Related
Let G=(V,A,s,t,U) be a flow network. Suppose we have obtained a max flow. Is there a fast algorithm to find all edges that are in some min-cut?
I know that if x is a max flow, then we can find in the residual network G(x) the set S of vertices reachable from the source s, and T the set of vertices from which we can reach t. And consequently, S and its complement is a min-cut. Moreover, T and its complement also form a min-cut.
If, unfortunately, it happens that T is not the complement of S, then the min-cut is not unique. And I am wondering whether there is a good way to determine whether the edges whose ends lie in neither S nor T belong to a min-cut or not.
Each arc u-->v belongs to some s--t min cut if and only if
there is no residual path from u to t,
there is no residual path from s to v, and
there is no residual path from u to v.
To prove the if direction, consider the cut consisting of vertices reachable from s or u by a residual path, which is an s--t cut by (1), has zero residual capacity and hence is an s--t min cut by construction, and contains u-->v by (2) and (3).
To prove the only if direction, we can use an s--t min cut that contains u-->v to show that, for every path from u to t, from s to v, or from u to v, some arc in the path is non-residual.
This gets you to O(n m) time fairly easily. Maybe that's good enough -- if it isn't, there is a literature on answering offline reachability queries that might be useful.
Can somebody tell me why Dijkstra's algorithm for single source shortest path assumes that the edges must be non-negative.
I am talking about only edges not the negative weight cycles.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) - the algorithm found the shortest path to it, and will never have to develop this node again - it assumes the path developed to this path is the shortest.
But with negative weights - it might not be true. For example:
A
/ \
/ \
/ \
5 2
/ \
B--(-10)-->C
V={A,B,C} ; E = {(A,C,2), (A,B,5), (B,C,-10)}
Dijkstra from A will first develop C, and will later fail to find A->B->C
EDIT a bit deeper explanation:
Note that this is important, because in each relaxation step, the algorithm assumes the "cost" to the "closed" nodes is indeed minimal, and thus the node that will next be selected is also minimal.
The idea of it is: If we have a vertex in open such that its cost is minimal - by adding any positive number to any vertex - the minimality will never change.
Without the constraint on positive numbers - the above assumption is not true.
Since we do "know" each vertex which was "closed" is minimal - we can safely do the relaxation step - without "looking back". If we do need to "look back" - Bellman-Ford offers a recursive-like (DP) solution of doing so.
Consider the graph shown below with the source as Vertex A. First try running Dijkstra’s algorithm yourself on it.
When I refer to Dijkstra’s algorithm in my explanation I will be talking about the Dijkstra's Algorithm as implemented below,
So starting out the values (the distance from the source to the vertex) initially assigned to each vertex are,
We first extract the vertex in Q = [A,B,C] which has smallest value, i.e. A, after which Q = [B, C]. Note A has a directed edge to B and C, also both of them are in Q, therefore we update both of those values,
Now we extract C as (2<5), now Q = [B]. Note that C is connected to nothing, so line16 loop doesn't run.
Finally we extract B, after which . Note B has a directed edge to C but C isn't present in Q therefore we again don't enter the for loop in line16,
So we end up with the distances as
Note how this is wrong as the shortest distance from A to C is 5 + -10 = -5, when you go .
So for this graph Dijkstra's Algorithm wrongly computes the distance from A to C.
This happens because Dijkstra's Algorithm does not try to find a shorter path to vertices which are already extracted from Q.
What the line16 loop is doing is taking the vertex u and saying "hey looks like we can go to v from source via u, is that (alt or alternative) distance any better than the current dist[v] we got? If so lets update dist[v]"
Note that in line16 they check all neighbors v (i.e. a directed edge exists from u to v), of u which are still in Q. In line14 they remove visited notes from Q. So if x is a visited neighbour of u, the path is not even considered as a possible shorter way from source to v.
In our example above, C was a visited neighbour of B, thus the path was not considered, leaving the current shortest path unchanged.
This is actually useful if the edge weights are all positive numbers, because then we wouldn't waste our time considering paths that can't be shorter.
So I say that when running this algorithm if x is extracted from Q before y, then its not possible to find a path - which is shorter. Let me explain this with an example,
As y has just been extracted and x had been extracted before itself, then dist[y] > dist[x] because otherwise y would have been extracted before x. (line 13 min distance first)
And as we already assumed that the edge weights are positive, i.e. length(x,y)>0. So the alternative distance (alt) via y is always sure to be greater, i.e. dist[y] + length(x,y)> dist[x]. So the value of dist[x] would not have been updated even if y was considered as a path to x, thus we conclude that it makes sense to only consider neighbors of y which are still in Q (note comment in line16)
But this thing hinges on our assumption of positive edge length, if length(u,v)<0 then depending on how negative that edge is we might replace the dist[x] after the comparison in line18.
