Validating input using scanf (check whether input is char or int) - char

I want input entered by the user should be between 0 and 100. And if he or she enters a negative number or a number greater than 100 or a character, the loop must be triggered. I am using a do-while loop to validate the input entered by the user. But if I enter a character, the do while loop is executed infinite times. Can anyone explain why is this happening! and how to check if user has has entered a char or an int?
CODE IS WRITTEN IN C. AND COMPILED USING GCC.
int num;
do
{
printf("num :");
scanf("%d", &num);
}
while(num<0 || num>=100);

scanf() is expecting a number if it finds invalid input(something that doesn't match the format provided) it will return leaving the input buffer as is, that means leaving this invalid input there, then the loop condition evaluates to true and scanf() tries to read a number again to find the same invalid input as before, this repeats forever.
cleaning the input buffer will fix this, you can clean it like this:
#include <stdio.h>
void cleanBuffer(){
int n;
while((n = getchar()) != EOF && n != '\n' );
}
int main(int argc, char *argv[])
{
int num = -1;
do
{
printf("num :");
scanf("%d", &num);
cleanBuffer(); //we clean the buffer here
}
while(num<0 || num>=100);
return 0;
}

Related

why does second iteration of for-loop not wait for user input

I am having a problem with a for loop. When I go through the second iteration, the program does not wait for user input. Any help gratefully accepted.
#include <stdio.h>
#include "dogInfo.h"
main()
{
struct dogInfo dog[3]; //Array of three structure variable
int ctr;
//Get information about dog from the user
printf("You will be asked to describe 3 dogs\n");
for (ctr = 0; ctr < 3; ctr ++)
{
printf("What type (breed) of dog would you like to describe for dog #%d?\n", (ctr +1));
gets(dog[ctr].type);
puts("What colour is the dog? ");
gets(dog[ctr].colour);
puts("How many legs does the dog have? ");
scanf(" %d", &dog[ctr].legNum);
puts("How long is the snout of the dog in centimetres? ");
scanf(" %.2f", &dog[ctr].snoutLen);
getchar(); //clears last new line for the next loop
}
The header file is as below
struct dogInfo
{
char type[25];
char colour[25];
int legNum;
float snoutLen;
};
Your problem is that gets is not behaving in the way you want it to. You should not be using gets anyway because it is dangerous and can cause overflows.
But fortunately scanf can easily read strings and also allows to specify a format (in this case %24s because you want to read up to 24 chars, because the last char is reserved for the Null-terminator.
The code works like this:
#include <stdio.h>
struct dogInfo
{
char type[25];
char colour[25];
int legNum;
float snoutLen;
};
int main()
{
struct dogInfo dog[3]; //Array of three structure variable
int ctr;
//Get information about dog from the user
printf("You will be asked to describe 3 dogs\n");
for (ctr = 0; ctr < 3; ctr ++)
{
printf("What type (breed) of dog would you like to describe for dog #%d?\n", (ctr +1));
scanf("%24s", dog[ctr].type);
puts("What colour is the dog? ");
scanf("%24s", dog[ctr].colour);
puts("How many legs does the dog have? ");
scanf(" %d", &dog[ctr].legNum);
puts("How long is the snout of the dog in centimetres? ");
scanf(" %.2f", &dog[ctr].snoutLen);
getchar(); //clears last new line for the next loop
}
}

