How to split a list into two parts in Scheme - scheme

Example: (split '(1 2 3 4) '3)
the Answer should be: ((1 2 3) 4)
The function required 1 list and 1 number, the output should be nested list
the nested list consist of all elements of "mylist" which are equal or less than the "num", and the greater number should be on the right of the list.
I tried but out put is only one list:
(define (split mylist num)
(cond
((null? mylist)'())
((list? (car mylist))(split(car mylist) num))
((> (car mylist) num)(split(cdr mylist) num))
(else(cons (car mylist) (split(cdr mylist) num)))))

A simple solution:
(define (split-list xs y)
(define (less x) (<= x y))
(define (greater x) (> x y))
(list (filter less xs)
(filter greater xs)))
An alternative:
(define (split-list xs y)
(define (less x) (<= x y))
(define-values (as bs) (partition less xs))
(list as bs))
(split-list '(1 2 3 4) 3)

Here's one possible solution, using built-in procedures in Racket:
(define (split mylist num)
(cons
(takef mylist (lambda (n) (<= n num)))
(dropf mylist (lambda (n) (<= n num)))))
For example:
(split '(1 2 3 4) 3)
=> '((1 2 3) 4)
(split '(1 2 3 4 5) 3)
=> '((1 2 3) 4 5)

This is roll your own version using named let. It makes one pass through the data and the result is in reverse order since it's the most effective.
(define (binary-bucket-sort lst threshold)
(let loop ((lst lst) (less-equal '()) (greater '()))
(cond ((null? lst)
(cons less-equal greater))
((<= (car lst) threshold)
(loop (cdr lst) (cons (car lst) less-equal) greater))
(else
(loop (cdr lst) less-equal (cons (car lst) greater))))))
(binary-bucket-sort '(1 5 9 2 6 10 3 7 9 8 4 0) 5)
; ==> ((0 4 3 2 5 1) . (8 9 7 10 6 9))

If you're comfortable with some of the more functional constructs in Racket, such as curry and the like, you can use this rather compact approach:
(define (split-list xs y)
(call-with-values (thunk (partition (curry >= y) xs)) cons))
> (split-list '(1 2 3 4 5 6 7) 3)
'((1 2 3) 4 5 6 7)

Related

Scheme - Recursively Adding up Numbers inside a list of list of list of etc

I am encountering a issue that I need to add up the second number of each list. For example, suppose I have a list of lists like below,
(list (list -4
(list (list -1 4) (list 1 7)))
(list 1 (list (list -2 5) (list 3 3)))
(list 3 12))
Then my job is to add up 4 + 7 + 5 + 3 + 12 = 31. However, the list can have multiple sub lists. But the second item inside a list can either be a number or a list. If it is a list, then we need to dig deeper into this list until we get a number.
Thanks!
Solution
(define (atom? x)
(and (not (null? x))
(not (pair? x))))
(define (my-and x y)
(and x y))
(define (every? l)
(foldr my-and #t l))
(define (flat-list? l)
(cond ((null? l) #t)
((every? (map atom? l)) #t)
(else #f)))
(define (add-only-seconds l)
(define (l-sec-add l acc)
(cond ((null? l) acc)
((atom? l) acc)
((flat-list? l) (+ (second l) acc))
((list? l) (apply + acc (map (lambda (x) (l-sec-add x 0)) l)))))
(l-sec-add l 0))
Example test
(define example-list (list (list -4
(list (list -1 4) (list 1 7)))
(list 1 (list (list -2 5) (list 3 3)))
(list 3 12)))
(add-only-seconds example-list) ;; 31
I used common-lisp-typical functions atom? and every?.
Since and cannot be used in foldr, I defined my-add to make add a function which can be used infoldr`.

