using correct parameters/flags for mount() syscall - linux-kernel

I am trying to understand how mount() syscall works and what flags it is using. My filesystem is ext4 and I am remounting it to read-only. I am using mount command in Debian and starting it with strace.
In the output of strace, I can see the actual syscall:
mount("/dev/root", "/", 0x3a74500, MS_MGC_VAL|MS_RDONLY|MS_REMOUNT, NULL) = 0
According to man 2 mount, the parameters for mount() syscall are:
int mount(const char *source, const char *target,
const char *filesystemtype, unsigned long mountflags,
const void *data);
I don't understand the third parameter (0x3a74500), which should be filesystem type. I have expected, I should use "ext4".
What does this hex string 0x3a74500 mean ?

Related

Why _makepath_s does not return on error?

According to https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/makepath-s-wmakepath-s?view=vs-2019#generic-text-routine-mappings _makepath_s should return an error code on failure.
On my system this is not true, it gives an assert (Expression: (L"Buffer is too small" && 0)) and then terminates the program. In release it simply terminates the program.
The only way I found to keep my program running is to set an empty invalid parameter handler:
void myInvalidParameterHandler(const wchar_t* expression,
const wchar_t* function,
const wchar_t* file,
unsigned int line,
uintptr_t pReserved)
{
}
_set_invalid_parameter_handler(myInvalidParameterHandler);
But this is not recommended. The docs say that this handler should abort the program.
And I also think that this modifies all secure function which is not what exactly what I want.
So is there a better way to get _makepath_s behave like the docs say?
TIA Michael
VS2017, MFC
Edit
A small sample:
char Path[_MAX_PATH];
char drive[_MAX_DRIVE] = "C:";
char dir[_MAX_DIR] = "Thisisaverylongdirname01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789";
char fname[_MAX_FNAME] = "Thisisaverylongfilename012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789";
char ext[_MAX_EXT] = "txt";
_makepath(Path, drive, dir, fname, ext);

using system call in Linux kernel file

I am implementing a custom process scheduler in Linux. And I want to use a system call to record my program so that I can debug easily.
The file I write is
source code : linux-x.x.x/kernel/sched_new_scheduler.c
In sched_new_scheduler.c could I use syscall(the id of the system call, parameter); directly? It seems syscall(); is used with #include<sys/syscalls.h> in C program, but the ".h" can not be found in the kernel/.
I just want to know how my program executes by recording something, so could I directly write printk("something"); in sched_new_scheduler.c ? Or try a correct way to use system call?
System call look like wrapper around other kernel function one of ways how to use syscall inside kernel is find sub function for exact system call. For example:
int open(const char *pathname, int flags, mode_t mode); -> filp_open
////////////////////////////////////////////////////////////////////////////////////////////////
struct file* file_open(const char* path, int flags, int rights)
{
struct file* filp = NULL;
mm_segment_t oldfs;
int err = 0;
oldfs = get_fs();
set_fs(get_ds());
filp = filp_open(path, flags, rights);
set_fs(oldfs);
if(IS_ERR(filp)) {
err = PTR_ERR(filp);
return NULL;
}
return filp;
}
ssize_t write(int fd, const void *buf, size_t count); -> vfs_write
////////////////////////////////////////////////////////////////////////////////////////////////
int file_write(struct file* file, unsigned long long offset, unsigned char* data, unsigned int size)
{
mm_segment_t oldfs;
int ret;
oldfs = get_fs();
set_fs(get_ds());
ret = vfs_write(file, data, size, &offset);
set_fs(oldfs);
return ret;
}
A system call is supposed to be used by an application program to avail a service from kernel. You can implement a system call in your kernel module, but that should be called from an application program. If you just want to expose the statistics of your new scheduler to the userspace for debugging, you can use interfaces like proc, sys, debugfs etc. And that would be much more easier than implementing a system call and writing a userspace application to use it.

Read system call gives wrong count size?

I have created a misc driver and has made a sample read function like this
static ssize_t test_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
pr_info("Count arg : %d\n",count);
return ret;
}
I now try to read the device using a userspace code as shown below
uint64_t read_buff;
fread(&read_buff, sizeof(read_buff), 1, fp)
The dmesg log I get is
[ 1593.273163] Count arg : 4096
I was expecting it to be of the size of uint64_t. Could anybody point me why I get an unexpected value?
Seems that fread() tries to buffer some data for userland. I found source code of one fread() that buffers data (in __srefill()). So, it's OK for fread() to do so.
If you want to avoid such unexpected results, lower one level down and work with read() function in userland.

