Maze algorithm that actually works - algorithm

I've been working on trying to solve mazes and output the path from start to the end. No matter what I do though, it never really works 100%. It manages to backtrack trough the whole maze like it should and find the end... but actually outputting ONLY the path that it should take won't work. It works on some of the generated mazes, but not generally. It also includes some of the dead-ends.
The problem is that i've probably tried 10 different DFS algorithms online, but none of them works. It's very confusing that so many different sites seem to have algorithms that doesn't work, i've implemented them practically literally.
Would be very kind if someone could give an actual working pseudocode of how to write a simple maze solver using stack that shows the relevant path to take. After 20-25 hours of experimenting I don't think I will get anywhere anymore.

not exactly pseudocode, but it should work
define node: {int id}
define edge: {node a , b ; int weight (default=1)}
define listNeighbours:
input: node n
output: list of neighbours
define dfs:
input: list nodes, list edges, node start, node end
output: list path
bool visited[length(nodes)]
fill(visited , false)
list stack
add(stack , start)
visited[start.id] = true
while ! isEmpty(stack)
node c = first(stack)
if c.id == end.id
return stack
list neighbours = listNeighbours(c)
bool allVisited = true
node next
for node n in neighbours
if visited[n.id]
continue
else
allVisited = false
next = n
if allVisited
pop(stack)
else
push(stack , next)
return null
NOTE: ids of nodes are always <= the total number of nodes in the graph and unique in the graph

Related

Dijkstra's algorithm: is my implementation flawed?

In order to train myself both in Python and graph theory, I tried to implement the Dijkstra algo using Python 3, and submitted it against several online judges, to see if it was correct.
It works well in many cases, but not always.
For example, I am stuck with this one: the test case works fine and I also have tried custom test cases of my own, but when I submit the following solution, the judge keeps telling me "wrong answer", and the expected result is very different from my output, indeed.
Notice that the judge tests it against quite a complex graph (10000 nodes with 100000 edges), while all the cases I tried before never exceeded 20 nodes and around 20-40 edges.
Here is my code.
Given al an adjacency list in the following form:
al[n] = [(a1, w1), (a2, w2), ...]
where
n is the node id;
a1, a2, etc. are its adjacent nodes and w1, w2, etc. the respective weights for the given edge;
and supposing that maximum distance never exceeds 1 billion, I implemented Dijkstra's algorithm this way:
import queue
distance = [1000000000] * (N+1) # this is the array where I store the shortest path between 1 and each other node
distance[1] = 0 # starting from node 1 with distance 0
pq = queue.PriorityQueue()
pq.put((0, 1)) # same as above
visited = [False] * (N+1)
while not pq.empty():
n = pq.get()[1]
if visited[n]:
continue
visited[n] = True
for edge in al[n]:
if distance[edge[0]] > distance[n] + edge[1]:
distance[edge[0]] = distance[n] + edge[1]
pq.put((distance[edge[0]], edge[0]))
Could you please help me understand wether my implementation is flawed, or if I simply ran into some bugged online judge?
Thank you very much.
UPDATE
As requested, I'm providing the snippet I use to populate the adjacency list al for the linked problem.
N,M = input().split()
N,M = int(N), int(M)
al = [[] for n in range(N+1)]
for m in range(M):
try:
a,b,w = input().split()
a,b,w = int(a), int(b), int(w)
al[a].append((b, w))
al[b].append((a, w))
except:
pass
(Please don't mind the ugly "except: pass", I was using it just for debugging purposes... :P)
Primary problem in interpreting the question:
According to your parsing code, you are treating the input data as an undirected graph, i.e. each edge from A to B also is an edge from B to A.
Is seems like this premise is not valid and it should instead be a directed graph, i.e. you have to remove this line:
al[b].append((a, w)) # no back reference!
Previous problem, now already fixed in the code:
Currently, you are using the never-changing weight of the edges in your queue:
pq.put((edge[1], edge[0]))
This way, the nodes always end up at the same position in the queue, no matter at what stage of the algorithm and how far the path to reach that node actually is.
Instead, you should use the new distance to the target node edge[0], i.e. distance[edge[0]] as the priority in the queue:
pq.put((distance[edge[0]], edge[0]))

what is the best algorithm to traverse a graph with negative nodes and looping nodes

