Partial sphere representation with hexes using graphs - algorithm

Problem: Spheres cannot be tesselated using only hexagonal tiles.
Goal: Create a globe map, made of discrete hexagonal fields.
Requirements:
a. Graphic representation of a globe/sphere/planet.
b. Tesselate area into hexes.
c. Hexes may contain something.
d. The number of tiles should be between 1 000 and 10 000.
e. A reasonable amount of inaccuracy is okay.
Idea:
Create an undirected graph which will represent the hexes. Because hexes must always have exactly 6 neighbors, the graph needs to be 6-regular and contain 1 000 < N < 10 000 vertices and 3N edges (from the handshaking lemma). It can be stored as an adjacency matrix with pointers to vertex instances.
The vertex instances are populated with information. For instance, in a game, this might be units.
Visual representation: No screen can show a whole globe at once. So, to show a part of our globe, we first select the vertex that should be in the middle of the display and display it as a hex. Then, from the adjacency matrix, we pull up its immediate neighbors and position them around as hexes. For each of these neighbors, we pull up the next level of neighbors, and so on, until the screen is filled.
Questions:
I Is there an algorithm which can be used to construct a graph described in 1.?
II Can I prove that up to a selected neighbor depth, no conflicts will arise which will make a graphic representation impossible? Obviously, no conflicts will arise for a display depth of at least 1 + 6 hexes.
if I&II:
Do you think the described approach is promising enough to try and implement?

Nobody ever answered, but the answer is that this is impossible. The Euler characteristic of a finite graph covering the sphere has to be 2 (see http://en.wikipedia.org/wiki/Euler_characteristic for the Euler characteristic) and the Euler characteristic of a graph that is built out of hexagons is always 0.
You have to somewhere have shapes of a different size.

Related

Fast algorithm for minimizing 2D coordinate mappings

I'm currently writing a web application for creating and manipulating graphs (in the graph theory sense, not charts). For this, I want to implement a number of "arrange as ..." functions that take the selected vertices and arrange them into certain shapes (you can ignore the edges).
Now writing simple algorithms to arrange the vertices into a grid or circle is trivial. What I want to do though is to find a general algorithm for taking n actual vertex coordinates and n destination vertex coordinates, and finding an optimal (or near optimal) mapping from the former to the latter so that the sum or average (whichever is easiest) of distances the vertices need to be moved is minimized. The idea is that these functions should mostly just "clean up" an existing arrangement without fundamentally altering relative positions if the vertices are somewhat similar to the desired arrangement already.
For example, if I have 12 vertices arranged in a rough circle, labeled 1-12 like the hours on a clock, I would like my "arrange as circle" algorithm to snap them to a perfect circle with the same ordering 1-12 like the hours on a clock. If I have 25 vertices arranged in a rough 5x5 grid, I would like my "arrange as grid" algorithm to snap them to a perfect 5x5 grid with the same ordering.
Of course I could theoretically use a generalized constraints-optimization / hill-climbing algorithm or brute-force the permutation, but both are too inefficient to perform client-side in the browser. Is there a more specific, known method for finding good "low-energy" 1:1 mappings between lists of 2d coordinates?
This is known as the assignment problem. Or more specifically, the linear assignment problem (since the number of objects and destinations are the same). There are various algorithms to solve it. Most notably, the Hungarian algorithm.
See https://en.wikipedia.org/wiki/Assignment_problem
Your cost function C(i,j) will be simply
C(i,j) = distance between points i and j
Where the i points are your current locations and the j points are your destination locations.

Find the number of separate polygons given a list of coordinates/points

Given a list of coordinates (x, y) that form up polygons is there a specific algorithm/s that can be used to find the number of separate polygons "not colliding polygons" that these points create?
And if there is no algorithm/s what would be the most efficient way to calculate these separate polygons?
I have tried using SAT but the performance is bad, since i have to create each individual polygon and check it for collision against every other polygon.
To illustrate what i want to ultimately achieve, in the following picture you can see the polygons that i'd like to calculate/find which are in some cases comprised of connecting squares.
Also note that i actually start with x, y coordinates for the center of a square and based on a radius i calculate corner points, so i have access to both methods, but mainly opted for the corner points for SAT.
P.S. i'm doing this in lua, but would happily accept any code samples/solutions in other languages.
Fast sweep-line algorithm are described in these papers:
Hiroshi Imai, Takao Asano,
Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane,
Journal of Algorithms 4 (1983) 310—323
H. Edelsbrunner, J. v. Leeuwen, Th. Ottmann and D. Wood,
Computing the connected components of simple rectilinear geometrical objects in d-space,
RAIRO Inform. Theor. 18 (1984) 171—183.
Put all the edges of every polygon in a hash table with the edge as the key (specifically the key will be the two corner points which the edge connects, in sorted order) and the polygon identifier as the value. When adding an edge to the hash-table, just check if an identical edge already exists (same key). This would let you find the duplicate/shared edges.