Using an old device file for char device driver

I have two questions as I'm trying device drivers as a beginner.
I created one module , loaded it, it dynamically took major number 251 say. Number of minor devices is kept 1 only i.e minor number 0. For testing , I tried echo and cat on the device file (created using mknod) and it works as expected. Now if I unload the module but don't remove /dev entry and again load the module with same major number and try writing/reading to same device file which was used previously, kernel crashes. I know we shouldn't do this but just want to understand what happens in this scenario which causes this crash. I think something that VFS does.
When I do cat on device file, the read keeps on happening indefinitely. why? To stop that needed to use offset manipulation. This looks to be because buffer length is coming as 32768 as default to read?
EDIT: further in this I added one ioctl function as below, then I'm getting error regarding the storage class of init and cleanup function, which work well if no ioctl is defined. Not getting the link between ioctl and the init/cleanup functions' storage class. Updated code is posted. Errors are below:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:95:12: error: invalid storage class for function ‘flow_init’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c: In function ‘flow_init’:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:98:2: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c: In function ‘flow_ioctl’:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:112:13: error: invalid storage class for function ‘flow_terminate’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:119:1: error: invalid storage class for function ‘__inittest’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:119:1: warning: ‘alias’ attribute ignored [-Wattributes]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: error: invalid storage class for function ‘__exittest’
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: warning: ‘alias’ attribute ignored [-Wattributes]
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:120:1: error: expected declaration or statement at end of input
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c: At top level:
/home/diwakar/Documents/my_modules/first_test_module/flowTest.c:73:13: warning: ‘flow_ioctl’ defined but not used [-Wunused-function]
Below is the code:
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <linux/cdev.h>
#include <linux/kdev_t.h>
#include <linux/errno.h>
#include <linux/ioctl.h>
#define SUCCESS 0
#define BUF_LEN 80
#define FLOWTEST_MAGIC 'f'
#define FLOW_QUERY _IOR(FLOWTEST_MAGIC,1,int)
MODULE_LICENSE("GPL");
int minor_num=0,i;
int num_devices=1;
int fopen=0,counter=0,ioctl_test;
static struct cdev ms_flow_cd;
static char c;
///// Open , close and rest of the things
static int flow_open(struct inode *f_inode, struct file *f_file)
{
printk(KERN_ALERT "flowtest device: OPEN\n");
return SUCCESS;
}
static ssize_t flow_read(struct file *f_file, char __user *buf, size_t
len, loff_t *off)
{
printk(KERN_INFO "flowtest Driver: READ()\nlength len=%d, Offset = %d\n",len,*off);
/* Check to avoid the infinitely printing on screen. Return 1 on first read, and 0 on subsequent read */
if(*off==1)
return 0;
printk(KERN_INFO "Copying...\n");
copy_to_user(buf,&c,1);
printk(KERN_INFO "Copied : %s\n",buf);
*off = *off+1;
return 1; // Return 1 on first read
}
static ssize_t flow_write(struct file *f_file, const char __user *buf,
size_t len, loff_t *off)
{
printk(KERN_INFO "flowtest Driver: WRITE()\n");
if (copy_from_user(&c,buf+len-2,1) != 0)
return -EFAULT;
else
{
printk(KERN_INFO "Length len = %d\n\nLast character written is - %c\n",len,*(buf+len-2));
return len;
}
}
static int flow_close(struct inode *i, struct file *f)
{
printk(KERN_INFO "ms_tty Device: CLOSE()\n");
return 0;
}
///* ioctl commands *///
static long flow_ioctl (struct file *filp,unsigned int cmd, unsigned long arg)
{
switch(cmd) {
case FLOW_QUERY:
ioctl_test=51;
return ioctl_test;
default:
return -ENOTTY;
}
///////////////////File operations structure below/////////////////////////
struct file_operations flow_fops = {
.owner = THIS_MODULE,
.llseek = NULL,
.read = flow_read,
.write = flow_write,
.unlocked_ioctl = flow_ioctl,
.open = flow_open,
.release = flow_close
};
static int flow_init(void)
{
printk(KERN_ALERT "Here with flowTest module ... loading...\n");
int result=0;
dev_t dev=0;
result = alloc_chrdev_region(&dev, minor_num,
num_devices,"mod_flowtest"); // allocate major number dynamically.
i=MAJOR(dev);
printk(KERN_ALERT "Major allocated = %d",i);
cdev_init(&ms_flow_cd,&flow_fops);
cdev_add(&ms_flow_cd,dev,1);
return 0;
}
static void flow_terminate(void)
{
dev_t devno=MKDEV(i,0); // wrap major/minor numbers in a dev_t structure , to pass for deassigning.
printk(KERN_ALERT "Going out... exiting...\n");
unregister_chrdev_region(devno,num_devices); //remove entry from the /proc/devices
}
module_init(flow_init);
module_exit(flow_terminate);
1- You're missing cdev_del() in your cleanup function. Which means the device stays registered, but the functions to handle it are unloaded, thus the crash. Also, cdev_add probably fails on the next load, but you don't know because you're not checking return values.
2- It looks ok... you modify offset, return the correct number of bytes, and then return 0 if offset is 1, which indicates EOF. But you should really check for *off >= 1.
EDIT-
The length passed into your read handler function comes all the way from user-land read(). If the user opens the device file and calls read(fd, buf, 32768);, that just means the user wants to read up to 32768 bytes of data. That length gets passed all the way to your read handler. If you don't have 32768 bytes of data to supply, you supply what you have, and return the length. Now, the user code isn't sure if that's the end of the file or not, so it tries for another 32768 read. You really have no data now, so you return 0, which tells the user code that it has hit EOF, so it stops.
In summary, what you're seeing as some sort of default value at the read handler is just the block size that the utility cat uses to read anything. If you want to see a different number show up at your read function, try using dd instead, since it lets you specify the block size.
dd if=/dev/flowtest of=/dev/null bs=512 count=1
In addition, this should read one block and stop, since you're specifying count=1. If you omit count=1, it will look more like cat, and try to read until EOF.
For 2, make sure you start your module as a char device when using mknod.
mknod /dev/you_device c major_number minor_number

