Literal description of the problem:
Given a number of schools, each school holds a number of teachers according to its needs. At the end of the scholar year, some teachers ask for changing their positions (schools where they're currently teaching) according to an ordered list (i.e: change me to school1, if not possible, school2, if not possible school3, etc..) Remembering that each school must have EXACTLY the number of teachers it needs (not more, not less).
Each teacher has an importance number that is unique, so that if two or more teachers ask for the same school at the same time, the one having the higher importance number will get the desired school.
if we are unable to migrate one or more teachers following his list, then we keep him at his initial school answering: "sorry, your demand is affordable for this year"
How can we afford this "migration" ?
(p.s: by "afford" I mean change the position of each teacher to the best (best according to his list) desired school.
I/ Algebraic modeling of the problem
Given E={e1..en}, n>=0, a set of positive integers (e for entity)
Given L={l1..lm}, m>=0, a set of positive integers (l for location)
Given P:E --> L , a function. (P for position)
Given C:L --> IN*, a function. (C for capacity)
Given U:L --> IN, a function. (U for used) defined by: U(l)=card({e/P(e)=l})
Given A:L --> IN, a function. (A for available) defined by: C(l)=A(l)+U(l) for any l in L.
Let D:E --> L^k, where 0 < k <= m, D(e)=(l1,l2,..li) a function (D for destinations)
(That is, each entity has an ordered non-empty list of locations (destinations) willing to move to).
Let I:E --> IR+, a bijection (I for Importance). (That is, each entity has a unique importance number I(e))
II/Rules of Migration:
The asked task, is to find out the new P' function (Positioning) that affords the following:
1- P'(e) belongs to {l1,l2,..,li} where (l1,l2,..,li)=D(e)
2- If we P'(e)=ls and P'(e)=lt are two possible solutions, where D(e) = (l1,...,ls,...,lt,...,li), then we must keep the solution that matches the destinations' order (i.e ls in this case) and exclude the other one)
3-If A(l) = 1 and P'(e1)=l and P'(e2)=l are two possible solutions, where I(e1)>I(e2) then we must keep the solution that matches the importance's order (i.e in this case P'(e1)=l) and exclude the other one.
4- If none of the desired destinations is possible, then P'(e)=P(e)
This can be formulated as bipartite matching (or, for efficiency, integer max flow to avoid duplicating the identical positions). Make a graph with a node for each teacher and a node for each position. Put edges between teachers and their current assignments, as well as everything that ranks above their current assignment. Find a maximum matching; if it is not perfect, then the problem is unsolvable without moving a teacher against their preference list.
Otherwise, for each teacher in descending order of importance, determine the best assignment that is feasible and commit to it. There is a linear-time algorithm that, given a bipartite graph with a perfect matching, determines whether there is another matching containing a particular edge (orient the matching edges, the non-matching edge the other way, and look for an augmenting path).
Related
I have to design an algorithm to solve a problem:
We have two groups of people (group A and group B, the number of people in group A is always less or equal to the number of people in group B), all standing in a one-dimensional line, each people have a corresponding number indicating its location. When the timer starts, each people in group A must find a partner in group B, but people in group B cannot move at all and each people in group B can only have at most 1 partner.
Suppose that people in group A move 1 unit/sec, how can I find the minimum time for everyone in group A to find a partner?
for example, if there are three people in group A with location {5,7,8}, and four people in group B with location {2,3,4,9}, the optimal solution would be 3 sec because max(5-3,7-4,9-8)=3
I could just use brute-force to solve it, but is there a better way of solving this problem?
This problem is a special case of the edit distance problem, and so a similar Dynamic Programming solution can be used to solve it. It's possible that a faster solution exists for this special case.
Let A = [a_0, a_1...,a_(m-1)] be the (sorted) positions of our m moving people, and B = [b_0, b_1...,b_(n-1)] be the n (sorted) destination spots, with m <= n. For the edit distance analogy, the allowed operations are:
Insert a number into A (free), or
Substitute an element a -> a' in A with cost |a-a'|.
We can solve this in O(n*m) time (plus sorting time of both A and B, if necessary).