Huffman algorithm inverse matching

I was wondering if given a binary sequence we can check if it matches a string using the Huffman algorithm.
for example, if we a string "abdcc" and several binary sequences we can calculate which one is a possible representation of "abdcc" that used Huffman's algorithm
Interesting puzzle. As mentioned by j_random_hacker in a comment, it's possible to do this using a backtracking search. There are a few constraints to valid Huffman encodings of the string that we can use to narrow the search down:
No two Huffman codes of length n and m can be identical in the first n or m bits (whichever is shorter). This is because otherwise a Huffman decoder wouldn't be able to tell if it had encountered the longer or the shorter code when decoding. And obviously two codes of the same length cannot be identical. (1)
If at any time there are less bits remaining in the bitstream than characters remaining in the string we are matching then the string cannot match. (2)
If we reach the end of the string and there are still bits remaining in the bitstream then the string does not match (3)
If we encounter a character in the string for the second time, and we have already assumed a Huffman code for that same character earlier in the string, then an identical code must be present in the bit stream or the string cannot match. (4)
We can define a function matchHuffmanString that matches a string with Huffman encoded bitstream, with a Huffman code table as part of the global state. To begin with the code table is empty and we call matchHuffmanString, passing the start of the string and the start of the bitstream.
When the function is called, it checks if there are enough bits in the stream to match the string and returns if not. (2)
If the string is empty, then if the bitstream is also empty then there is a match and the code table is output. If the stream is empty but the bitstream is not then there is no match so the function returns. (3)
If characters remain in the string, then the first character is read. The function checks if there is already an entry in the code table for that character, and if so then the same code must be present in the bitstream. If not then there is no match so the function returns (4). If there is then the function calls itself, moving on to the next character and past the matching code in the bitstream.
If there is no matching code for the character, then the possibility that it is represented by a code of every possible length n from 1 bit to 32 bits (an arbitrary limit) is considered. n bits are read from the bitstream and checked to see if such a code would conflict with any existing codes according to rule (1). If no conflict exists then the code is added to the code table, then the function recurses, moving onto the next character and past the assumed code of length n bits. After returning then it backtracks by removing the code from the table.
Simple implementation in C:
#include <stdio.h>
// Huffman table:
// a 01
// b 0001
// c 1
// d 0010
char* string = "abdcc";
// 01 0001 0010 1 1
// reverse bit order (MSB first) an add extra 0 for padding to stop getBits reading past the end of the array:
#define MESSAGE_LENGTH (12)
unsigned int message[] = {0b110100100010, 0};
// can handle messages of >32 bits, even though the above message is only 12 bits long
unsigned int getBits(int start, int n)
{
return ((message[start>>5] >> (start&31)) | (message[(start>>5)+1] << (32-(start&31)))) & ((1<<n)-1);
}
unsigned int codes[26];
int code_lengths[26];
int callCount = 0;
void outputCodes()
{
// output the codes:
int i, j;
for(i = 0; i < 26; i++)
{
if(code_lengths[i] != 0)
{
printf("%c ", i + 'a');
for(j = 0; j < code_lengths[i]; j++)
printf("%s", codes[i] & (1 << j) ? "1" : "0");
printf("\n");
}
}
}
void matchHuffmanString(char* s, int len, int startbit)
{
callCount++;
if(len > MESSAGE_LENGTH - startbit)
return; // not enough bits left to encode the rest of the message even at 1 bit per char (2)
if(len == 0) // no more characters to match
{
if(startbit == MESSAGE_LENGTH)
{
// (3) we exactly used up all the bits, this stream matches.
printf("match!\n\n");
outputCodes();
printf("\nCall count: %d\n", callCount);
}
return;
}
// read a character from the string (assume 'a' to 'z'):
int c = s[0] - 'a';
// is there already a code for this character?
if(code_lengths[c] != 0)
{
// check if the code in the bit stream matches:
int length = code_lengths[c];
if(startbit + length > MESSAGE_LENGTH)
return; // ran out of bits in stream, no match
unsigned int bits = getBits(startbit, length);
if(bits != codes[c])
return; // bits don't match (4)
matchHuffmanString(s + 1, len - 1, startbit + length);
}
else
{
// this character doesn't have a code yet, consider every possible length
int i, j;
for(i = 1; i < 32; i++)
{
// are there enough bits left for a code this long?
if(startbit + i > MESSAGE_LENGTH)
continue;
unsigned int bits = getBits(startbit, i);
// does this code conflict with an existing code?
for(j = 0; j < 26; j++)
{
if(code_lengths[j] != 0) // check existing codes only
{
// do the two codes match in the first i or code_lengths[j] bits, whichever is shorter?
int length = code_lengths[j] < i ? code_lengths[j] : i;
if((bits & ((1 << length)-1)) == (codes[j] & ((1 << length)-1)))
break; // there's a conflict (1)
}
}
if(j != 26)
continue; // there was a conflict
// add the new code to the codes array and recurse:
codes[c] = bits; code_lengths[c] = i;
matchHuffmanString(s + 1, len - 1, startbit + i);
code_lengths[c] = 0; // clear the code (backtracking)
}
}
}
int main(void) {
int i;
for(i = 0; i < 26; i++)
code_lengths[i] = 0;
matchHuffmanString(string, 5, 0);
return 0;
}
output:
match!
a 01
b 0001
c 1
d 0010
Call count: 42
Ideone.com Demo
The above code could be improved by iterating over the string as long as it is encountering characters that it already has a code for, and only recursing when it finds one it doesn't. Also it only works for lowercase letters a-z with no spaces and doesn't do any validation. I'd have to test it to be sure, but I think it's a tractable problem even for long strings, because any possible combinatorial explosion only happens when encountering new characters that don't already have codes in the table, and even then it's subject to contraints.

