not sure of is the process of smudging itself. What's a good algorithm for this?
This question is pretty old but I've recently gotten interested in this very subject so maybe this might be helpful to someone. I implemented a 'smudge' brush using Imagick for PHP which is roughly based on the smudging technique described in this paper. If you want to inspect the code feel free to have a look at the project: Magickpaint
Try PythonMagick (ImageMagick library bindings for Python). If you can't find it on your distribution's repositories, get it here: http://www.imagemagick.org/download/python/
It has more effect functions than you can shake a stick at.
One method would be to apply a Gaussian blur (or some other type of blur) to each point in the region defined by your control points.
One method would be to create a grid that your control points moves and then use texture mapping techniques to map the image back onto the distorted grid.
I can vouch for a Gaussian Blur mentioned above, it is quite simple to implement and provides a fairly decent blur result.
James

Resources