We can define the dynamic programming via a cost function C(i, j) which is the minimum cost to move the first i people a_0, ... a_(i-1) using only the first j spots b_0, ... b_(j-1). You want C(m,n). Define C as follows:
I'm looking for a sorting algorithm that honors a min and max range for each element1. The problem domain is a recommendations engine that combines a set of business rules (the restrictions) with a recommendation score (the value). If we have a recommendation we want to promote (e.g. a special product or deal) or an announcement we want to appear near the top of the list (e.g. "This is super important, remember to verify your email address to participate in an upcoming promotion!") or near the bottom of the list (e.g. "If you liked these recommendations, click here for more..."), they will be curated with certain position restriction in place. For example, this should always be the top position, these should be in the top 10, or middle 5 etc. This curation step is done ahead of time and remains fixed for a given time period and for business reasons must remain very flexible.
Please don't question the business purpose, UI or input validation. I'm just trying to implement the algorithm in the constraints I've been given. Please treat this as an academic question. I will endeavor to provide a rigorous problem statement, and feedback on all other aspects of the problem is very welcome.
So if we were sorting chars, our data would have a structure of
struct {
char value;
Integer minPosition;
Integer maxPosition;
}
Where minPosition and maxPosition may be null (unrestricted). If this were called on an algorithm where all positions restrictions were null, or all minPositions were 0 or less and all maxPositions were equal to or greater than the size of the list, then the output would just be chars in ascending order.
This algorithm would only reorder two elements if the minPosition and maxPosition of both elements would not be violated by their new positions. An insertion-based algorithm which promotes items to the top of the list and reorders the rest has obvious problems in that every later element would have to be revalidated after each iteration; in my head, that rules out such algorithms for having O(n3) complexity, but I won't rule out such algorithms without considering evidence to the contrary, if presented.
In the output list, certain elements will be out of order with regard to their value, if and only if the set of position constraints dictates it. These outputs are still valid.
A valid list is any list where all elements are in a position that does not conflict with their constraints.
An optimal list is a list which cannot be reordered to more closely match the natural order without violating one or more position constraint. An invalid list is never optimal. I don't have a strict definition I can spell out for 'more closely matching' between one ordering or another. However, I think it's fairly easy to let intuition guide you, or choose something similar to a distance metric.
Multiple optimal orderings may exist if multiple inputs have the same value. You could make an argument that the above paragraph is therefore incorrect, because either one can be reordered to the other without violating constraints and therefore neither can be optimal. However, any rigorous distance function would treat these lists as identical, with the same distance from the natural order and therefore reordering the identical elements is allowed (because it's a no-op).
I would call such outputs the correct, sorted order which respects the position constraints, but several commentators pointed out that we're not really returning a sorted list, so let's stick with 'optimal'.
For example, the following are a input lists (in the form of <char>(<minPosition>:<maxPosition>), where Z(1:1) indicates a Z that must be at the front of the list and M(-:-) indicates an M that may be in any position in the final list and the natural order (sorted by value only) is A...M...Z) and their optimal orders.
Input order
A(1:1) D(-:-) C(-:-) E(-:-) B(-:-)
Optimal order
A B C D E
This is a trivial example to show that the natural order prevails in a list with no constraints.
Input order
E(1:1) D(2:2) C(3:3) B(4:4) A(5:5)
Optimal order
E D C B A
This example is to show that a fully constrained list is output in the same order it is given. The input is already a valid and optimal list. The algorithm should still run in O(n log n) time for such inputs. (Our initial solution is able to short-circuit any fully constrained list to run in linear time; I added the example both to drive home the definitions of optimal and valid and because some swap-based algorithms I considered handled this as the worse case.)
Input order
E(1:1) C(-:-) B(1:5) A(4:4) D(2:3)
Optimal Order
E B D A C
E is constrained to 1:1, so it is first in the list even though it has the lowest value. A is similarly constrained to 4:4, so it is also out of natural order. B has essentially identical constraints to C and may appear anywhere in the final list, but B will be before C because of value. D may be in positions 2 or 3, so it appears after B because of natural ordering but before C because of its constraints.
