Ordering coordinates from top left to bottom right - sorting

How can I go about trying to order the points of an irregular array from top left to bottom right, such as in the image below?
Methods I've considered are:
calculate the distance of each point from the top left of the image (Pythagoras's theorem) but apply some kind of weighting to the Y coordinate in an attempt to prioritise points on the same 'row' e.g. distance = SQRT((x * x) + (weighting * (y * y)))
sort the points into logical rows, then sort each row.
Part of the difficulty is that I do not know how many rows and columns will be present in the image coupled with the irregularity of the array of points. Any advice would be greatly appreciated.

Even though the question is a bit older, I recently had a similar problem when calibrating a camera.
The algorithm is quite simple and based on this paper:
Find the top left point: min(x+y)
Find the top right point: max(x-y)
Create a straight line from the points.
Calculate the distance of all points to the line
If it is smaller than the radius of the circle (or a threshold): point is in the top line.
Otherwise: point is in the rest of the block.
Sort points of the top line by x value and save.
Repeat until there are no points left.
My python implementation looks like this:
#detect the keypoints
detector = cv2.SimpleBlobDetector_create(params)
keypoints = detector.detect(img)
img_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]), (0, 0, 255),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
points = []
keypoints_to_search = keypoints[:]
while len(keypoints_to_search) > 0:
a = sorted(keypoints_to_search, key=lambda p: (p.pt[0]) + (p.pt[1]))[0] # find upper left point
b = sorted(keypoints_to_search, key=lambda p: (p.pt[0]) - (p.pt[1]))[-1] # find upper right point
cv2.line(img_with_keypoints, (int(a.pt[0]), int(a.pt[1])), (int(b.pt[0]), int(b.pt[1])), (255, 0, 0), 1)
# convert opencv keypoint to numpy 3d point
a = np.array([a.pt[0], a.pt[1], 0])
b = np.array([b.pt[0], b.pt[1], 0])
row_points = []
remaining_points = []
for k in keypoints_to_search:
p = np.array([k.pt[0], k.pt[1], 0])
d = k.size # diameter of the keypoint (might be a theshold)
dist = np.linalg.norm(np.cross(np.subtract(p, a), np.subtract(b, a))) / np.linalg.norm(b) # distance between keypoint and line a->b
if d/2 > dist:
row_points.append(k)
else:
remaining_points.append(k)
points.extend(sorted(row_points, key=lambda h: h.pt[0]))
keypoints_to_search = remaining_points

Jumping on this old thread because I just dealt with the same thing: sorting a sloppily aligned grid of placed objects by left-to-right, top to bottom location. The drawing at the top in the original post sums it up perfectly, except that this solution supports rows with varying numbers of nodes.
S. Vogt's script above was super helpful (and the script below is entirely based on his/hers), but my conditions are narrower. Vogt's solution accommodates a grid that may be tilted from the horizontal axis. I assume no tilting, so I don't need to compare distances from a potentially tilted top line, but rather from a single point's y value.
Javascript below:
interface Node {x: number; y: number; width:number; height:number;}
const sortedNodes = (nodeArray:Node[]) => {
let sortedNodes:Node[] = []; // this is the return value
let availableNodes = [...nodeArray]; // make copy of input array
while(availableNodes.length > 0){
// find y value of topmost node in availableNodes. (Change this to a reduce if you want.)
let minY = Number.MAX_SAFE_INTEGER;
for (const node of availableNodes){
minY = Math.min(minY, node.y)
}
// find nodes in top row: assume a node is in the top row when its distance from minY
// is less than its height
const topRow:Node[] = [];
const otherRows:Node[] = [];
for (const node of availableNodes){
if (Math.abs(minY - node.y) <= node.height){
topRow.push(node);
} else {
otherRows.push(node);
}
}
topRow.sort((a,b) => a.x - b.x); // we have the top row: sort it by x
sortedNodes = [...sortedNodes,...topRow] // append nodes in row to sorted nodes
availableNodes = [...otherRows] // update available nodes to exclude handled rows
}
return sortedNodes;
};
The above assumes that all node heights are the same. If you have some nodes that are much taller than others, get the value of the minimum node height of all nodes and use it instead of the iterated "node.height" value. I.e., you would change this line of the script above to use the minimum height of all nodes rather that the iterated one.
if (Math.abs(minY - node.y) <= node.height)

I propose the following idea:
1. count the points (p)
2. for each point, round it's x and y coordinates down to some number, like
x = int(x/n)*n, y = int(y/m)*m for some n,m
3. If m,n are too big, the number of counts will drop. Determine m, n iteratively so that the number of points p will just be preserved.
Starting values could be in alignment with max(x) - min(x). For searching employ a binary search. X and Y scaling would be independent of each other.
In natural words this would pin the individual points to grid points by stretching or shrinking the grid distances, until all points have at most one common coordinate (X or Y) but no 2 points overlap. You could call that classifying as well.

Related

Finding random x,y coordinates in a figure where you know the boundary

The goal is to find coordinates in a figure with an unknown shape. What IS known is a list of coordinates of the boundary of that figure, for example:
boundary = [(0,0),(1,0),(2,0),(3,0),(3,1),(3,2),(3,3),(2,3),(2,2),(1,2),(1,3),(0,3),(0,2),(0,1]
which would look something like this:
Square with a gab
This is a very basic example and i'd like to do it with very larg lists of very different kinds of figures.
The question is how to get a random coordinate that lies within the figure WITHOUT hardcoding the anything about the shape of the figure, because this will be unknown at the beginning? Is there a way to know for certain or is making an estimate the best option? How would I implement an estimate like that?
Here is tentative answer. You sample numbers in two steps.
Before, do preparation work - split your figure into simple elementary objects. In your case you split it into rectangles, often people triangulate and split it into triangles.
So you have number N of simple objects, each with area of Ai and total area A = Sum(Ai).
First sampling step - select which rectangle you pick point from.
In some pseudocode
r = randomU01(); // random value in [0...1) range
for(i in N) {
r = r - A_i/A;
if (r <= 0) {
k = i;
break;
}
}
So you picked up one rectangle with index k, and then just sample point uniformly in that rectangle
x = A_k.dim.x * randomU01();
y = A_k.dim.y * randomU01();
return (x + A_k.lower_left_corner.x, y + A_k.lower_left_corner.y);
And that is it. Very similar technique for triangulated figure.
Rectangle selection could be optimized by doing binary search or even more complicated alias method
UPDATE
If your boundary is generic, then the only good way to go is to triangulate your polygon using any good library out there (f.e. Triangle), then select one of the triangles based on area (step 1), then sample uniformly point in the triangle using two random U01 numbers r1 and r2,
P = (1 - sqrt(r1)) * A + (sqrt(r1)*(1 - r2)) * B + (r2*sqrt(r1)) * C
i.e., in pseudocode
r1 = randomU01();
s1 = sqrt(r1);
r2 = randomU01();
x = (1.0-s1)*A.x + s1*(1.0-r2)*B.x + r2*s1*C.x;
y = (1.0-s1)*A.y + s1*(1.0-r2)*B.y + r2*s1*C.y;
return (x,y);