I have a really difficult problem to solve and Im just wondering what what algorithm can be used to find the quickest route. The undirected graph consist of positive and negative adjustments, these adjustments effect a bot or thing which navigate the maze. The problem I have is mazes which contain loops that can be + or -. An example might help:-
node A gives 10 points to the object
node B takes 15 from the object
node C gives 20 points to the object
route=""
the starting node is A, and the ending node is C
given the graph structure as:-
a(+10)-----b(-15)-----c+20
node() means the node loops to itself - and + are the adjustments
nodes with no loops are c+20, so node c has a positive adjustment of 20 but has no loops
if the bot or object has 10 points in its resource then the best path would be :-
a > b > c the object would have 25 points when it arrives at c
route="a,b,c"
this is quite easy to implement, the next challenge is knowing how to backtrack to a good node, lets assume that at each node you can find out any of its neighbour's nodes and their adjustment level. here is the next example:-
if the bot started with only 5 points then the best path would be
a > a > b > c the bot would have 25 points when arriving at c
route="a,a,b,c"
this was a very simple graph, but when you have lots of more nodes it becomes very difficult for the bot to know whether to loop at a good node or go from one good node to another, while keeping track of a possible route.
such a route would be a backtrack queue.
A harder example would result in lots of going back and forth
bot has 10 points
a(+10)-----b(-5)-----c-30
a > b > a > b > a > b > a > b > a > b > c having 5 pts left.
another way the bot could do it is:-
a > a > a > b > c
this is a more efficient way, but how the heck you can program this is partly my question.
does anyone know of a good algorithm to solve this, ive already looked into Bellman-fords and Dijkstra but these only give a simple path not a looping one.
could it be recursive in some way or some form of heuristics?
referring to your analogy:-
I think I get what you mean, a bit of pseudo would be clearer, so far route()
q.add(v)
best=v
hash visited(v,true)
while(q is not empty)
q.remove(v)
for each u of v in G
if u not visited before
visited(u,true)
best=u=>v.dist
else
best=v=>u.dist
This is a straightforward dynamic programming problem.
Suppose that for a given length of path, for each node, you want to know the best cost ending at that node, and where that route came from. (The data for that length can be stored in a hash, the route in a linked list.)
Suppose we have this data for n steps. Then for the n+1st we start with a clean slate, and then take each answer for the n'th, move it one node forward, and if we land on a node we don't have data for, or else that we're better than the best found, then we update the data for that node with our improved score, and add the route (just this node linking back to the previous linked list).
Once we have this for the number of steps you want, find the node with the best existing route, and then you have your score and your route as a linked list.
========
Here is actual code implementing the algorithm:
class Graph:
def __init__(self, nodes=[]):
self.nodes = {}
for node in nodes:
self.insert(node)
def insert(self, node):
self.nodes[ node.name ] = node
def connect(self, name1, name2):
node1 = self.nodes[ name1 ]
node2 = self.nodes[ name2 ]
node1.neighbors.add(node2)
node2.neighbors.add(node1)
def node(self, name):
return self.nodes[ name ]
class GraphNode:
def __init__(self, name, score, neighbors=[]):
self.name = name
self.score = score
self.neighbors = set(neighbors)
def __repr__(self):
return self.name
def find_path (start_node, start_score, end_node):
prev_solution = {start_node: [start_score + start_node.score, None]}
room_to_grow = True
while end_node not in prev_solution:
if not room_to_grow:
# No point looping endlessly...
return None
room_to_grow = False
solution = {}
for node, info in prev_solution.iteritems():
score, prev_path = info
for neighbor in node.neighbors:
new_score = score + neighbor.score
if neighbor not in prev_solution:
room_to_grow = True
if 0 < new_score and (neighbor not in solution or solution[neighbor][0] < new_score):
solution[neighbor] = [new_score, [node, prev_path]]
prev_solution = solution
path = prev_solution[end_node][1]
answer = [end_node]
while path is not None:
answer.append(path[0])
path = path[1]
answer.reverse()
return answer
And here is a sample of how to use it:
graph = Graph([GraphNode('A', 10), GraphNode('B', -5), GraphNode('C', -30)])
graph.connect('A', 'A')
graph.connect('A', 'B')
graph.connect('B', 'B')
graph.connect('B', 'B')
graph.connect('B', 'C')
graph.connect('C', 'C')
print find_path(graph.node('A'), 10, graph.node('C'))
Note that I explicitly connected each node to itself. Depending on your problem you might want to make that automatic.
(Note, there is one possible infinite loop left. Suppose that the starting node has a score of 0 and there is no way off of it. In that case we'll loop forever. It would take work to add a check for this case.)
I'm a little confused by your description, it seems like you are just looking for shortest path algorithms. In which case google is your friend.
In the example you've given you have -ve adjustments which should really be +ve costs in the usual parlance of graph traversal. I.e. you want to find a path with the lowest cost so you want more +ve adjustments.
If your graph has loops that are beneficial to traverse (i.e. decrease cost or increase points through adjustments) then the best path is undefined because going through the loop one more time will improve your score.
Here's some psuedocode
steps = []
steps[0] = [None*graph.#nodes]
step = 1
while True:
steps[step] = [None*graph.#nodes]
for node in graph:
for node2 in graph:
steps[step][node2.index] = max(steps[step-1][node.index]+node2.cost, steps[step][node2.index])
if steps[step][lastnode] >= 0:
break;