Note that the final order is correct despite being wildly different from the natural order (which is still A,B,C,D,E). As explained in the previous paragraph, nothing in this list can be reordered without violating the constraints of one or more items.
Input order
B(-:-) C(2:2) A(-:-) A(-:-)
Optimal order
A(-:-) C(2:2) A(-:-) B(-:-)
C remains unmoved because it already in its only valid position. B is reordered to the end because its value is less than both A's. In reality, there will be additional fields that differentiate the two A's, but from the standpoint of the algorithm, they are identical and preserving OR reversing their input ordering is an optimal solution.
Input order
A(1:1) B(1:1) C(3:4) D(3:4) E(3:4)
Undefined output
This input is invalid for two reasons: 1) A and B are both constrained to position 1 and 2) C, D, and E are constrained to a range than can only hold 2 elements. In other words, the ranges 1:1 and 3:4 are over-constrained. However, the consistency and legality of the constraints are enforced by UI validation, so it's officially not the algorithms problem if they are incorrect, and the algorithm can return a best-effort ordering OR the original ordering in that case. Passing an input like this to the algorithm may be considered undefined behavior; anything can happen. So, for the rest of the question...
All input lists will have elements that are initially in valid positions.
The sorting algorithm itself can assume the constraints are valid and an optimal order exists.2
We've currently settled on a customized selection sort (with runtime complexity of O(n2)) and reasonably proved that it works for all inputs whose position restrictions are valid and consistent (e.g. not overbooked for a given position or range of positions).
Is there a sorting algorithm that is guaranteed to return the optimal final order and run in better than O(n2) time complexity?3
I feel that a library standard sorting algorithm could be modified to handle these constrains by providing a custom comparator that accepts the candidate destination position for each element. This would be equivalent to the current position of each element, so maybe modifying the value holding class to include the current position of the element and do the extra accounting in the comparison (.equals()) and swap methods would be sufficient.
However, the more I think about it, an algorithm that runs in O(n log n) time could not work correctly with these restrictions. Intuitively, such algorithms are based on running n comparisons log n times. The log n is achieved by leveraging a divide and conquer mechanism, which only compares certain candidates for certain positions.
In other words, input lists with valid position constraints (i.e. counterexamples) exist for any O(n log n) sorting algorithm where a candidate element would be compared with an element (or range in the case of Quicksort and variants) with/to which it could not be swapped, and therefore would never move to the correct final position. If that's too vague, I can come up with a counter example for mergesort and quicksort.
In contrast, an O(n2) sorting algorithm makes exhaustive comparisons and can always move an element to its correct final position.
To ask an actual question: Is my intuition correct when I reason that an O(n log n) sort is not guaranteed to find a valid order? If so, can you provide more concrete proof? If not, why not? Is there other existing research on this class of problem?
1: I've not been able to find a set of search terms that points me in the direction of any concrete classification of such sorting algorithm or constraints; that's why I'm asking some basic questions about the complexity. If there is a term for this type of problem, please post it up.
2: Validation is a separate problem, worthy of its own investigation and algorithm. I'm pretty sure that the existence of a valid order can be proven in linear time:
Allocate array of tuples of length equal to your list. Each tuple is an integer counter k and a double value v for the relative assignment weight.
Walk the list, adding the fractional value of each elements position constraint to the corresponding range and incrementing its counter by 1 (e.g. range 2:5 on a list of 10 adds 0.4 to each of 2,3,4, and 5 on our tuple list, incrementing the counter of each as well)
Walk the tuple list and
If no entry has value v greater than the sum of the series from 1 to k of 1/k, a valid order exists.
If there is such a tuple, the position it is in is over-constrained; throw an exception, log an error, use the doubles array to correct the problem elements etc.
Edit: This validation algorithm itself is actually O(n2). Worst case, every element has the constraints 1:n, you end up walking your list of n tuples n times. This is still irrelevant to the scope of the question, because in the real problem domain, the constraints are enforced once and don't change.
Determining that a given list is in valid order is even easier. Just check each elements current position against its constraints.