All of the option to replace an unknown number of characters

I am trying to find an algorithm that for an unknown number of characters in a string, produces all of the options for replacing some characters with stars.
For example, for the string "abc", the output should be:
*bc
a*c
ab*
**c
*b*
a**
***
It is simple enough with a known number of stars, just run through all of the options with for loops, but I'm having difficulties with an all of the options.
Every star combination corresponds to binary number, so you can use simple cycle
for i = 1 to 2^n-1
where n is string length
and set stars to the positions of 1-bits of binary representations of i
for example: i=5=101b => * b *
This is basically a binary increment problem.
You can create a vector of integer variables to represent a binary array isStar and for each iteration you "add one" to the vector.
bool AddOne (int* isStar, int size) {
isStar[size - 1] += 1
for (i = size - 1; i >= 0; i++) {
if (isStar[i] > 1) {
if (i = 0) { return true; }
isStar[i] = 0;
isStar[i - 1] += 1;
}
}
return false;
}
That way you still have the original string while replacing the characters
This is a simple binary counting problem, where * corresponds to a 1 and the original letter to a 0. So you could do it with a counter, applying a bit mask to the string, but it's just as easy to do the "counting" in place.
Here's a simple implementation in C++:
(Edit: The original question seems to imply that at least one character must be replaced with a star, so the count should start at 1 instead of 0. Or, in the following, the post-test do should be replaced with a pre-test for.)
#include <iostream>
#include <string>
// A cleverer implementation would implement C++'s iterator protocol.
// But that would cloud the simple logic of the algorithm.
class StarReplacer {
public:
StarReplacer(const std::string& s): original_(s), current_(s) {}
const std::string& current() const { return current_; }
// returns true unless we're at the last possibility (all stars),
// in which case it returns false but still resets current to the
// original configuration.
bool advance() {
for (int i = current_.size()-1; i >= 0; --i) {
if (current_[i] == '*') current_[i] = original_[i];
else {
current_[i] = '*';
return true;
}
}
return false;
}
private:
std::string original_;
std::string current_;
};
int main(int argc, const char** argv) {
for (int a = 1; a < argc; ++a) {
StarReplacer r(argv[a]);
do {
std::cout << r.current() << std::endl;
} while (r.advance());
std::cout << std::endl;
}
return 0;
}