Finding the longest road in a Settlers of Catan game algorithmically

I'm writing a Settlers of Catan clone for a class. One of the extra credit features is automatically determining which player has the longest road. I've thought about it, and it seems like some slight variation on depth-first search could work, but I'm having trouble figuring out what to do with cycle detection, how to handle the joining of a player's two initial road networks, and a few other minutiae. How could I do this algorithmically?
For those unfamiliar with the game, I'll try to describe the problem concisely and abstractly: I need to find the longest possible path in an undirected cyclic graph.
This should be a rather easy algorithm to implement.
To begin with, separate out the roads into distinct sets, where all the road segments in each set are somehow connected. There's various methods on doing this, but here's one:
Pick a random road segment, add it to a set, and mark it
Branch out from this segment, ie. follow connected segments in both directions that aren't marked (if they're marked, we've already been here)
If found road segment is not already in the set, add it, and mark it
Keep going from new segments until you cannot find any more unmarked segments that are connected to those currently in the set
If there's unmarked segments left, they're part of a new set, pick a random one and start back at 1 with another set
Note: As per the official Catan Rules, a road can be broken if another play builds a settlement on a joint between two segments. You need to detect this and not branch past the settlement.
Note, in the above, and following, steps, only consider the current players segments. You can ignore those other segments as though they weren't even on the map.
This gives you one or more sets, each containing one or more road segments.
Ok, for each set, do the following:
Pick a random road segment in the set that has only one connected road segment out from it (ie. you pick an endpoint)
If you can't do that, then the whole set is looping (one or more), so pick a random segment in this case
Now, from the segment you picked, do a recursive branching out depth-first search, keeping track of the length of the current road you've found so far. Always mark road segments as well, and don't branch into segments already marked. This will allow the algorithm to stop when it "eats its own tail".
Whenever you need to backtrack, because there are no more branches, take a note of the current length, and if it is longer than the "previous maximum", store the new length as the maximum.
Do this for all the sets, and you should have your longest road.
A simple polynomial-time depth-first search is unlikely to work, since the problem is NP-hard. You will need something that takes exponential time to get an optimal solution. Since the problem is so small, that should be no problem in practice, though.
Possibly the simplest solution would be dynamic programming: keep a table T[v, l] that stores for each node v and each length l the set of paths that have length l and end in v. Clearly T[v, 1] = {[v]} and you can fill out T[v, l] for l > 1 by collecting all paths from T[w, l-1] where w is a neighbor of v that do not already contain v, and then attaching v. This is similar to Justin L.'s solution, but avoids some duplicate work.
I would suggest a breadth-first search.
For each player:
Set a default known maximum of 0
Pick a starting node. Skip if it has zero or more than one connected neighbors and find all of the player's paths starting from it in a breadth-first manner. The catch: Once a node has been traversed to, it is "deactivated" for the all searches left in that turn. That is, it may no longer be traversed.