3: This is admittedly a little bit premature optimization. Our initial use for this is for fairly small lists, but we're eyeing expansion to longer lists, so if we can optimize now we'd get small performance gains now and large performance gains later. And besides, my curiosity is piqued and if there is research out there on this topic, I would like to see it and (hopefully) learn from it.
On the existence of a solution: You can view this as a bipartite digraph with one set of vertices (U) being the k values, and the other set (V) the k ranks (1 to k), and an arc from each vertex in U to its valid ranks in V. Then the existence of a solution is equivalent to the maximum matching being a bijection. One way to check for this is to add a source vertex with an arc to each vertex in U, and a sink vertex with an arc from each vertex in V. Assign each edge a capacity of 1, then find the max flow. If it's k then there's a solution, otherwise not.
http://en.wikipedia.org/wiki/Maximum_flow_problem
--edit-- O(k^3) solution: First sort to find the sorted rank of each vertex (1-k). Next, consider your values and ranks as 2 sets of k vertices, U and V, with weighted edges from each vertex in U to all of its legal ranks in V. The weight to assign each edge is the distance from the vertices rank in sorted order. E.g., if U is 10 to 20, then the natural rank of 10 is 1. An edge from value 10 to rank 1 would have a weight of zero, to rank 3 would have a weight of 2. Next, assume all missing edges exist and assign them infinite weight. Lastly, find the "MINIMUM WEIGHT PERFECT MATCHING" in O(k^3).
http://www-math.mit.edu/~goemans/18433S09/matching-notes.pdf
This does not take advantage of the fact that the legal ranks for each element in U are contiguous, which may help get the running time down to O(k^2).
Here is what a coworker and I have come up with. I think it's an O(n2) solution that returns a valid, optimal order if one exists, and a closest-possible effort if the initial ranges were over-constrained. I just tweaked a few things about the implementation and we're still writing tests, so there's a chance it doesn't work as advertised. This over-constrained condition is detected fairly easily when it occurs.
To start, things are simplified if you normalize your inputs to have all non-null constraints. In linear time, that is:
for each item in input
if an item doesn't have a minimum position, set it to 1
if an item doesn't have a maximum position, set it to the length of your list
The next goal is to construct a list of ranges, each containing all of the candidate elements that have that range and ordered by the remaining capacity of the range, ascending so ranges with the fewest remaining spots are on first, then by start position of the range, then by end position of the range. This can be done by creating a set of such ranges, then sorting them in O(n log n) time with a simple comparator.
For the rest of this answer, a range will be a simple object like so
class Range<T> implements Collection<T> {
int startPosition;
int endPosition;
Collection<T> items;
public int remainingCapacity() {
return endPosition - startPosition + 1 - items.size();
}
// implement Collection<T> methods, passing through to the items collection
public void add(T item) {
// Validity checking here exposes some simple cases of over-constraining
// We'll catch these cases with the tricky stuff later anyways, so don't choke
items.add(item);
}
}
If an element A has range 1:5, construct a range(1,5) object and add A to its elements. This range has remaining capacity of 5 - 1 + 1 - 1 (max - min + 1 - size) = 4. If an element B has range 1:5, add it to your existing range, which now has capacity 3.
Then it's a relatively simple matter of picking the best element that fits each position 1 => k in turn. Iterate your ranges in their sorted order, keeping track of the best eligible element, with the twist that you stop looking if you've reached a range that has a remaining size that can't fit into its remaining positions. This is equivalent to the simple calculation range.max - current position + 1 > range.size (which can probably be simplified, but I think it's most understandable in this form). Remove each element from its range as it is selected. Remove each range from your list as it is emptied (optional; iterating an empty range will yield no candidates. That's a poor explanation, so lets do one of our examples from the question. Note that C(-:-) has been updated to the sanitized C(1:5) as described in above.