So any dist[x] calculation we make will be incorrect if x is removed before all vertices v - such that x is a neighbour of v with negative edge connecting them - is removed.
Because each of those v vertices is the second last vertex on a potential "better" path from source to x, which is discarded by Dijkstra’s algorithm.
So in the example I gave above, the mistake was because C was removed before B was removed. While that C was a neighbour of B with a negative edge!
Just to clarify, B and C are A's neighbours. B has a single neighbour C and C has no neighbours. length(a,b) is the edge length between the vertices a and b.
Dijkstra's algorithm assumes paths can only become 'heavier', so that if you have a path from A to B with a weight of 3, and a path from A to C with a weight of 3, there's no way you can add an edge and get from A to B through C with a weight of less than 3.
This assumption makes the algorithm faster than algorithms that have to take negative weights into account.
Correctness of Dijkstra's algorithm:
We have 2 sets of vertices at any step of the algorithm. Set A consists of the vertices to which we have computed the shortest paths. Set B consists of the remaining vertices.
Inductive Hypothesis: At each step we will assume that all previous iterations are correct.
Inductive Step: When we add a vertex V to the set A and set the distance to be dist[V], we must prove that this distance is optimal. If this is not optimal then there must be some other path to the vertex V that is of shorter length.
Suppose this some other path goes through some vertex X.
Now, since dist[V] <= dist[X] , therefore any other path to V will be atleast dist[V] length, unless the graph has negative edge lengths.
Thus for dijkstra's algorithm to work, the edge weights must be non negative.
Dijkstra's Algorithm assumes that all edges are positive weighted and this assumption helps the algorithm run faster ( O(E*log(V) ) than others which take into account the possibility of negative edges (e.g bellman ford's algorithm with complexity of O(V^3)).
This algorithm wont give the correct result in the following case (with a -ve edge) where A is the source vertex:
Here, the shortest distance to vertex D from source A should have been 6. But according to Dijkstra's method the shortest distance will be 7 which is incorrect.
Also, Dijkstra's Algorithm may sometimes give correct solution even if there are negative edges. Following is an example of such a case:
However, It will never detect a negative cycle and always produce a result which will always be incorrect if a negative weight cycle is reachable from the source, as in such a case there exists no shortest path in the graph from the source vertex.
Try Dijkstra's algorithm on the following graph, assuming A is the source node and D is the destination, to see what is happening:
Note that you have to follow strictly the algorithm definition and you should not follow your intuition (which tells you the upper path is shorter).
The main insight here is that the algorithm only looks at all directly connected edges and it takes the smallest of these edge. The algorithm does not look ahead. You can modify this behavior , but then it is not the Dijkstra algorithm anymore.
You can use dijkstra's algorithm with negative edges not including negative cycle, but you must allow a vertex can be visited multiple times and that version will lose it's fast time complexity.
In that case practically I've seen it's better to use SPFA algorithm which have normal queue and can handle negative edges.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) -it assumes that any node originating from it will lead to greater distance so, the algorithm found the shortest path to it, and will never have to develop this node again, but this doesn't hold true in case of negative weights.
The other answers so far demonstrate pretty well why Dijkstra's algorithm cannot handle negative weights on paths.
But the question itself is maybe based on a wrong understanding of the weight of paths. If negative weights on paths would be allowed in pathfinding algorithms in general, then you would get permanent loops that would not stop.
Consider this:
A <- 5 -> B <- (-1) -> C <- 5 -> D
What is the optimal path between A and D?
Any pathfinding algorithm would have to continuously loop between B and C because doing so would reduce the weight of the total path. So allowing negative weights for a connection would render any pathfindig algorithm moot, maybe except if you limit each connection to be used only once.
So, to explain this in more detail, consider the following paths and weights:
Path | Total weight
ABCD | 9
ABCBCD | 7
ABCBCBCD | 5
ABCBCBCBCD | 3
ABCBCBCBCBCD | 1
ABCBCBCBCBCBCD | -1
...
So, what's the perfect path? Any time the algorithm adds a BC step, it reduces the total weight by 2.
So the optimal path is A (BC) D with the BC part being looped forever.