cant find error in printf function

following is code of function
void printf(char *ch,void *num,...)
{
int i;
va_list ptr; //to store variable length argument list
va_start(ptr,num); // initialise ptr
for(i=0;ch[i]!='\0';i++)
{
if(ch[i]=='%') // check for % sign in print statement
{ i++;
if( ch[i]=='d')
{
int *no = (int *)va_arg(ptr,int * );
int value=*no; // just used for nothing
printno(value); //print int number
}
if( ch[i]=='u')
{
unsigned long *no =(unsigned long *) va_arg(ptr,unsigned long *);
unsigned long value=*no;
printuno(value); //print unsigned long
}
}
else // if not % sign then its regular character so print it
{
printchar(ch[i]);
}
}
}
this my code for printf() to print integer value and uint values
It is working fine for string portion in arguments but for %d %u it shows the same
values for all variables. This value is 405067 - even though the values of the variables are different.
Please tell me how to fix this.
Why are you interpreting the argument as a pointer? I'm surprised you aren't crashing. You should just be using
int num = va_arg(ptr,int);
printno(num);
and
unsigned int num = va_arg(ptr,unsigned int);
printuno(value);
(note, unsigned int, not unsigned long, because that would actually be %lu)
Also, get rid of the num parameter. It's wrong. Your va_list should be initialized as
`va_start(ptr, ch);`
va_start() takes the last argument before the varargs, not the first argument.
As noted in a comment, the C99 prototype for printf() is:
int printf(const char * restrict format, ...);
Therefore, if you're calling your function printf(), you should probably follow its design. I'm going to ignore flags, field width, precision and length modifiers, assuming that the conversion specifiers are simply two characters each, such as %d or %%.
int printf(const char * restrict format, ...)
{
va_list args;
va_start(args, format);
char c;
int len = 0;
while ((c = *format++) != '\0')
{
if (c != '%')
{
putchar(c);
len++;
}
else if ((c = *format++) == '%')
{
putchar(c);
len++;
}
else if (c == 'd')
{
int value = va_arg(args, int);
len += printno(value);
}
else if (c == 'u')
{
unsigned value = va_arg(args, unsigned);
len += printuno(value);
}
else
{
/* Print unrecognized formats verbatim */
putchar('%');
putchar(c);
len += 2;
}
}
return len;
}
Dealing with the full set of format specifiers (especially if you add the POSIX n$ notation as well as flags, field width, precision and length modifiers) is much harder, but this should get you moving in the correct direction. Note that I assume the printno() and printuno() functions both report how many characters were written for the conversion specifier. The function returns the total number of characters written. Note, too, that production code would need to allow for the called functions to fail, and would therefore probably not use the len += printno(value); notation, but would capture the return from printno() into a separate variable that could be tested for an error before adding it to the total length output.

how to fix this MPI code program

This program demonstrates an unsafe program, because sometimes it will execute fine, and other times it will fail. The reason why the program fails or hangs is due to buffer exhaustion on the receiving task side, as a consequence of the way an MPI library has implemented an eager protocol for messages of a certain size. One possible solution is to include an MPI_Barrier call in the both the send and receive loops.
how its program code is correct???
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#define MSGSIZE 2000
int main (int argc, char *argv[])
{
int numtasks, rank, i, tag=111, dest=1, source=0, count=0;
char data[MSGSIZE];
double start, end, result;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {
printf ("mpi_bug5 has started...\n");
if (numtasks > 2)
printf("INFO: Number of tasks= %d. Only using 2 tasks.\n", numtasks);
}
/******************************* Send task **********************************/
if (rank == 0) {
/* Initialize send data */
for(i=0; i<MSGSIZE; i++)
data[i] = 'x';
start = MPI_Wtime();
while (1) {
MPI_Send(data, MSGSIZE, MPI_BYTE, dest, tag, MPI_COMM_WORLD);
count++;
if (count % 10 == 0) {
end = MPI_Wtime();
printf("Count= %d Time= %f sec.\n", count, end-start);
start = MPI_Wtime();
}
}
}
/****************************** Receive task ********************************/
if (rank == 1) {
while (1) {
MPI_Recv(data, MSGSIZE, MPI_BYTE, source, tag, MPI_COMM_WORLD, &status);
/* Do some work - at least more than the send task */
result = 0.0;
for (i=0; i < 1000000; i++)
result = result + (double)random();
}
}
MPI_Finalize();
}
Ways to improve this code so that the receiver doesn't end up with an unlimited number of unexpected messages include:
Synchronization - you mentioned MPI_Barrier, but even using MPI_Ssend instead of MPI_Send would work.
Explicit buffering - the use of MPI_Bsend or Brecv to ensure adequate buffering exists.
Posted receives - the receiving process posts IRecvs before starting work to ensure that the messages are received into the buffers meant to hold the data, rather than system buffers.
In this pedagogical case, since the number of messages is unlimited, only the first (synchronization) would reliably work.

Resources