Algorithm for fitting points to a grid

I have a list of points in 2D space that form an (imperfect) grid:
x x x x
x x x x
x
x x x
x x x x
What's the best way to fit these to a rigid grid (i.e. create a two-dimendional array and work out where each point fits in that array)?
There are no holes in the grid, but I don't know in advance what its dimensions are.
EDIT: The grid is not necessarily regular (not even spacing between rows/cols)
A little bit of an image processing approach:
If you think of what you have as a binary image where the X is 1 and the rest is 0, you can sum up rows and columns, and use a peak finding algorithm to identify peaks which would correspond to x and y lines of the grid:
Your points as a binary image:
Sums of row/columns
Now apply some smoothing technique to the signal (e.g. lowess):
I'm sure you get the idea :-)
Good luck
The best I could come up with is a brute-force solution that calculates the grid dimensions that minimize the error in the square of the Euclidean distance between the point and its nearest grid intersection.
This assumes that the number of points p is exactly equal to the number of columns times the number of rows, and that each grid intersection has exactly one point on it. It also assumes that the minimum x/y value for any point is zero. If the minimum is greater than zero, just subtract the minimum x value from each point's x coordinate and the minimum y value from each point's y coordinate.
The idea is to create all of the possible grid dimensions given the number of points. In the example above with 16 points, we would make grids with dimensions 1x16, 2x8, 4x4, 8x2 and 16x1. For each of these grids we calculate where the grid intersections would lie by dividing the maximum width of the points by the number of columns minus 1, and the maximum height of the points by the number of rows minus 1. Then we fit each point to its closest grid intersection and find the error (square of the distance) between the point and the intersection. (Note that this only works if each point is closer to its intended grid intersection than to any other intersection.)
After summing the errors for each grid configuration individually (e.g. getting one error value for the 1x16 configuration, another for the 2x8 configuration and so on), we select the configuration with the lowest error.
Initialization:
P is the set of points such that P[i][0] is the x-coordinate and
P[i][1] is the y-coordinate
Let p = |P| or the number of points in P
Let max_x = the maximum x-coordinate in P
Let max_y = the maximum y-coordinate in P
(minimum values are assumed to be zero)
Initialize min_error_dist = +infinity
Initialize min_error_cols = -1
Algorithm:
for (col_count = 1; col_count <= n; col_count++) {
// only compute for integer # of rows and cols
if ((p % col_count) == 0) {
row_count = n/col_count;
// Compute the width of the columns and height of the rows
// If the number of columns is 1, let the column width be max_x
// (and similarly for rows)
if (col_count > 1) col_width = max_x/(col_count-1);
else col_width=max_x;
if (row_count > 1) row_height = max_y/(row_count-1);
else row_height=max_y;
// reset the error for the new configuration
error_dist = 0.0;
for (i = 0; i < n; i++) {
// For the current point, normalize the x- and y-coordinates
// so that it's in the range 0..(col_count-1)
// and 0..(row_count-1)
normalized_x = P[i][0]/col_width;
normalized_y = P[i][1]/row_height;
// Error is the sum of the squares of the distances between
// the current point and the nearest grid point
// (in both the x and y direction)
error_dist += (normalized_x - round(normalized_x))^2 +
(normalized_y - round(normalized_y))^2;
}
if (error_dist < min_error_dist) {
min_error_dist = error_dist;
min_error_cols = col_count;
}
}
}
return min_error_cols;
Once you've got the number of columns (and thus the number of rows) you can recompute the normalized values for each point and round them to get the grid intersection they belong to.
In the end I used this algorithm, inspired by beaker's:
Calculate all the possible dimensions of the grid, given the total number of points
For each possible dimension, fit the points to that dimension and calculate the variance in alignment:
Order the points by x-value
Group the points into columns: the first r points form the first column, where r is the number of rows
Within each column, order the points by y-value to determine which row they're in
For each row/column, calcuate the range of y-values/x-values
The variance in alignment is the maximum range found
Choose the dimension with the least variance in alignment
I wrote this algorithm that accounts for missing coordinates as well as coordinates with errors.
Python Code
# Input [x, y] coordinates of a 'sparse' grid with errors
xys = [[103,101],
[198,103],
[300, 99],
[ 97,205],
[304,202],
[102,295],
[200,303],
[104,405],
[205,394],
[298,401]]
def row_col_avgs(num_list, ratio):
# Finds the average of each row and column. Coordinates are
# assigned to a row and column by specifying an error ratio.
last_num = 0
sum_nums = 0
count_nums = 0
avgs = []
num_list.sort()
for num in num_list:
if num > (1 + ratio) * last_num and count_nums != 0:
avgs.append(int(round(sum_nums/count_nums,0)))
sum_nums = num
count_nums = 1
else:
sum_nums = sum_nums + num
count_nums = count_nums + 1
last_num = num
avgs.append(int(round(sum_nums/count_nums,0)))
return avgs
# Split coordinates into two lists of x's and y's
xs, ys = map(list, zip(*xys))
# Find averages of each row and column within a specified error.
x_avgs = row_col_avgs(xs, 0.1)
y_avgs = row_col_avgs(ys, 0.1)
# Return Completed Averaged Grid
avg_grid = []
for y_avg in y_avgs:
avg_row = []
for x_avg in x_avgs:
avg_row.append([int(x_avg), int(y_avg)])
avg_grid.append(avg_row)
print(avg_grid)
Code Output
[[[102, 101], [201, 101], [301, 101]],
[[102, 204], [201, 204], [301, 204]],
[[102, 299], [201, 299], [301, 299]],
[[102, 400], [201, 400], [301, 400]]]
I am also looking for another solution using linear algebra. See my question here.