Since Dijkstra's goal is to find the optimal path (not just any path), it, by definition, cannot work with negative weights, since it cannot find the optimal path.
Dijkstra will actually not loop, since it keeps a list of nodes that it has visited. But it will not find a perfect path, but instead just any path.
Adding few points to the explanation, on top of the previous answers, for the following simple example,
Dijktra's algorithm being greedy, it first finds the minimum distance vertex C from the source vertex A greedily and assigns the distance d[C] (from vertex A) to the weight of the edge AC.
The underlying assumption is that since C was picked first, there is no other vertex V in the graph s.t. w(AV) < w(AC), otherwise V would have been picked instead of C, by the algorithm.
Since by above logic, w(AC) <= w(AV), for all vertex V different from the vertices A and C. Now, clearly any other path P that starts from A and ends in C, going through V , i.e., the path P = A -> V -> ... -> C, will be longer in length (>= 2) and total cost of the path P will be sum of the edges on it, i.e., cost(P) >= w(AV) >= w(AC), assuming all edges on P have non-negative weights, so that
C can be safely removed from the queue Q, since d[C] can never get smaller / relaxed further under this assumption.
Obviously, the above assumption does not hold when some.edge on P is negative, in a which case d[C] may decrease further, but the algorithm can't take care of this scenario, since by that time it has removed C from the queue Q.
In Unweighted graph
Dijkstra can even work without set or priority queue, even if you just use STACK the algorithm will work but with Stack its time of execution will increase
Dijkstra don't repeat a node once its processed becoz it always tooks the minimum route , which means if you come to that node via any other path it will certainly have greater distance
For ex -
(0)
/
6 5
/
(2) (1)
\ /
4 7
\ /
(9)
here once you get to node 1 via 0 (as its minimum out of 5 and 6)so now there is no way you can get a minimum value for reaching 1
because all other path will add value to 5 and not decrease it
more over with Negative weights it will fall into infinite loop
In Unweighted graph
Dijkstra Algo will fall into loop if it has negative weight
In Directed graph
Dijkstra Algo will give RIGHT ANSWER except in case of Negative Cycle
Who says Dijkstra never visit a node more than once are 500% wrong
also who says Dijkstra can't work with negative weight are wrong
I am trying to find a minimum cut of the following network
I am using the following algorithm:
Run Ford-Fulkerson algorithm and consider the final residual graph.
Find the set of vertices that are reachable from source in the residual graph.
All edges which are from a reachable vertex to non-reachable vertex are minimum cut edges. Print all such edges.
In the first step, my algorithm finds 3 paths:
- s->b->h->t **value: 1**
- s->d->e->t **value: 1**
- s->c->h->i->m->d->g->t **value: 0.5**
So the maximum flow (and therefore minimum cut) is equal to 2.5.
However, when I later try to eliminate the aforementioned paths from the network I end up with something like this:
The reachable vertices are s, c and h, which form a cut equal to 3.5.
What am I missing? Why can't I traverse the graph like I would normally to get the minimum cut?
Every time you increase the capacity of an edge in the residual graph, you need to increase the capacity of the opposite edge by the same amount.
Example graph:
Here is the residual graph without backward edges and the the set of the vertices reachable from S (which do not constitute a min-cut):
And the correct residual graph with the min-cut:
I assume, that your definition of residual graph is that you put edge A->B in residual graph if:
a) There is some different between flow and capacity in direction A->B (aka forward edge)
b) There is some flow in direction B->A (aka backward edge)
In this definition your step 2 is wrong.
To find minimum cut, you only walk through forward edges from start. Now you can denote vertices reachable from start as set R and rest as set R'.
Now the cut is made by edges between R and R'.
And the size of the cut is flow between R and R'.
Let (G,s,t,{c}) be a flow network, and let F be the set of all edges e for which there exists at least one minimum cut (A,B) such that e goes from A to B. Give a polynomial time algorithm that finds all edges in F.
NOTE: So far I know I need to run Ford-Fulkerson so each edges has a flow. Furthermore I know for all edges in F, the flow f(e) = c(e). However not all edges in a graph G which respects that constraint will be in a min-cut. I am stuck here.
Suppose you have computed a max flow on a graph G and you know the flow through every edge in the graph. From the source vertex s, perform a Breadth First Search OR Depth First Search on the original graph and only traverse those edges that have flow less than the capacity of the edge. Denote the set of vertices reachable in this traversal as S, and unreachable vertices as T.