Circular permutation in scheme

Hello I try to make circular permutations in Scheme (Dr. Racket) using recursion.
For example, if we have (1 2 3) a circular permutation gives ((1 2 3) (2 3 1) (3 1 2)).
I wrote a piece of code but I have a problem to make the shift.
My code:
(define cpermit
(lambda (lst)
(cpermitAux lst (length lst))))
(define cpermitAux
(lambda (lst n)
(if (zero? n) '()
(append (cpermitAux lst (- n 1)) (cons lst '())))))
Where (cpermit '(1 2 3)) gives '((1 2 3) (1 2 3) (1 2 3))
You can use function that shifts your list
(defun lshift (l) (append (cdr l) (list (car l))))
This will shift your list left.
Use this function before appendings
(define cpermit
(lambda (lst)
(cpermitAux lst (length lst))))
(define cpermitAux
(lambda (lst n)
(if (zero? n) '()
(append (cpermitAux (lshift lst) (- n 1)) (lshift (cons lst '()))))))
This answer is a series of translations of #rnso's code, modified to use a recursive helper function instead of repeated set!.
#lang racket
(define (cpermit sl)
;; n starts at (length sl) and goes towards zero
;; sl starts at sl
;; outl starts at '()
(define (loop n sl outl)
(cond [(zero? n) outl]
[else
(loop (sub1 n) ; the new n
(append (rest sl) (list (first sl))) ; the new sl
(cons sl outl))])) ; the new outl
(loop (length sl) sl '()))
> (cpermit (list 1 2 3 4))
(list (list 4 1 2 3) (list 3 4 1 2) (list 2 3 4 1) (list 1 2 3 4))
For a shorthand for this kind of recursive helper, you can use a named let. This brings the initial values up to the top to make it easier to understand.
#lang racket
(define (cpermit sl)
(let loop ([n (length sl)] ; goes towards zero
[sl sl]
[outl '()])
(cond [(zero? n) outl]
[else
(loop (sub1 n) ; the new n
(append (rest sl) (list (first sl))) ; the new sl
(cons sl outl))]))) ; the new outl
> (cpermit (list 1 2 3 4))
(list (list 4 1 2 3) (list 3 4 1 2) (list 2 3 4 1) (list 1 2 3 4))
To #rnso, you can think of the n, sl, and outl as fulfilling the same purpose as "mutable variables," but this is really the same code as I wrote before when I defined loop as a recursive helper function.
The patterns above are very common for accumulators in Scheme/Racket code. The (cond [(zero? n) ....] [else (loop (sub1 n) ....)]) is a little annoying to write out every time you want a loop like this. So instead you can use for/fold with two accumulators.
#lang racket
(define (cpermit sl)
(define-values [_ outl]
(for/fold ([sl sl] [outl '()])
([i (length sl)])
(values (append (rest sl) (list (first sl))) ; the new sl
(cons sl outl)))) ; the new outl
outl)
> (cpermit (list 1 2 3 4))
(list (list 4 1 2 3) (list 3 4 1 2) (list 2 3 4 1) (list 1 2 3 4))
You might have noticed that the outer list has the (list 1 2 3 4) last, the (list 2 3 4 1) second-to-last, etc. This is because we built the list back-to-front by pre-pending to it with cons. To fix this, we can just reverse it at the end.
#lang racket
(define (cpermit sl)
(define-values [_ outl]
(for/fold ([sl sl] [outl '()])
([i (length sl)])
(values (append (rest sl) (list (first sl))) ; the new sl
(cons sl outl)))) ; the new outl
(reverse outl))
> (cpermit (list 1 2 3 4))
(list (list 1 2 3 4) (list 2 3 4 1) (list 3 4 1 2) (list 4 1 2 3))
And finally, the (append (rest sl) (list (first sl))) deserves to be its own helper function, because it has a clear purpose: to rotate the list once around.
#lang racket
;; rotate-once : (Listof A) -> (Listof A)
;; rotates a list once around, sending the first element to the back
(define (rotate-once lst)
(append (rest lst) (list (first lst))))
(define (cpermit sl)
(define-values [_ outl]
(for/fold ([sl sl] [outl '()])
([i (length sl)])
(values (rotate-once sl) ; the new sl
(cons sl outl)))) ; the new outl
(reverse outl))
> (cpermit (list 1 2 3 4))
(list (list 1 2 3 4) (list 2 3 4 1) (list 3 4 1 2) (list 4 1 2 3))
Following code also works (without any helper function):
(define (cpermit sl)
(define outl '())
(for((i (length sl)))
(set! sl (append (rest sl) (list (first sl))) )
(set! outl (cons sl outl)))
outl)
(cpermit '(1 2 3 4))
Output is:
'((1 2 3 4) (4 1 2 3) (3 4 1 2) (2 3 4 1))
Following solution is functional and short. I find that in many cases, helper functions can be replaced by default arguments:
(define (cpermit_1 sl (outl '()) (len (length sl)))
(cond ((< len 1) outl)
(else (define sl2 (append (rest sl) (list (first sl))))
(cpermit_1 sl2 (cons sl2 outl) (sub1 len)))))
The output is:
(cpermit_1 '(1 2 3 4))
'((1 2 3 4) (4 1 2 3) (3 4 1 2) (2 3 4 1))