Algorithm to generate random 2D polygon

I'm not sure how to approach this problem. I'm not sure how complex a task it is. My aim is to have an algorithm that generates any polygon. My only requirement is that the polygon is not complex (i.e. sides do not intersect). I'm using Matlab for doing the maths but anything abstract is welcome.
Any aid/direction?
EDIT:
I was thinking more of code that could generate any polygon even things like this:
I took #MitchWheat and #templatetypedef's idea of sampling points on a circle and took it a bit farther.
In my application I need to be able to control how weird the polygons are, ie start with regular polygons and as I crank up the parameters they get increasingly chaotic. The basic idea is as stated by #templatetypedef; walk around the circle taking a random angular step each time, and at each step put a point at a random radius. In equations I'm generating the angular steps as
where theta_i and r_i give the angle and radius of each point relative to the centre, U(min, max) pulls a random number from a uniform distribution, and N(mu, sigma) pulls a random number from a Gaussian distribution, and clip(x, min, max) thresholds a value into a range. This gives us two really nice parameters to control how wild the polygons are - epsilon which I'll call irregularity controls whether or not the points are uniformly space angularly around the circle, and sigma which I'll call spikeyness which controls how much the points can vary from the circle of radius r_ave. If you set both of these to 0 then you get perfectly regular polygons, if you crank them up then the polygons get crazier.
I whipped this up quickly in python and got stuff like this:
Here's the full python code:
import math, random
from typing import List, Tuple
def generate_polygon(center: Tuple[float, float], avg_radius: float,
irregularity: float, spikiness: float,
num_vertices: int) -> List[Tuple[float, float]]:
"""
Start with the center of the polygon at center, then creates the
polygon by sampling points on a circle around the center.
Random noise is added by varying the angular spacing between
sequential points, and by varying the radial distance of each
point from the centre.
Args:
center (Tuple[float, float]):
a pair representing the center of the circumference used
to generate the polygon.
avg_radius (float):
the average radius (distance of each generated vertex to
the center of the circumference) used to generate points
with a normal distribution.
irregularity (float):
variance of the spacing of the angles between consecutive
vertices.
spikiness (float):
variance of the distance of each vertex to the center of
the circumference.
num_vertices (int):
the number of vertices of the polygon.
Returns:
List[Tuple[float, float]]: list of vertices, in CCW order.
"""
# Parameter check
if irregularity < 0 or irregularity > 1:
raise ValueError("Irregularity must be between 0 and 1.")
if spikiness < 0 or spikiness > 1:
raise ValueError("Spikiness must be between 0 and 1.")
irregularity *= 2 * math.pi / num_vertices
spikiness *= avg_radius
angle_steps = random_angle_steps(num_vertices, irregularity)
# now generate the points
points = []
angle = random.uniform(0, 2 * math.pi)
for i in range(num_vertices):
radius = clip(random.gauss(avg_radius, spikiness), 0, 2 * avg_radius)
point = (center[0] + radius * math.cos(angle),
center[1] + radius * math.sin(angle))
points.append(point)
angle += angle_steps[i]
return points
def random_angle_steps(steps: int, irregularity: float) -> List[float]:
"""Generates the division of a circumference in random angles.
Args:
steps (int):
the number of angles to generate.
irregularity (float):
variance of the spacing of the angles between consecutive vertices.
Returns:
List[float]: the list of the random angles.
"""
# generate n angle steps
angles = []
lower = (2 * math.pi / steps) - irregularity
upper = (2 * math.pi / steps) + irregularity
cumsum = 0
for i in range(steps):
angle = random.uniform(lower, upper)
angles.append(angle)
cumsum += angle
# normalize the steps so that point 0 and point n+1 are the same
cumsum /= (2 * math.pi)
for i in range(steps):
angles[i] /= cumsum
return angles
def clip(value, lower, upper):
"""
Given an interval, values outside the interval are clipped to the interval
edges.
"""
return min(upper, max(value, lower))
#MateuszKonieczny here is code to create an image of a polygon from a list of vertices.
vertices = generate_polygon(center=(250, 250),
avg_radius=100,
irregularity=0.35,
spikiness=0.2,
num_vertices=16)
black = (0, 0, 0)
white = (255, 255, 255)
img = Image.new('RGB', (500, 500), white)
im_px_access = img.load()
draw = ImageDraw.Draw(img)
# either use .polygon(), if you want to fill the area with a solid colour
draw.polygon(vertices, outline=black, fill=white)
# or .line() if you want to control the line thickness, or use both methods together!
draw.line(vertices + [vertices[0]], width=2, fill=black)
img.show()
# now you can save the image (img), or do whatever else you want with it.
There's a neat way to do what you want by taking advantage of the MATLAB classes DelaunayTri and TriRep and the various methods they employ for handling triangular meshes. The code below follows these steps to create an arbitrary simple polygon:
Generate a number of random points equal to the desired number of sides plus a fudge factor. The fudge factor ensures that, regardless of the result of the triangulation, we should have enough facets to be able to trim the triangular mesh down to a polygon with the desired number of sides.
Create a Delaunay triangulation of the points, resulting in a convex polygon that is constructed from a series of triangular facets.
If the boundary of the triangulation has more edges than desired, pick a random triangular facet on the edge that has a unique vertex (i.e. the triangle only shares one edge with the rest of the triangulation). Removing this triangular facet will reduce the number of boundary edges.