To obtain the minimum cut C, we simply find all edges in the original graph G which begin at some vertex in S and end at some vertex in T.
This tutorial in Topcoder provides an explanation / proof of the above algorithm. Look at the section beginning with the following text:
A cut in a flow network is simply a partition of the vertices in two sets, let's call them A and B, in such a way that the source vertex is in A and the sink is in B.
I shall attempt to provide an explanation of the corresponding section in the Topcoder tutorial (just for me to brush up on this as well).
Now, suppose that we have computed a max flow on a graph G, and that we have computed the set of edges C using the procedure outlined above. From here, we can conclude several facts.
Fact 1: Source vertex s must be in set S, and sink vertex t must be in set T.
Otherwise, vertices s and t must be in the same set, which means that we must have found a path from s to t consisting only of edges that have flow less than capacity. This means that we can push more flow from s to t, and therefore we have found an augmenting path! However, this is a contradiction, since we have already computed a max flow on the graph. Hence, it is impossible for source vertex s and sink vertex t to be connected, and they must be in different sets.
Fact 2: Every edge beginning at set S and ending at set T must have flow == capacity
Again we prove this by contradiction. Suppose that there is a vertex u in S and a vertex v in T, such that edge (u,v) in the residual network has flow less than capacity. By our algorithm above, this edge will be traversed, and vertex v should be in set S. This is a contradiction. Therefore, such an edge must have flow == capacity.
Fact 3: Removing the edges in C from graph G will mean that there is no path from any vertex in set S to any vertex in set T
Suppose that this is not the case, and there is some edge (u,v) that connects vertex u in set S to vertex v in set T. We can separate this into 2 cases:
Flow through edge (u,v) is less than its capacity. But we know this will cause vertex v to be part of set S, so this case is impossible.
Flow through edge (u,v) is equal to its capacity. This is impossible since edge (u,v) will be considered as part of the edge set C.
Hence both cases are impossible, and we see that removing the edges in C from the original graph G will indeed result in a situation where there is no path from S to T.
Fact 4: Every edge in the original graph G that begins at vertex set T but ends at vertex set S must have a flow of 0
The explanation on the Topcoder tutorial may not be obvious on first reading and the following is an educated guess on my part and may be incorrect.
Suppose that there exists some edge (x,y) (where x belongs to vertex set T and y belongs to vertex set S), such that the flow through (x,y) is greater than 0. For convenience, we denote the flow through (x,y) as f. This means that on the residual network, there must exist a backward edge (y,x) with capacity f and flow 0. Since vertex y is part of set S, the backward edge (y,x) has flow 0 with capacity f > 0, our algorithm will traverse the edge (y,x) and place vertex x as part of vertex set S. However, we know that vertex x is part of vertex set T, and hence this is a contradiction. As such, all edges from T to S must have a flow of 0.
With these 4 facts, along with the Max-flow min-cut theorem, we can conclude that:
The max flow must be less than or equal to the capacity of any cut. By Fact 3, C is a cut of the graph, so the max flow must be less than or equal to the capacity of cut C.
Fact 4 allows us to conclude that there is no "back flow" from T to S. This along with Fact 2 means that the flow consists entirely of "forward flow" from S to T. In particular, all the forward flow must result from the cut C. This flow value happens to be the max flow. As such, by the Max-flow min-cut theorem, we know that C must be a minimum cut.
Can somebody tell me why Dijkstra's algorithm for single source shortest path assumes that the edges must be non-negative.
I am talking about only edges not the negative weight cycles.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) - the algorithm found the shortest path to it, and will never have to develop this node again - it assumes the path developed to this path is the shortest.
But with negative weights - it might not be true. For example:
A
/ \
/ \
/ \
5 2
/ \
B--(-10)-->C
V={A,B,C} ; E = {(A,C,2), (A,B,5), (B,C,-10)}
Dijkstra from A will first develop C, and will later fail to find A->B->C
EDIT a bit deeper explanation:
Note that this is important, because in each relaxation step, the algorithm assumes the "cost" to the "closed" nodes is indeed minimal, and thus the node that will next be selected is also minimal.
The idea of it is: If we have a vertex in open such that its cost is minimal - by adding any positive number to any vertex - the minimality will never change.
Without the constraint on positive numbers - the above assumption is not true.
Since we do "know" each vertex which was "closed" is minimal - we can safely do the relaxation step - without "looking back". If we do need to "look back" - Bellman-Ford offers a recursive-like (DP) solution of doing so.