Input order
E(1:1) C(1:5) B(1:5) A(4:4) D(2:3)
Built ranges (min:max) <remaining capacity> [elements]
(1:1)0[E] (4:4)0[A] (2:3)1[D] (1:5)3[C,B]
Find best for 1
Consider (1:1), best element from its list is E
Consider further ranges?
range.max - current position + 1 > range.size ?
range.max = 1; current position = 1; range.size = 1;
1 - 1 + 1 > 1 = false; do not consider subsequent ranges
Remove E from range, add to output list
Find best for 2; current range list is:
(4:4)0[A] (2:3)1[D] (1:5)3[C,B]
Consider (4:4); skip it because it is not eligible for position 2
Consider (2:3); best element is D
Consider further ranges?
3 - 2 + 1 > 1 = true; check next range
Consider (2:5); best element is B
End of range list; remove B from range, add to output list
An added simplifying factor is that the capacities do not need to be updated or the ranges reordered. An item is only removed if the rest of the higher-sorted ranges would not be disturbed by doing so. The remaining capacity is never checked after the initial sort.
Find best for 3; output is now E, B; current range list is:
(4:4)0[A] (2:3)1[D] (1:5)3[C]
Consider (4:4); skip it because it is not eligible for position 3
Consider (2:3); best element is D
Consider further ranges?
same as previous check, but current position is now 3
3 - 3 + 1 > 1 = false; don't check next range
Remove D from range, add to output list
Find best for 4; output is now E, B, D; current range list is:
(4:4)0[A] (1:5)3[C]
Consider (4:4); best element is A
Consider further ranges?
4 - 4 + 1 > 1 = false; don't check next range
Remove A from range, add to output list
Output is now E, B, D, A and there is one element left to be checked, so it gets appended to the end. This is the output list we desired to have.
This build process is the longest part. At its core, it's a straightforward n2 selection sorting algorithm. The range constraints only work to shorten the inner loop and there is no loopback or recursion; but the worst case (I think) is still sumi = 0 n(n - i), which is n2/2 - n/2.
The detection step comes into play by not excluding a candidate range if the current position is beyond the end of that ranges max position. You have to track the range your best candidate came from in order to remove it, so when you do the removal, just check if the position you're extracting the candidate for is greater than that ranges endPosition.
I have several other counter-examples that foiled my earlier algorithms, including a nice example that shows several over-constraint detections on the same input list and also how the final output is closest to the optimal as the constraints will allow. In the mean time, please post any optimizations you can see and especially any counter examples where this algorithm makes an objectively incorrect choice (i.e. arrives at an invalid or suboptimal output when one exists).
I'm not going to accept this answer, because I specifically asked if it could be done in better than O(n2). I haven't wrapped my head around the constraints satisfaction approach in #DaveGalvin's answer yet and I've never done a maximum flow problem, but I thought this might be helpful for others to look at.
Also, I discovered the best way to come up with valid test data is to start with a valid list and randomize it: for 0 -> i, create a random value and constraints such that min < i < max. (Again, posting it because it took me longer than it should have to come up with and others might find it helpful.)
Not likely*. I assume you mean average run time of O(n log n) in-place, non-stable, off-line. Most Sorting algorithms that improve on bubble sort average run time of O(n^2) like tim sort rely on the assumption that comparing 2 elements in a sub set will produce the same result in the super set. A slower variant of Quicksort would be a good approach for your range constraints. The worst case won't change but the average case will likely decrease and the algorithm will have the extra constraint of a valid sort existing.
Is ... O(n log n) sort is not guaranteed to find a valid order?
All popular sort algorithms I am aware of are guaranteed to find an order so long as there constraints are met. Formal analysis (concrete proof) is on each sort algorithems wikepedia page.
Is there other existing research on this class of problem?
Yes; there are many journals like IJCSEA with sorting research.
*but that depends on your average data set.