If the boundary of the triangulation has fewer edges than desired, or the previous step was unable to find a triangle to remove, pick a random triangular facet on the edge that has only one of its edges on the triangulation boundary. Removing this triangular facet will increase the number of boundary edges.
If no triangular facets can be found matching the above criteria, post a warning that a polygon with the desired number of sides couldn't be found and return the x and y coordinates of the current triangulation boundary. Otherwise, keep removing triangular facets until the desired number of edges is met, then return the x and y coordinates of triangulation boundary.
Here's the resulting function:
function [x, y, dt] = simple_polygon(numSides)
if numSides < 3
x = [];
y = [];
dt = DelaunayTri();
return
end
oldState = warning('off', 'MATLAB:TriRep:PtsNotInTriWarnId');
fudge = ceil(numSides/10);
x = rand(numSides+fudge, 1);
y = rand(numSides+fudge, 1);
dt = DelaunayTri(x, y);
boundaryEdges = freeBoundary(dt);
numEdges = size(boundaryEdges, 1);
while numEdges ~= numSides
if numEdges > numSides
triIndex = vertexAttachments(dt, boundaryEdges(:,1));
triIndex = triIndex(randperm(numel(triIndex)));
keep = (cellfun('size', triIndex, 2) ~= 1);
end
if (numEdges < numSides) || all(keep)
triIndex = edgeAttachments(dt, boundaryEdges);
triIndex = triIndex(randperm(numel(triIndex)));
triPoints = dt([triIndex{:}], :);
keep = all(ismember(triPoints, boundaryEdges(:,1)), 2);
end
if all(keep)
warning('Couldn''t achieve desired number of sides!');
break
end
triPoints = dt.Triangulation;
triPoints(triIndex{find(~keep, 1)}, :) = [];
dt = TriRep(triPoints, x, y);
boundaryEdges = freeBoundary(dt);
numEdges = size(boundaryEdges, 1);
end
boundaryEdges = [boundaryEdges(:,1); boundaryEdges(1,1)];
x = dt.X(boundaryEdges, 1);
y = dt.X(boundaryEdges, 2);
warning(oldState);
end
And here are some sample results:
The generated polygons could be either convex or concave, but for larger numbers of desired sides they will almost certainly be concave. The polygons are also generated from points randomly generated within a unit square, so polygons with larger numbers of sides will generally look like they have a "squarish" boundary (such as the lower right example above with the 50-sided polygon). To modify this general bounding shape, you can change the way the initial x and y points are randomly chosen (i.e. from a Gaussian distribution, etc.).
For a convex 2D polygon (totally off the top of my head):
Generate a random radius, R
Generate N random points on the circumference of a circle of Radius R
Move around the circle and draw straight lines between adjacent points on the circle.
As #templatetypedef and #MitchWheat said, it is easy to do so by generating N random angles and radii. It is important to sort the angles, otherwise it will not be a simple polygon. Note that I am using a neat trick to draw closed curves - I described it in here. By the way, the polygons might be concave.
Note that all of these polygons will be star shaped. Generating a more general polygon is not a simple problem at all.
Just to give you a taste of the problem - check out
http://www.cosy.sbg.ac.at/~held/projects/rpg/rpg.html
and http://compgeom.cs.uiuc.edu/~jeffe/open/randompoly.html.
function CreateRandomPoly()
figure();
colors = {'r','g','b','k'};
for i=1:5
[x,y]=CreatePoly();
c = colors{ mod(i-1,numel(colors))+1};
plotc(x,y,c);
hold on;
end
end
function [x,y]=CreatePoly()
numOfPoints = randi(30);
theta = randi(360,[1 numOfPoints]);
theta = theta * pi / 180;
theta = sort(theta);
rho = randi(200,size(theta));
[x,y] = pol2cart(theta,rho);
xCenter = randi([-1000 1000]);
yCenter = randi([-1000 1000]);
x = x + xCenter;
y = y + yCenter;
end
function plotc(x,y,varargin)
x = [x(:) ; x(1)];
y = [y(:) ; y(1)];
plot(x,y,varargin{:})
end
Here is a working port for Matlab of Mike Ounsworth solution. I did not optimized it for matlab. I might update the solution later for that.
function [points] = generatePolygon(ctrX, ctrY, aveRadius, irregularity, spikeyness, numVerts)
%{
Start with the centre of the polygon at ctrX, ctrY,
then creates the polygon by sampling points on a circle around the centre.
Randon noise is added by varying the angular spacing between sequential points,
and by varying the radial distance of each point from the centre.
Params:
ctrX, ctrY - coordinates of the "centre" of the polygon
aveRadius - in px, the average radius of this polygon, this roughly controls how large the polygon is, really only useful for order of magnitude.
irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to [0, 2pi/numberOfVerts]
spikeyness - [0,1] indicating how much variance there is in each vertex from the circle of radius aveRadius. [0,1] will map to [0, aveRadius]
numVerts - self-explanatory
Returns a list of vertices, in CCW order.
Website: https://stackoverflow.com/questions/8997099/algorithm-to-generate-random-2d-polygon
%}
irregularity = clip( irregularity, 0,1 ) * 2*pi/ numVerts;
spikeyness = clip( spikeyness, 0,1 ) * aveRadius;
% generate n angle steps
angleSteps = [];
lower = (2*pi / numVerts) - irregularity;
upper = (2*pi / numVerts) + irregularity;
sum = 0;
for i =1:numVerts
tmp = unifrnd(lower, upper);
angleSteps(i) = tmp;
sum = sum + tmp;
end
% normalize the steps so that point 0 and point n+1 are the same
k = sum / (2*pi);
for i =1:numVerts
angleSteps(i) = angleSteps(i) / k;
end
% now generate the points
points = [];
angle = unifrnd(0, 2*pi);
for i =1:numVerts
r_i = clip( normrnd(aveRadius, spikeyness), 0, 2*aveRadius);
x = ctrX + r_i* cos(angle);
y = ctrY + r_i* sin(angle);
points(i,:)= [(x),(y)];
angle = angle + angleSteps(i);
end
end
function value = clip(x, min, max)
if( min > max ); value = x; return; end
if( x < min ) ; value = min; return; end
if( x > max ) ; value = max; return; end
value = x;
end