Consider the graph shown below with the source as Vertex A. First try running Dijkstra’s algorithm yourself on it.
When I refer to Dijkstra’s algorithm in my explanation I will be talking about the Dijkstra's Algorithm as implemented below,
So starting out the values (the distance from the source to the vertex) initially assigned to each vertex are,
We first extract the vertex in Q = [A,B,C] which has smallest value, i.e. A, after which Q = [B, C]. Note A has a directed edge to B and C, also both of them are in Q, therefore we update both of those values,
Now we extract C as (2<5), now Q = [B]. Note that C is connected to nothing, so line16 loop doesn't run.
Finally we extract B, after which . Note B has a directed edge to C but C isn't present in Q therefore we again don't enter the for loop in line16,
So we end up with the distances as
Note how this is wrong as the shortest distance from A to C is 5 + -10 = -5, when you go .
So for this graph Dijkstra's Algorithm wrongly computes the distance from A to C.
This happens because Dijkstra's Algorithm does not try to find a shorter path to vertices which are already extracted from Q.
What the line16 loop is doing is taking the vertex u and saying "hey looks like we can go to v from source via u, is that (alt or alternative) distance any better than the current dist[v] we got? If so lets update dist[v]"
Note that in line16 they check all neighbors v (i.e. a directed edge exists from u to v), of u which are still in Q. In line14 they remove visited notes from Q. So if x is a visited neighbour of u, the path is not even considered as a possible shorter way from source to v.
In our example above, C was a visited neighbour of B, thus the path was not considered, leaving the current shortest path unchanged.
This is actually useful if the edge weights are all positive numbers, because then we wouldn't waste our time considering paths that can't be shorter.
So I say that when running this algorithm if x is extracted from Q before y, then its not possible to find a path - which is shorter. Let me explain this with an example,
As y has just been extracted and x had been extracted before itself, then dist[y] > dist[x] because otherwise y would have been extracted before x. (line 13 min distance first)
And as we already assumed that the edge weights are positive, i.e. length(x,y)>0. So the alternative distance (alt) via y is always sure to be greater, i.e. dist[y] + length(x,y)> dist[x]. So the value of dist[x] would not have been updated even if y was considered as a path to x, thus we conclude that it makes sense to only consider neighbors of y which are still in Q (note comment in line16)
But this thing hinges on our assumption of positive edge length, if length(u,v)<0 then depending on how negative that edge is we might replace the dist[x] after the comparison in line18.
So any dist[x] calculation we make will be incorrect if x is removed before all vertices v - such that x is a neighbour of v with negative edge connecting them - is removed.
Because each of those v vertices is the second last vertex on a potential "better" path from source to x, which is discarded by Dijkstra’s algorithm.
So in the example I gave above, the mistake was because C was removed before B was removed. While that C was a neighbour of B with a negative edge!
Just to clarify, B and C are A's neighbours. B has a single neighbour C and C has no neighbours. length(a,b) is the edge length between the vertices a and b.
Dijkstra's algorithm assumes paths can only become 'heavier', so that if you have a path from A to B with a weight of 3, and a path from A to C with a weight of 3, there's no way you can add an edge and get from A to B through C with a weight of less than 3.
This assumption makes the algorithm faster than algorithms that have to take negative weights into account.
Correctness of Dijkstra's algorithm:
We have 2 sets of vertices at any step of the algorithm. Set A consists of the vertices to which we have computed the shortest paths. Set B consists of the remaining vertices.
Inductive Hypothesis: At each step we will assume that all previous iterations are correct.
Inductive Step: When we add a vertex V to the set A and set the distance to be dist[V], we must prove that this distance is optimal. If this is not optimal then there must be some other path to the vertex V that is of shorter length.
Suppose this some other path goes through some vertex X.
Now, since dist[V] <= dist[X] , therefore any other path to V will be atleast dist[V] length, unless the graph has negative edge lengths.
Thus for dijkstra's algorithm to work, the edge weights must be non negative.
Dijkstra's Algorithm assumes that all edges are positive weighted and this assumption helps the algorithm run faster ( O(E*log(V) ) than others which take into account the possibility of negative edges (e.g bellman ford's algorithm with complexity of O(V^3)).
This algorithm wont give the correct result in the following case (with a -ve edge) where A is the source vertex:
Here, the shortest distance to vertex D from source A should have been 6. But according to Dijkstra's method the shortest distance will be 7 which is incorrect.