In a program that generates random groups of students, I give the user the option to force specific students to be grouped together and also block students from being paired. I have tried for two days to make my own algorithm for accomplishing this, but I get lost in all of the recursion. I'm creating the program in Lua, but I'll be able to comprehend any sort of pseudo code. Here's an example of how the students are sorted:
students = {
Student1 = {name=Student1, force={"Student2"}, deny={}};
Student2 = {name=Student2, force={"Student1","Student3"}, deny={}};
Student3 = {name=Student3, force={"Student2"}, deny={}};
}-- A second name property is given in the case that the student table needs to be accessed by students[num] to retrieve a name
I then create temporary tables:
forced = {}--Every student who has at least 1 entry in their force table is placed here, even if they have 1 or more in the deny table
denied = {}--Every student with 1 entry for the deny table and none in the force table is placed here
leftovers = {}--Every student that doesn't have any entries in the force nor deny tables is placed here
unsortable = {}--None are placed here yet -- this is to store students that are unable to be placed according to set rules(i.e. a student being forced to be paired with someone in a group that also contains a student that they can't be paired with
SortStudentsIntoGroups()--predefined; sorts students into above groups
After every student is placed in those groups(note that they also remain in the students table still), I begin by inserting the students who are forced to be paired together in groups(well, I have tried to), insert students who have one or more entries in the deny table into groups where they are able to be placed, and just fill the remaining groups with the leftovers.
There are a couple of things that will be of some use:
numGroups--predefined number of groups
maxGroupSize--automatically calculated; quick reference to largest amount of students allowed in a group
groups = {}--number of entries is equivalent to numGroups(i.e. groups = {{},{},{}} in the case of three groups). This is for storing students in so that the groups may be displayed to the end user after the algorithm is complete.
sortGroups()--predefined function that sorts the groups from smallest to largest; will sort largest to smallest if supplied a true boolean as a parameter)
As I stated before, I have no clue how to set up a recursive algorithm for this. Every time I try and insert the forced students together, I end up getting the same student in multiple groups, forced pairs not being paired together, etc. Also note the formats. In each student's force/deny table, the name of the target student is given -- not a direct reference to the student. What sort of algorithm should I use(if one exists for this case)? Any help is greatly appreciated.
Seems to me like you are facing an NP-Hard Problem here.
This is equivalent to graph-coloring problem with k colors, where edges are the denial lists.
Graph Coloring:
Given a graph G=(V,E), and an integer `k`, create coloring function f:V->{1,2,..,k} such that:
f(v) = f(u) -> (v,u) is NOT in E
The reduction from graph coloring to your problem:
Given a graph coloring problem (G,k) where G=(V,E), create an instance of your problem with:
students = V
for each student: student.denial = { student' | for each edge (student,student')}
#groups = k
Intuitively, each vertex is represented by a student, and a student denies all students that there is an edge between the vertices representing them.
The number of groups is the given number of colors.
Now, given a solution to your problem - we get k groups that if student u denies student v - they are not in the same group, but this is the same as coloring u and v in different colors, so for each edge (u,v) in the original graph, u and v are in different colors.
The other way around is similar
So, we got here a polynomial reduction from graph-coloring problem, and thus finding an optimal solution to your problem is NP-Hard, and there is no known efficient solution to this problem, and most believe one does not exist.
Some alternatives are using heuristics such as Genetic Algorithms that does not provide optimal solution, or using time consuming brute force approaches (that are not feasible for large number of students).
The brute force will just generate all possible splits to k groups, and check if it is a feasible solution, at the end - the best solution found will be chosen.
Say I have a Group data structure which contains a list of Element objects, such that each group has a unique set of elements.:
public class Group
{
public List<Element> Elements;
}
and say I have a list of populations who require certain elements, in such a way that each population has a unique set of required elements:
public class Population
{
public List<Element> RequiredElements;
}
I have an unlimited quantity of each defined Group, i.e. they are not consumed by populations.
Say I am looking at a particular Population. I want to find the best possible match of groups such that there is minimum excess elements, and no unmatched elements.
For example: I have a population which needs wood, steel, grain, and coal. The only groups available are {wood, herbs}, {steel, coal, oil}, {grain, steel}, and {herbs, meat}.
The last group - {herbs, meat} isn't required at all by my population so it isn't used. All others are needed, but herbs and oil are not required so it is wasted. Furthermore, steel exists twice in the minimum set, so one lot of steel is also wasted. The best match in this example has a wastage of 3.
So for a few hundred Population objects, I need to find the minimum wastage best match and compute how many elements are wasted.