Largest rectangular sub matrix with the same number

I am trying to come up with a dynamic programming algorithm that finds the largest sub matrix within a matrix that consists of the same number:
example:
{5 5 8}
{5 5 7}
{3 4 1}
Answer : 4 elements due to the matrix
5 5
5 5
This is a question I already answered here (and here, modified version). In both cases the algorithm was applied to binary case (zeros and ones), but the modification for arbitrary numbers is quite easy (but sorry, I keep the images for the binary version of the problem). You can do this very efficiently by two pass linear O(n) time algorithm - n being number of elements. However, this is not a dynamic programming - I think using dynamic programming here would be clumsy and inefficient in the end, because of the difficulties with problem decomposition, as the OP mentioned - unless its a homework - but in that case you can try to impress by this algorithm :-) as there's obviously no faster solution than O(n).
Algorithm (pictures depict binary case):
Say you want to find largest rectangle of free (white) elements.
Here follows the two pass linear O(n) time algorithm (n being number of elemets):
1) in a first pass, go by columns, from bottom to top, and for each element, denote the number of consecutive elements available up to this one:
repeat, until:
Pictures depict the binary case. In case of arbitrary numbers you hold 2 matrices - first with the original numbers and second with the auxiliary numbers that are filled in the image above. You have to check the original matrix and if you find a number different from the previous one, you just start the numbering (in the auxiliary matrix) again from 1.
2) in a second pass you go by rows, holding data structure of potential rectangles, i.e. the rectangles containing current position somewhere at the top edge. See the following picture (current position is red, 3 potential rectangles - purple - height 1, green - height 2 and yellow - height 3):
For each rectangle we keep its height k and its left edge. In other words we keep track of the sums of consecutive numbers that were >= k (i.e. potential rectangles of height k). This data structure can be represented by an array with double linked list linking occupied items, and the array size would be limited by the matrix height.
Pseudocode of 2nd pass (non-binary version with arbitrary numbers):
var m[] // original matrix
var aux[] // auxiliary matrix filled in the 1st pass
var rect[] // array of potential rectangles, indexed by their height
// the occupied items are also linked in double linked list,
// ordered by height
foreach row = 1..N // go by rows
foreach col = 1..M
if (col > 1 AND m[row, col] != m[row, col - 1]) // new number
close_potential_rectangles_higher_than(0); // close all rectangles
height = aux[row, col] // maximal height possible at current position
if (!rect[height]) { // rectangle with height does not exist
create rect[height] // open new rectangle
if (rect[height].next) // rectangle with nearest higher height
// if it exists, start from its left edge
rect[height].left_col = rect[height].next.left_col
else
rect[height].left_col = col;
}
close_potential_rectangles_higher_than(height)
end for // end row
close_potential_rectangles_higher_than(0);
// end of row -> close all rect., supposing col is M+1 now!
end for // end matrix
The function for closing rectangles:
function close_potential_rectangles_higher_than(height)
close_r = rectangle with highest height (last item in dll)
while (close_r.height > height) { // higher? close it
area = close_r.height * (col - close_r.left_col)
if (area > max_area) { // we have maximal rectangle!
max_area = area
max_topleft = [row, close_r.left_col]
max_bottomright = [row + height - 1, col - 1]
}
close_r = close_r.prev
// remove the rectangle close_r from the double linked list
}
end function
This way you can also get all maximum rectangles. So in the end you get:
And what the complexity will be? You see that the function close_potential_rectangles_higher_than is O(1) per closed rectangle. Because for each field we create 1 potential rectangle at the maximum, the total number of potential rectangles ever present in particular row is never higher than the length of the row. Therefore, complexity of this function is O(1) amortized!
So the whole complexity is O(n) where n is number of matrix elements.
A dynamic solution:
Define a new matrix A wich will store in A[i,j] two values: the width and the height of the largest submatrix with the left upper corner at i,j, fill this matrix starting from the bottom right corner, by rows bottom to top. You'll find four cases:
case 1: none of the right or bottom neighbour elements in the original matrix are equal to the current one, i.e: M[i,j] != M[i+1,j] and M[i,j] != M[i,j+1] being M the original matrix, in this case, the value of A[i,j] is 1x1
case 2: the neighbour element to the right is equal to the current one but the bottom one is different, the value of A[i,j].width is A[i+1,j].width+1 and A[i,j].height=1
case 3: the neighbour element to the bottom is equal but the right one is different, A[i,j].width=1, A[i,j].height=A[i,j+1].height+1
case 4: both neighbours are equal: A[i,j].width = min(A[i+1,j].width+1,A[i,j+1].width) and A[i,j].height = min(A[i,j+1]+1,A[i+1,j])
the size of the largest matrix that has the upper left corner at i,j is A[i,j].width*A[i,j].height so you can update the max value found while calculating the A[i,j]
the bottom row and the rightmost column elements are treated as if their neighbours to the bottom and to the right respectively are different
in your example, the resulting matrix A would be:
{2:2 1:2 1:1}
{2:1 1:1 1:1}
{1:1 1:1 1:1}
being w:h width:height
Modification to the above answer:
Define a new matrix A wich will store in A[i,j] two values: the width and the height of the largest submatrix with the left upper corner at i,j, fill this matrix starting from the bottom right corner, by rows bottom to top. You'll find four cases:
case 1: none of the right or bottom neighbour elements in the original matrix are equal to the current one, i.e: M[i,j] != M[i+1,j] and M[i,j] != M[i,j+1] being M the original matrix, in this case, the value of A[i,j] is 1x1
case 2: the neighbour element to the right is equal to the current one but the bottom one is different, the value of A[i,j].width is A[i+1,j].width+1 and A[i,j].height=1
case 3: the neighbour element to the bottom is equal but the right one is different, A[i,j].width=1, A[i,j].height=A[i,j+1].height+1
case 4: both neighbours are equal:
Three rectangles are considered:
1. A[i,j].width=A[i,j+1].width+1; A[i,j].height=1;
A[i,j].height=A[i+1,j].height+1; a[i,j].width=1;
A[i,j].width = min(A[i+1,j].width+1,A[i,j+1].width) and A[i,j].height = min(A[i,j+1]+1,A[i+1,j])
The one with the max area in the above three cases will be considered to represent the rectangle at this position.
The size of the largest matrix that has the upper left corner at i,j is A[i,j].width*A[i,j].height so you can update the max value found while calculating the A[i,j]
the bottom row and the rightmost column elements are treated as if their neighbours to the bottom and to the right respectively are different.
This question is a duplicate. I have tried to flag it as a duplicate. Here is a Python solution, which also returns the position and shape of the largest rectangular submatrix:
#!/usr/bin/env python3
import numpy
s = '''5 5 8
5 5 7
3 4 1'''
nrows = 3
ncols = 3
skip_not = 5
area_max = (0, [])
a = numpy.fromstring(s, dtype=int, sep=' ').reshape(nrows, ncols)
w = numpy.zeros(dtype=int, shape=a.shape)
h = numpy.zeros(dtype=int, shape=a.shape)
for r in range(nrows):
for c in range(ncols):
if not a[r][c] == skip_not:
continue
if r == 0:
h[r][c] = 1
else:
h[r][c] = h[r-1][c]+1
if c == 0:
w[r][c] = 1
else:
w[r][c] = w[r][c-1]+1
minw = w[r][c]
for dh in range(h[r][c]):
minw = min(minw, w[r-dh][c])
area = (dh+1)*minw
if area > area_max[0]:
area_max = (area, [(r, c, dh+1, minw)])
print('area', area_max[0])
for t in area_max[1]:
print('coord and shape', t)
Output:
area 4
coord and shape (1, 1, 2, 2)

Algorithm to detect intersection of two rectangles?