Also, Dijkstra's Algorithm may sometimes give correct solution even if there are negative edges. Following is an example of such a case:
However, It will never detect a negative cycle and always produce a result which will always be incorrect if a negative weight cycle is reachable from the source, as in such a case there exists no shortest path in the graph from the source vertex.
Try Dijkstra's algorithm on the following graph, assuming A is the source node and D is the destination, to see what is happening:
Note that you have to follow strictly the algorithm definition and you should not follow your intuition (which tells you the upper path is shorter).
The main insight here is that the algorithm only looks at all directly connected edges and it takes the smallest of these edge. The algorithm does not look ahead. You can modify this behavior , but then it is not the Dijkstra algorithm anymore.
You can use dijkstra's algorithm with negative edges not including negative cycle, but you must allow a vertex can be visited multiple times and that version will lose it's fast time complexity.
In that case practically I've seen it's better to use SPFA algorithm which have normal queue and can handle negative edges.
Recall that in Dijkstra's algorithm, once a vertex is marked as "closed" (and out of the open set) -it assumes that any node originating from it will lead to greater distance so, the algorithm found the shortest path to it, and will never have to develop this node again, but this doesn't hold true in case of negative weights.
The other answers so far demonstrate pretty well why Dijkstra's algorithm cannot handle negative weights on paths.
But the question itself is maybe based on a wrong understanding of the weight of paths. If negative weights on paths would be allowed in pathfinding algorithms in general, then you would get permanent loops that would not stop.
Consider this:
A <- 5 -> B <- (-1) -> C <- 5 -> D
What is the optimal path between A and D?
Any pathfinding algorithm would have to continuously loop between B and C because doing so would reduce the weight of the total path. So allowing negative weights for a connection would render any pathfindig algorithm moot, maybe except if you limit each connection to be used only once.
So, to explain this in more detail, consider the following paths and weights:
Path | Total weight
ABCD | 9
ABCBCD | 7
ABCBCBCD | 5
ABCBCBCBCD | 3
ABCBCBCBCBCD | 1
ABCBCBCBCBCBCD | -1
...
So, what's the perfect path? Any time the algorithm adds a BC step, it reduces the total weight by 2.
So the optimal path is A (BC) D with the BC part being looped forever.
Since Dijkstra's goal is to find the optimal path (not just any path), it, by definition, cannot work with negative weights, since it cannot find the optimal path.
Dijkstra will actually not loop, since it keeps a list of nodes that it has visited. But it will not find a perfect path, but instead just any path.
Adding few points to the explanation, on top of the previous answers, for the following simple example,
Dijktra's algorithm being greedy, it first finds the minimum distance vertex C from the source vertex A greedily and assigns the distance d[C] (from vertex A) to the weight of the edge AC.
The underlying assumption is that since C was picked first, there is no other vertex V in the graph s.t. w(AV) < w(AC), otherwise V would have been picked instead of C, by the algorithm.
Since by above logic, w(AC) <= w(AV), for all vertex V different from the vertices A and C. Now, clearly any other path P that starts from A and ends in C, going through V , i.e., the path P = A -> V -> ... -> C, will be longer in length (>= 2) and total cost of the path P will be sum of the edges on it, i.e., cost(P) >= w(AV) >= w(AC), assuming all edges on P have non-negative weights, so that
C can be safely removed from the queue Q, since d[C] can never get smaller / relaxed further under this assumption.
Obviously, the above assumption does not hold when some.edge on P is negative, in a which case d[C] may decrease further, but the algorithm can't take care of this scenario, since by that time it has removed C from the queue Q.
In Unweighted graph
Dijkstra can even work without set or priority queue, even if you just use STACK the algorithm will work but with Stack its time of execution will increase
Dijkstra don't repeat a node once its processed becoz it always tooks the minimum route , which means if you come to that node via any other path it will certainly have greater distance
For ex -
(0)
/
6 5
/
(2) (1)
\ /
4 7
\ /
(9)
here once you get to node 1 via 0 (as its minimum out of 5 and 6)so now there is no way you can get a minimum value for reaching 1
because all other path will add value to 5 and not decrease it
more over with Negative weights it will fall into infinite loop
In Unweighted graph
Dijkstra Algo will fall into loop if it has negative weight
In Directed graph
Dijkstra Algo will give RIGHT ANSWER except in case of Negative Cycle
Who says Dijkstra never visit a node more than once are 500% wrong
also who says Dijkstra can't work with negative weight are wrong