(Scheme) How do I add 2 lists together that are different sizes

I'm completely new to scheme and I'm having trouble trying to add 2 lists of different sizes. I was wondering how do I add 2 lists of different sizes together correctly. In my code I compared the values and append '(0) to the shorter list so that they can get equal sizes, but even after doing that I can not use map to add the 2 lists. I get an error code after running the program. The results I should be getting is '(2 4 5 4). Could anyone help me out? Thanks.
#lang racket
(define (add lst1 lst2)
(cond [(< (length lst1) (length lst2)) (cons (append lst1 '(0)))]
[else lst1])
(cond
((and (null? lst1)(null? lst2)) null)
(else
(map + lst1 lst2))))
;;Result should be '(2 4 6 4)
(add '(1 2 3) '(1 2 3 4))
ERROR:
cons: arity mismatch;
the expected number of arguments does not match the given number
expected: 2
given: 1
arguments...:
'(1 2 3 0)
The problem with your code is that there are two cond expressions one after the other - both will execute, but only the result of the second one will be returned - in other words, the code is not doing what you think it's doing. Now, to solve this problem it'll be easier if we split the solution in two parts (in general, that's a good strategy!). Try this:
(define (fill-zeroes lst n)
(append lst (make-list (abs n) 0)))
(define (add lst1 lst2)
(let ((diff (- (length lst1) (length lst2))))
(cond [(< diff 0)
(map + (fill-zeroes lst1 diff) lst2)]
[(> diff 0)
(map + lst1 (fill-zeroes lst2 diff))]
[else (map + lst1 lst2)])))
Explanation:
The fill-zeroes procedure takes care of filling the tail of a list with a given number of zeroes
The add procedure is in charge of determining which list needs to be filled, and when both lists have the right size performs the actual addition
It works as expected for any combination of list lengths:
(add '(1 2 3 4) '(1 2 3))
=> '(2 4 6 4)
(add '(1 2 3) '(1 2 3 4))
=> '(2 4 6 4)
(add '(1 2 3 0) '(1 2 3 4))
=> '(2 4 6 4)
Similar to Oscar's, slighty shorter:
(define (fill0 lst len)
(append lst (make-list (- len (length lst)) 0)))
(define (add lst1 lst2)
(let ((maxlen (max (length lst1) (length lst2))))
(map + (fill0 lst1 maxlen) (fill0 lst2 maxlen))))
or, for fun, the other way round:
(define (add lst1 lst2)
(let ((minlen (min (length lst1) (length lst2))))
(append
(map + (take lst1 minlen) (take lst2 minlen))
(drop lst1 minlen)
(drop lst2 minlen))))
There's no need to pre-compute the lengths of the lists and add zeroes to the end of one or the other of the lists. Here we solve the problem with a simple recursion:
(define (add xs ys)
(cond ((and (pair? xs) (pair? ys))
(cons (+ (car xs) (car ys)) (add (cdr xs) (cdr ys))))
((pair? xs) (cons (car xs) (add (cdr xs) ys)))
((pair? ys) (cons (car ys) (add xs (cdr ys))))
(else '())))
That works for all of Oscar's tests:
> (add '(1 2 3 4) '(1 2 3))
(2 4 6 4)
> (add '(1 2 3) '(1 2 3 4))
(2 4 6 4)
> (add '(1 2 3 0) '(1 2 3 4))
(2 4 6 4)
If you like, you can write that using a named-let and get the same results:
(define (add xs ys)
(let loop ((xs xs) (ys ys) (zs '()))
(cond ((and (pair? xs) (pair? ys))
(loop (cdr xs) (cdr ys) (cons (+ (car xs) (car ys)) zs)))
((pair? xs) (loop (cdr xs) ys (cons (car xs) zs)))
((pair? ys) (loop xs (cdr ys) (cons (car ys) zs)))
(else (reverse zs)))))
Have fun!
A yet simpler version.
(define (add x y)
(cond ((and (pair? x) (pair? y))
(cons (+ (car x) (car y))
(add (cdr x) (cdr y))))
((pair? x) x)
(else y)))