I'm looking for an algorithm to detect if two rectangles intersect (one at an arbitrary angle, the other with only vertical/horizontal lines).
Testing if a corner of one is in the other ALMOST works. It fails if the rectangles form a cross-like shape.
It seems like a good idea to avoid using slopes of the lines, which would require special cases for vertical lines.
The standard method would be to do the separating axis test (do a google search on that).
In short:
Two objects don't intersect if you can find a line that separates the two objects. e.g. the objects / all points of an object are on different sides of the line.
The fun thing is, that it's sufficient to just check all edges of the two rectangles. If the rectangles don't overlap one of the edges will be the separating axis.
In 2D you can do this without using slopes. An edge is simply defined as the difference between two vertices, e.g.
edge = v(n) - v(n-1)
You can get a perpendicular to this by rotating it by 90°. In 2D this is easy as:
rotated.x = -unrotated.y
rotated.y = unrotated.x
So no trigonometry or slopes involved. Normalizing the vector to unit-length is not required either.
If you want to test if a point is on one or another side of the line you can just use the dot-product. the sign will tell you which side you're on:
// rotated: your rotated edge
// v(n-1) any point from the edge.
// testpoint: the point you want to find out which side it's on.
side = sign (rotated.x * (testpoint.x - v(n-1).x) +
rotated.y * (testpoint.y - v(n-1).y);
Now test all points of rectangle A against the edges of rectangle B and vice versa. If you find a separating edge the objects don't intersect (providing all other points in B are on the other side of the edge being tested for - see drawing below). If you find no separating edge either the rectangles are intersecting or one rectangle is contained in the other.
The test works with any convex polygons btw..
Amendment: To identify a separating edge, it is not enough to test all points of one rectangle against each edge of the other. The candidate-edge E (below) would as such be identified as a separating edge, as all points in A are in the same half-plane of E. However, it isn't a separating edge because the vertices Vb1 and Vb2 of B are also in that half-plane. It would only have been a separating edge if that had not been the case
http://www.iassess.com/collision.png
Basically look at the following picture:
If the two boxes collide, the lines A and B will overlap.
Note that this will have to be done on both the X and the Y axis, and both need to overlap for the rectangles to collide.
There is a good article in gamasutra.com which answers the question (the picture is from the article).
I did similar algorithm 5 years ago and I have to find my code snippet to post it here later
Amendment: The Separating Axis Theorem states that two convex shapes do not overlap if a separating axis exists (i.e. one where the projections as shown do not overlap). So "A separating axis exists" => "No overlap". This is not a bi-implication so you cannot conclude the converse.
In Cocoa you could easily detect whether the selectedArea rect intersects your rotated NSView's frame rect.
You don't even need to calculate polygons, normals an such. Just add these methods to your NSView subclass.
For instance, the user selects an area on the NSView's superview, then you call the method DoesThisRectSelectMe passing the selectedArea rect. The API convertRect: will do that job. The same trick works when you click on the NSView to select it. In that case simply override the hitTest method as below. The API convertPoint: will do that job ;-)
- (BOOL)DoesThisRectSelectMe:(NSRect)selectedArea
{
NSRect localArea = [self convertRect:selectedArea fromView:self.superview];
return NSIntersectsRect(localArea, self.bounds);
}
- (NSView *)hitTest:(NSPoint)aPoint
{
NSPoint localPoint = [self convertPoint:aPoint fromView:self.superview];
return NSPointInRect(localPoint, self.bounds) ? self : nil;
}
m_pGladiator's answer is right and I prefer to it.
Separating axis test is simplest and standard method to detect rectangle overlap. A line for which the projection intervals do not overlap we call a separating axis. Nils Pipenbrinck's solution is too general. It use dot product to check whether one shape is totally on the one side of the edge of the other. This solution is actually could induce to n-edge convex polygons. However, it is not optmized for two rectangles.
the critical point of m_pGladiator's answer is that we should check two rectangles' projection on both axises (x and y). If two projections are overlapped, then we could say these two rectangles are overlapped. So the comments above to m_pGladiator's answer are wrong.
for the simple situation, if two rectangles are not rotated,
we present a rectangle with structure:
struct Rect {
x, // the center in x axis
y, // the center in y axis
width,
height
}
we name rectangle A, B with rectA, rectB.
if Math.abs(rectA.x - rectB.x) < (Math.abs(rectA.width + rectB.width) / 2)
&& (Math.abs(rectA.y - rectB.y) < (Math.abs(rectA.height + rectB.height) / 2))
then
// A and B collide
end if
if any one of the two rectangles are rotated,
It may needs some efforts to determine the projection of them on x and y axises. Define struct RotatedRect as following:
struct RotatedRect : Rect {
double angle; // the rotating angle oriented to its center
}
the difference is how the width' is now a little different:
widthA' for rectA: Math.sqrt(rectA.width*rectA.width + rectA.height*rectA.height) * Math.cos(rectA.angle)
widthB' for rectB: Math.sqrt(rectB.width*rectB.width + rectB.height*rectB.height) * Math.cos(rectB.angle)
if Math.abs(rectA.x - rectB.x) < (Math.abs(widthA' + widthB') / 2)
&& (Math.abs(rectA.y - rectB.y) < (Math.abs(heightA' + heightB') / 2))
then
// A and B collide
end if
Could refer to a GDC(Game Development Conference 2007) PPT www.realtimecollisiondetection.net/pubs/GDC07_Ericson_Physics_Tutorial_SAT.ppt
The accepted answer about the separating axis test was very illuminating but I still felt it was not trivial to apply. I will share the pseudo-code I thought, "optimizing" first with the bounding circle test (see this other answer), in case it might help other people. I considered two rectangles A and B of the same size (but it is straightforward to consider the general situation).
1 Bounding circle test:
function isRectangleACollidingWithRectangleB:
if d > 2 * R:
return False
...
Computationally is much faster than the separating axis test. You only need to consider the separating axis test in the situation that both circles collide.
2 Separating axis test
The main idea is:
Consider one rectangle. Cycle along its vertices V(i).
Calculate the vector Si+1: V(i+1) - V(i).
Calculate the vector Ni using Si+1: Ni = (-Si+1.y, Si+1.x). This vector is the blue from the image. The sign of the dot product between the vectors from V(i) to the other vertices and Ni will define the separating axis (magenta dashed line).
Calculate the vector Si-1: V(i-1) - V(i). The sign of the dot product between Si-1 and Ni will define the location of the first rectangle with respect to the separating axis. In the example of the picture, they go in different directions, so the sign will be negative.
Cycle for all vertices j of the second square and calculate the vector Sij = V(j) - V(i).
If for any vertex V(j), the sign of the dot product of the vector Sij with Ni is the same as with the dot product of the vector Si-1 with Ni, this means both vertices V(i) and V(j) are on the same side of the magenta dashed line and, thus, vertex V(i) does not have a separating axis. So we can just skip vertex V(i) and repeat for the next vertex V(i+1). But first we update Si-1 = - Si+1. When we reach the last vertex (i = 4), if we have not found a separating axis, we repeat for the other rectangle. And if we still do not find a separating axis, this implies there is no separating axis and both rectangles collide.
If for a given vertex V(i) and all vertices V(j), the sign of the dot product of the vector Sij with Ni is different than with the vector Si-1 with Ni (as occurs in the image), this means we have found the separating axis and the rectangles do not collide.
In pseudo-code:
function isRectangleACollidingWithRectangleB:
...
#Consider first rectangle A:
Si-1 = Vertex_A[4] - Vertex_A[1]
for i in Vertex_A:
Si+1 = Vertex_A[i+1] - Vertex_A[i]
Ni = [- Si+1.y, Si+1.x ]
sgn_i = sign( dot_product(Si-1, Ni) ) #sgn_i is the sign of rectangle A with respect the separating axis
for j in Vertex_B:
sij = Vertex_B[j] - Vertex_A[i]
sgn_j = sign( dot_product(sij, Ni) ) #sgnj is the sign of vertex j of square B with respect the separating axis
if sgn_i * sgn_j > 0: #i.e., we have the same sign
break #Vertex i does not define separating axis
else:
if j == 4: #we have reached the last vertex so vertex i defines the separating axis
return False
Si-1 = - Si+1
#Repeat for rectangle B
...
#If we do not find any separating axis
return True
You can find the code in Python here.
Note:
In this other answer they also suggest for optimization to try before the separating axis test whether the vertices of one rectangle are inside the other as a sufficient condition for colliding. However, in my trials I found this intermediate step to actually be less efficient.
Check to see if any of the lines from one rectangle intersect any of the lines from the other. Naive line segment intersection is easy to code up.
If you need more speed, there are advanced algorithms for line segment intersection (sweep-line). See http://en.wikipedia.org/wiki/Line_segment_intersection
One solution is to use something called a No Fit Polygon. This polygon is calculated from the two polygons (conceptually by sliding one around the other) and it defines the area for which the polygons overlap given their relative offset. Once you have this NFP then you simply have to do an inclusion test with a point given by the relative offset of the two polygons. This inclusion test is quick and easy but you do have to create the NFP first.
Have a search for No Fit Polygon on the web and see if you can find an algorithm for convex polygons (it gets MUCH more complex if you have concave polygons). If you can't find anything then email me at howard dot J dot may gmail dot com
Here is what I think will take care of all possible cases.
Do the following tests.
Check any of the vertices of rectangle 1 reside inside rectangle 2 and vice versa. Anytime you find a vertex that resides inside the other rectangle you can conclude that they intersect and stop the search. THis will take care of one rectangle residing completely inside the other.
If the above test is inconclusive find the intersecting points of each line of 1 rectangle with each line of the other rectangle. Once a point of intersection is found check if it resides between inside the imaginary rectangle created by the corresponding 4 points. When ever such a point is found conclude that they intersect and stop the search.
If the above 2 tests return false then these 2 rectangles do not overlap.
If you're using Java, all implementations of the Shape interface have an intersects method that take a rectangle.
Well, the brute force method is to walk the edges of the horizontal rectangle and check each point along the edge to see if it falls on or in the other rectangle.
The mathematical answer is to form equations describing each edge of both rectangles. Now you can simply find if any of the four lines from rectangle A intersect any of the lines of rectangle B, which should be a simple (fast) linear equation solver.
-Adam
You could find the intersection of each side of the angled rectangle with each side of the axis-aligned one. Do this by finding the equation of the infinite line on which each side lies (i.e. v1 + t(v2-v1) and v'1 + t'(v'2-v'1) basically), finding the point at which the lines meet by solving for t when those two equations are equal (if they're parallel, you can test for that) and then testing whether that point lies on the line segment between the two vertices, i.e. is it true that 0 <= t <= 1 and 0 <= t' <= 1.
However, this doesn't cover the case when one rectangle completely covers the other. That you can cover by testing whether all four points of either rectangle lie inside the other rectangle.
This is what I would do, for the 3D version of this problem:
Model the 2 rectangles as planes described by equation P1 and P2, then write P1=P2 and derive from that the line of intersection equation, which won't exist if the planes are parallel (no intersection), or are in the same plane, in which case you get 0=0. In that case you will need to employ a 2D rectangle intersection algorithm.