Plotting Distance Constrained Points on a Plane

I'm crossposting this from the mathematics stack exchange at the suggestion of one user who thought somebody here with experience in embedding algorithms might be able to help, though it should be noted that I'm not trying to do a strict graph embedding (which would not allow for vertices to intersect).
Does anybody know of some algorithmic way to tell if it is possible to plot a set of distance constrained points on a cartesian plane. Or, better still, a method to determine the minimum number of dimensions required to accurately depict the points.
As an example: If you have three points and a constraint that says they are all one unit away from each other, you can plot this easily on a cartesian plane as an equilateral triangle.
However, if you have the constraints A->B = 1, A->C = 1, and B->C = 3 then you will not be able to plot these points while maintaining their distances.
However in my case I have a graph with many more than three vertices. The graph is definitely non-planar: one such case involves 1407 vertices all of which are connected by a weighted bidirectional edge that defines the "distance" between the two vertices.
The question is, is there some way to tell if I can depict this graph with accurate distances on a cartesian plane. I know I can't depict it without edges crossing, but I don't care about doing that. I just want the points on the plane an appropriate distance from each other.
Additional information about the graph in case it helps:
1) Each node represents a set of points. 2) The edge weights are derived by optimally overlaying the point sets from each pair of nodes and then taking the RMSD of the resulting point sets. 3) The sets of points represented by any two nodes can be paired with each other. That is, we can think of each node as a set of 8 points numbered 1-8. This numbering is static. When I overlay node A and node B, the points are numbered identically to when I overlay A and C and B and C.
My thoughts: Because RMSD is a metric on R^3 (At least I believe so. This paper claims to prove it http://onlinelibrary.wiley.com/doi/10.1107/S0108767397010325/abstract), it should be possible for me to do this in R^3 at the very least.
As my real goal here is to turn this set of points into a nice figure, a three dimensional depiction would actually suffice, as I could depict the 3D figure in 2D. I also recognize that numerical instability in the particular optimal overlay algorithm I'm using will cause issues, but I'm interested in the answer for an ideal case.

How can I pick a set of vertices to subtract from a polygon such that the distortion is minimum?

I'm working with a really slow renderer, and I need to approximate polygons so that they look almost the same when confined to a screen area containing very few pixels. That is, I'd need an algorithm to go through a polygon and subtract/move a bunch of vertices until the end polygon has a good combination of shape preservation and economy of vertice usage.
I don't know if there's a formal name for these kind of problems, but if anyone knows what it is it would help me get started with my research.
My untested plan is to remove the vertices that change the polygon area the least, and protect the vertices that touch the bounding box from removal, until the difference in area from the original polygon to the proposed approximate one exceeds a tolerance I specify.
This would all be done only once, not in real time.
Any other ideas?
Thanks!
You're thinking about the problem in a slightly off way. If your goal is to reduce the number of vertices with a minimum of distortion, you should be defining your distortion in terms of those same vertices, which define the shape. There's a very simple solution here, which I believe would solve your problem:
Calculate distance between adjacent vertices
Choose a tolerance between vertices, below which the vertices are resolved into a single vertex
Replace all pairs of vertices with distances lower than your cutoff with a single vertex halfway between the two.
Repeat until no vertices are removed.
Since your area is ultimately decided by the vertex placement, this method preserves shape and minimizes shape distortion. The one drawback is that distance between vertices might be slightly less intuitive than polygon area, but the two are proportional. If you really wish, you could run through the change in area that would result from vertex removal, but that's a lot more work for questionable benefit imo.
As mentioned by Angus, if you want a direct solution for the change in area, it's not actually super difficult. Was originally going to leave this as an exercise to the reader, but it's totally possible to solve this exactly, though you need to include vertices on either side.
Assume you're looking at a window of vertices [A, B, C, D] that are connected in that order. In this example we're determining the "cost" of combining B and C.
Calculate the angle offset from collinearity from A toward C. Basically you just want to see how far from collinear the two points are. This is |sin(|arctan(B - A)| - |arctan(C - A)|)| Where pipes are absolute value, and differences are the sensical notion of difference.
Calculate the total distance over which the angle change will effectively be applied, this is just the euclidean distance from A to B times the euclidean distance from B to C.
Multiply the terms from 2 and 3 to get your first term
To get your second term, repeat steps 2 - 4 replacing A with D, B with C, and C with B (just going in the opposite direction)
Calculate the geometric mean of the two terms obtained.
The number that results in step 6 presents the full-picture minus a couple constants.
I tried my own plan first: Protect the vertices touching the bounding box, then remove the rest in the order that changes the resultant area the least, until you can't find a vertice to remove that keeps the new polygon area within X% of the original one. This is the result with X = 5%:
When the user zooms out really far these shapes fit the bill well enough for me. I haven't tried any of the other suggestions. The savings are quite astonishing, sometimes from 80-100 vertices down to 4 or 5.