How do I even begin to solve this? Once I have found a match, counting the wastage is trivial. Finding the match in the first place is hard. I could enumerate all possibilities but with a few thousand populations and many hundreds of groups, it's quite a task. Especially considering this whole thing sits inside each iteration of a simulated annealing algorithm.
I'm wondering whether I can formulate the whole thing as a mixed-integer program and call a solver like GLPK at each iteration.
I hope I have explained the problem correctly. I can clarify anything that's unclear.
Here's my binary program, for those of you interested...
x is the decision vector, an element of {0,1}, which says that the population in question does/doesn't receive from group i. There is an entry for each group.
b is the column vector, an element of {0,1}, which says which resources the population in question does/doesn't need. There is an entry for each resource.
A is a matrix, an element of {0,1}, which says what resources are in what groups.
The program is:
Minimise: ((Ax - b)' * 1-vector) + (x' * 1-vector);
Subject to: Ax >= b;
The constraint just says that all required resources must be satisfied. The objective is to minimise all excess and the total number of groups used. (i.e. 0 excess with 1 group used is better than 0 excess with 5 groups used).
You can formulate an integer program for each population P as follows. Use a binary variable xj to denote whether group j is chosen or not. Let A be a binary matrix, such that Aij is 1 if and only if item i is present in group j. Then the integer program is:
min Ei,j (xjAij)
s.t. Ej xjAij >= 1 for all i in P.
xj = 0, 1 for all j.
Note that you can obtain the minimum wastage by subtracting |P| from the optimal solution of the above IP.
Do you mean the Maximum matching problem?
You need to build a bipartite graph, where one of the sides is your populations and the other is groups, and edge exists between group A and population B if it have it in its set.
To find maximum edge matching you can easily use Kuhn algorithm, which is greatly described here on TopCoder.
But, if you want to find mimimum edge dominating set (the set of minimum edges that is covering all the vertexes), the problem becomes NP-hard and can't be solved in polynomial time.
Take a look at the weighted set cover problem, I think this is exactly what you described above. A basic description of the (unweighted) problem can be found here.
Finding the minimal waste as you defined above is equivalent to finding a set cover such that the sum of the cardinalities of the covering sets is minimal. Hence, the weight of each set (=a group of elements) has to be defined equal to its cardinality.
Since even the unweighted the set cover problem is NP-complete, it is not likely that an efficient algorithm for your problem instances exist. Maybe a good greedy approximation algorithm will be sufficient or your purpose? Googling weighted set cover provides several promising results, e.g. this script.
I have:
1 million university student names and
3 million bank customer names
I manage to convert strings into numerical values based on hashing (similar strings have similar hash values). I would like to know how can I determine correlation between these two sets to see if values are pairing up at least 60%?
Can I achieve this using ICC? How does ICC 2-way random work?
Please kindly answer ASAP as I need this urgently.
This kind of entity resolution etc is normally easy, but I am surprised by the hashing approach here. Hashing loses information that is critical to entity resolution. So, if possible, you shouldn't use hash, rather the original strings.
Assuming using original strings is an option, then you would want to do something like this:
List A (1M), List B (3M)
// First, match the entities that match very well, and REMOVE them.
for a in List A
for b in List B
if compare(a,b) >= MATCH_THRESHOLD // This may be 90% etc
add (a,b) to matchedList
remove a from List A
remove b from List B
// Now, match the entities that match well, and run bipartite matching
// Bipartite matching is required because each entity can match "acceptably well"
// with more than one entity on the other side
for a in List A
for b in List B
compute compare(a,b)
set edge(a,b) = compare(a,b)
If compare(a,b) < THRESHOLD // This seems to be 60%
set edge(a,b) = 0
// Now, run bipartite matcher and take results
The time complexity of this algorithm is O(n1 * n2), which is not very good. There are ways to avoid this cost, but they depend upon your specific entity resolution function. For example, if the last name has to match (to make the 60% cut), then you can simply create sublists in A and B that are partitioned by the first couple of characters of the last name, and just run this algorithm between corresponding list. But it may very well be that last name "Nuth" is supposed to match "Knuth", etc. So, some local knowledge of what your name comparison function is can help you divide and conquer this problem better.