Then I would see if that line, which is in the plane of both rectangles, passes through both rectangles. If it does, then you have an intersection of 2 rectangles, otherwise you don't (or shouldn't, I might have missed a corner case in my head).
To find if a line passes through a rectangle in the same plane, I would find the 2 points of intersection of the line and the sides of the rectangle (modelling them using line equations), and then make sure the points of intersections are with in range.
That is the mathematical descriptions, unfortunately I have no code to do the above.
Another way to do the test which is slightly faster than using the separating axis test, is to use the winding numbers algorithm (on quadrants only - not angle-summation which is horrifically slow) on each vertex of either rectangle (arbitrarily chosen). If any of the vertices have a non-zero winding number, the two rectangles overlap.
This algorithm is somewhat more long-winded than the separating axis test, but is faster because it only require a half-plane test if edges are crossing two quadrants (as opposed to up to 32 tests using the separating axis method)
The algorithm has the further advantage that it can be used to test overlap of any polygon (convex or concave). As far as I know, the algorithm only works in 2D space.
Either I am missing something else why make this so complicated?
if (x1,y1) and (X1,Y1) are corners of the rectangles, then to find intersection do:
xIntersect = false;
yIntersect = false;
if (!(Math.min(x1, x2, x3, x4) > Math.max(X1, X2, X3, X4) || Math.max(x1, x2, x3, x4) < Math.min(X1, X2, X3, X4))) xIntersect = true;
if (!(Math.min(y1, y2, y3, y4) > Math.max(Y1, Y2, Y3, Y4) || Math.max(y1, y2, y3, y4) < Math.min(Y1, Y2, Y3, Y4))) yIntersect = true;
if (xIntersect && yIntersect) {alert("Intersect");}
I implemented it like this:
bool rectCollision(const CGRect &boundsA, const Matrix3x3 &mB, const CGRect &boundsB)
{
float Axmin = boundsA.origin.x;
float Axmax = Axmin + boundsA.size.width;
float Aymin = boundsA.origin.y;
float Aymax = Aymin + boundsA.size.height;
float Bxmin = boundsB.origin.x;
float Bxmax = Bxmin + boundsB.size.width;
float Bymin = boundsB.origin.y;
float Bymax = Bymin + boundsB.size.height;
// find location of B corners in A space
float B0x = mB(0,0) * Bxmin + mB(0,1) * Bymin + mB(0,2);
float B0y = mB(1,0) * Bxmin + mB(1,1) * Bymin + mB(1,2);
float B1x = mB(0,0) * Bxmax + mB(0,1) * Bymin + mB(0,2);
float B1y = mB(1,0) * Bxmax + mB(1,1) * Bymin + mB(1,2);
float B2x = mB(0,0) * Bxmin + mB(0,1) * Bymax + mB(0,2);
float B2y = mB(1,0) * Bxmin + mB(1,1) * Bymax + mB(1,2);
float B3x = mB(0,0) * Bxmax + mB(0,1) * Bymax + mB(0,2);
float B3y = mB(1,0) * Bxmax + mB(1,1) * Bymax + mB(1,2);
if(B0x<Axmin && B1x<Axmin && B2x<Axmin && B3x<Axmin)
return false;
if(B0x>Axmax && B1x>Axmax && B2x>Axmax && B3x>Axmax)
return false;
if(B0y<Aymin && B1y<Aymin && B2y<Aymin && B3y<Aymin)
return false;
if(B0y>Aymax && B1y>Aymax && B2y>Aymax && B3y>Aymax)
return false;
float det = mB(0,0)*mB(1,1) - mB(0,1)*mB(1,0);
float dx = mB(1,2)*mB(0,1) - mB(0,2)*mB(1,1);
float dy = mB(0,2)*mB(1,0) - mB(1,2)*mB(0,0);
// find location of A corners in B space
float A0x = (mB(1,1) * Axmin - mB(0,1) * Aymin + dx)/det;
float A0y = (-mB(1,0) * Axmin + mB(0,0) * Aymin + dy)/det;
float A1x = (mB(1,1) * Axmax - mB(0,1) * Aymin + dx)/det;
float A1y = (-mB(1,0) * Axmax + mB(0,0) * Aymin + dy)/det;
float A2x = (mB(1,1) * Axmin - mB(0,1) * Aymax + dx)/det;
float A2y = (-mB(1,0) * Axmin + mB(0,0) * Aymax + dy)/det;
float A3x = (mB(1,1) * Axmax - mB(0,1) * Aymax + dx)/det;
float A3y = (-mB(1,0) * Axmax + mB(0,0) * Aymax + dy)/det;
if(A0x<Bxmin && A1x<Bxmin && A2x<Bxmin && A3x<Bxmin)
return false;
if(A0x>Bxmax && A1x>Bxmax && A2x>Bxmax && A3x>Bxmax)
return false;
if(A0y<Bymin && A1y<Bymin && A2y<Bymin && A3y<Bymin)
return false;
if(A0y>Bymax && A1y>Bymax && A2y>Bymax && A3y>Bymax)
return false;
return true;
}
The matrix mB is any affine transform matrix that converts points in the B space to points in the A space. This includes simple rotation and translation, rotation plus scaling, and full affine warps, but not perspective warps.
It may not be as optimal as possible. Speed was not a huge concern. However it seems to work ok for me.
Here is a matlab implementation of the accepted answer:
function olap_flag = ol(A,B,sub)
%A and B should be 4 x 2 matrices containing the xy coordinates of the corners in clockwise order
if nargin == 2
olap_flag = ol(A,B,1) && ol(B,A,1);
return;
end
urdl = diff(A([1:4 1],:));
s = sum(urdl .* A, 2);
sdiff = B * urdl' - repmat(s,[1 4]);
olap_flag = ~any(max(sdiff)<0);
This is the conventional method, go line by line and check whether the lines are intersecting. This is the code in MATLAB.
C1 = [0, 0]; % Centre of rectangle 1 (x,y)
C2 = [1, 1]; % Centre of rectangle 2 (x,y)
W1 = 5; W2 = 3; % Widths of rectangles 1 and 2
H1 = 2; H2 = 3; % Heights of rectangles 1 and 2
% Define the corner points of the rectangles using the above
R1 = [C1(1) + [W1; W1; -W1; -W1]/2, C1(2) + [H1; -H1; -H1; H1]/2];
R2 = [C2(1) + [W2; W2; -W2; -W2]/2, C2(2) + [H2; -H2; -H2; H2]/2];
R1 = [R1 ; R1(1,:)] ;
R2 = [R2 ; R2(1,:)] ;
plot(R1(:,1),R1(:,2),'r')
hold on
plot(R2(:,1),R2(:,2),'b')
%% lines of Rectangles
L1 = [R1(1:end-1,:) R1(2:end,:)] ;
L2 = [R2(1:end-1,:) R2(2:end,:)] ;
%% GEt intersection points
P = zeros(2,[]) ;
count = 0 ;
for i = 1:4
line1 = reshape(L1(i,:),2,2) ;
for j = 1:4
line2 = reshape(L2(j,:),2,2) ;
point = InterX(line1,line2) ;
if ~isempty(point)
count = count+1 ;
P(:,count) = point ;
end
end
end
%%
if ~isempty(P)
fprintf('Given rectangles intersect at %d points:\n',size(P,2))
plot(P(1,:),P(2,:),'*k')
end
the function InterX can be downloaded from: https://in.mathworks.com/matlabcentral/fileexchange/22441-curve-intersections?focused=5165138&tab=function
I have a simplier method of my own, if we have 2 rectangles:
R1 = (min_x1, max_x1, min_y1, max_y1)
R2 = (min_x2, max_x2, min_y2, max_y2)
They overlap if and only if:
Overlap = (max_x1 > min_x2) and (max_x2 > min_x1) and (max_y1 > min_y2) and (max_y2 > min_y1)
You can do it for 3D boxes too, actually it works for any number of dimensions.
Enough has been said in other answers, so I'll just add pseudocode one-liner:
!(a.left > b.right || b.left > a.right || a.top > b.bottom || b.top > a.bottom);
Check if the center of mass of all the vertices of both rectangles lies within one of the rectangles.

Resources