Regarding how the parameters to the read function is passed in simple char driver

I am newbei to driver programming i am started writing the simple char driver . Then i created special file for my char driver mknod /dev/simple-driver c 250 0 .when it type cat /dev/simple-driver. it shows the string "Hello world from Kernel mode!". i know that function
static const char g_s_Hello_World_string[] = "Hello world tamil_vanan!\n\0";
static const ssize_t g_s_Hello_World_size = sizeof(g_s_Hello_World_string);
static ssize_t device_file_read(
struct file *file_ptr
, char __user *user_buffer
, size_t count
, loff_t *possition)
{
printk( KERN_NOTICE "Simple-driver: Device file is read at offset =
%i, read bytes count = %u", (int)*possition , (unsigned int)count );
if( *possition >= g_s_Hello_World_size )
return 0;
if( *possition + count > g_s_Hello_World_size )
count = g_s_Hello_World_size - *possition;
if( copy_to_user(user_buffer, g_s_Hello_World_string + *possition, count) != 0 )
return -EFAULT;
*possition += count;
return count;
}
is get called . This is mapped to (*read) in file_opreation structure of my driver .My question is how this function is get called , how the parameters like struct file,char,count, offset are passed bcoz is i simply typed cat command ..Please elabroate how this happening
In Linux all are considered as files. The type of file, whether it is a driver file or normal file depends upon the mount point where it is mounted.
For Eg: If we consider your case : cat /dev/simple-driver traverses back to the mount point of device files.
From the device file name simple-driver it retrieves Major and Minor number.
From those number(especially from minor number) it associates the driver file for your character driver.
From the driver it uses struct file ops structure to find the read function, which is nothing but your read function:
static ssize_t device_file_read(struct file *file_ptr, char __user *user_buffer, size_t count, loff_t *possition)
User_buffer will always take sizeof(size_t count).It is better to keep a check of buffer(In some cases it throws warning)
String is copied to User_buffer(copy_to_user is used to check kernel flags during copy operation).
postion is 0 for first copy and it increments in the order of count:position+=count.
Once read function returns the buffer to cat. and cat flushes the buffer contents on std_out which is nothing but your console.
cat will use some posix version of read call from glibc. Glibc will put the arguments on the stack or in registers (this depends on your hardware architecture) and will switch to kernel mode. In the kernel the values will be copied to the kernel stack. And in the end your read function will be called.

Resources