Algorithm for the decomposition of polygons

Does anyone know a relatively fast algorithm for decomposing a set of polygons into their distinct overlapping and non-overlapping regions, i.e. Given a set of n polygons, find all the distinct regions among them?
For instance, the input would be 4 polygons representing circles as shown below
and the output will be all polygons representing the distinct regions shown in the different colours.
I can write my own implementation using polygon operations but the algorithm will probably be slow and time consuming. I'm wondering if there's any optimised algorithm out there for this sort of problem.
Your problem in called the map overlay problem. It can be solved in O(n*log(n)+k*log(k)) time, where n is the number of segments and k is the number of segment intersections.
First you need to represent your polygons as a doubly connected edge list, different faces corresponding to the interiors of different polygons.
Then use the Bentley–Ottmann algorithm to find all segment intersections and rebuild the edge list. See: Computing the Overlay of Two Subdivisions or Subdivision representation and map overlay.
Finally, walk around each cycle in the edge list and collect faces of that cycle's half-edges. Every set of the faces will represent a distinct overlapping region.
See also: Shapefile Overlay Using a Doubly-Connected Edge List.
I don't think it is SO difficult.
I have answered the similar question on the friendly site and it was checked by a smaller community:
https://cs.stackexchange.com/questions/20039/detect-closed-shapes-formed-by-points/20247#20247
Let's look for a more common question - let's take curves instead of polygons. And let's allow them to go out of the picture border, but we'll count only for simple polygons that wholly belong to the picture.
find all intersections by checking all pairs of segments, belonging to different curves. Of course, filter them before real check for intersection.
Number all curves 1..n. Set some order of segments in them.
For every point create a sequence of intersections SOI, so: if it starts from the border end, SOI[1] is null. If not, SOI[1]= (number of the first curve it is intersecting with, the sign of the left movement on the intersecting curve). Go on, writing down into SOI every intersection - number of curve if there is some, or 0 if it is the intersection with the border.
Obviously, you are looking only for simple bordered areas, that have no curves inside.
Pieces of curves between two adjacent non-null intersection points we'll call segments.
Having SOI for each curve:
for segment of the curve 1, starting from the first point of the segment, make 2 attempts to draw a polygon of segments. It is 2 because you can go to 2 sides along the first intersecting curve.
For the right attempt, make only left turns, for the left attempt, make only the right turns.
If you arrive at point with no segment in the correct direction, the attempt fails. If you return to the curve 1, it success. You have a closed area.
Remember all successful attempts
Repeat this for all segments of curve 1
Repeat this for all other curves, checking all found areas against the already found ones. Two same adjacent segments is enough to consider areas equal.
How to find the orientation of the intersection.
When segment p(p1,p2) crosses segment q(q1,q2), we can count the vector multiplication of vectors pXq. We are interested in only sign of its Z coordinate - that is out of our plane. If it is +, q crosses p from left to right. If it is -, the q crosses p from right to left.
The Z coordinate of the vector multiplication is counted here as a determinant of matrix:
0 0 1
p2x-p1x p2y-p1y 0
q2x-q1x q2y-q1y 0
(of course, it could be written more simply, but it is a good memorization trick)
Of course, if you'll change all rights for lefts, nothing really changes in the algorithm as a whole.

Resources