How to use append-map in Racket (Scheme)

I don't fully understand what the append-map command does in racket, nor do I understand how to use it and I'm having a pretty hard time finding some decently understandable documentation online for it. Could someone possibly demonstrate what exactly the command does and how it works?
The append-map procedure is useful for creating a single list out of a list of sublists after applying a procedure to each sublist. In other words, this code:
(append-map proc lst)
... Is semantically equivalent to this:
(apply append (map proc lst))
... Or this:
(append* (map proc lst))
The applying-append-to-a-list-of-sublists idiom is sometimes known as flattening a list of sublists. Let's look at some examples, this one is right here in the documentation:
(append-map vector->list '(#(1) #(2 3) #(4)))
'(1 2 3 4)
For a more interesting example, take a look at this code from Rosetta Code for finding all permutations of a list:
(define (insert l n e)
(if (= 0 n)
(cons e l)
(cons (car l)
(insert (cdr l) (- n 1) e))))
(define (seq start end)
(if (= start end)
(list end)
(cons start (seq (+ start 1) end))))
(define (permute l)
(if (null? l)
'(())
(apply append (map (lambda (p)
(map (lambda (n)
(insert p n (car l)))
(seq 0 (length p))))
(permute (cdr l))))))
The last procedure can be expressed more concisely by using append-map:
(define (permute l)
(if (null? l)
'(())
(append-map (lambda (p)
(map (lambda (n)
(insert p n (car l)))
(seq 0 (length p))))
(permute (cdr l)))))
Either way, the result is as expected:
(permute '(1 2 3))
=> '((1 2 3) (2 1 3) (2 3 1) (1 3 2) (3 1 2) (3 2 1))
In Common Lisp, the function is named "mapcan" and it is sometimes used to combine filtering with mapping:
* (mapcan (lambda (n) (if (oddp n) (list (* n n)) '()))
'(0 1 2 3 4 5 6 7))
(1 9 25 49)
In Racket that would be:
> (append-map (lambda (n) (if (odd? n) (list (* n n)) '()))
(range 8))
'(1 9 25 49)
But it's better to do it this way:
> (filter-map (lambda (n) (and (odd? n) (* n n))) (range 8))
'(1 9 25 49)

Scheme problem (using a function as a parameter)

I'm a Scheme newbie and trying to make sense of my homework.
I've a function I made earlier called duplicate, and it looks like this:
( DEFINE ( duplicate lis )
(IF (NULL? lis) '())
((CONS (CAR lis) (CONS (CAR lis) (duplicate (CDR lis))))
))
A typical i/o from this would be i: (duplicate '(1 2 3 4)) o: (1 1 2 2 3 3 4 4), so basicly it duplicates everything in the list.
Moving on:
Now I'm supposed to make a function that's called comp.
It's supposed to be built like this:
(DEFINE (comp f g) (lambda (x) (f (g (x))))
Where I could input '(1 2 3 4) and it would return (1 1 4 4 9 9 16 16)
so f = duplicate and g = lambda.
I know lambda should probably look like this:
(lambda (x) (* x x))
But here's where the problem starts, I've already spent several hours on this, and as you can see not made much progress.
Any help would be appreciated.
Best regards.
Use map:
> (map (lambda (x) (* x x)) (duplicate '(1 2 3 4)))
=> (1 1 4 4 9 9 16 16)
or, modify duplicate to take a procedure as its second argument and apply it to each element of the list:
(define (duplicate lst p)
(if (null? lst) ()
(append (list (p (car lst)) (p (car lst))) (duplicate (cdr lst) p))))
> (duplicate '(1 2 3 4) (lambda (x) (* x x)))
=> (1 1 4 4 9 9 16 16)
One way to do is as follows:
(define (comp f g) (lambda (x) (f (g x))))
(define (square x) (* x x))
(define (dup x) (list x x))
(define (duplicate-square lst)
(foldr append '() (map (comp dup square) lst)))
Now at the repl, do:
> (duplicate-square '(1 2 3 4))
'(1 1 4 4 9 9 16 16)

Resources