How can this be implemented? Here's one possible breadth-first algorithm that can be used:
If there are no paths from this initial node, or more than one path, mark it deactivated and skip it.
Keep a queue of paths.
Add a path containing only the initial dead-end node to the queue. Deactivate this node.
Pop the first path out of the queue and "explode" it -- that is, find all valid paths that are the the path + 1 more step in a valid direction. By "valid", the next node must be connected to the last one by a road, and it also must be activated.
Deactivate all nodes stepped to during the last step.
If there are no valid "explosions" of the previous path, then compare that length of that path to the known maximum. If greater than it, it is the new maximum.
Add all exploded paths, if any, back into the queue.
Repeat 4-7 until the queue is empty.
After you do this once, move onto the next activated node and start the process all over again. Stop when all nodes are deactivated.
The maximum you have now is your longest road length, for the given player.
Note that this is slightly inefficient, but if performance doesn't matter, then this would work :)
IMPORTANT NOTE, thanks to Cameron MacFarland
Assume all nodes with cities that do not belong to the current player automatically deactivated always.
Ruby pseudocode (assumes an get_neighbors function for each node)
def explode n
exploded = n.get_neighbors # get all neighbors
exploded.select! { |i| i.activated? } # we only want activated ones
exploded.select! { |i| i.is_connected_to(n) } # we only want road-connected ones
return exploded
end
max = 0
nodes.each do |n| # for each node n
next if not n.activated? # skip if node is deactivated
if explode(n).empty? or explode(n).size > 1
n.deactivate # deactivate and skip if
next # there are no neighbors or
end # more than one
paths = [ [n] ] # start queue
until paths.empty? # do this until the queue is empty
curr_path = paths.pop # pop a path from the queue
exploded = explode(curr_path) # get all of the exploded valid paths
exploded.each { |i| i.deactivate } # deactivate all of the exploded valid points
if exploded.empty? # if no exploded paths
max = [max,curr_path.size].max # this is the end of the road, so compare its length to
# the max
else
exploded.each { |i| paths.unshift(curr_path.clone + i) }
# otherwise, add the new paths to the queue
end
end
end
puts max
Little late, but still relevant. I implemented it in java, see here. Algorithm goes as follows:
Derive a graph from the main graph using all edges from a player, adding the vertices of the main graph connected to the edges
Make a list of ends (vertices where degree==1) and splits (vertices where degree==3)
Add a route to check (possibleRoute) for every end, and for every two edges + one vertex combination found (3, since degree is 3) at every split
Walk every route. Three things can be encountered: an end, intermediate or a split.
End: Terminate possibleRoute, add it to the found list
Intermediate: check if connection to other edge is possible. If so, add the edge. If not, terminate the route and add it to the found routes list
Split: For both edges, do as intermediate. When both routes connect, copy the second route and add it to the list, too.
Checking for a connection is done using two methods: see if the new edge already exists in the possibleRoute (no connection), and asking the new edge if it can connect by giving the vertex and the originating vertex as parameters. A road can connect to a road, but only if the vertex does not contain a city/settlement from another player. A road can connect to a ship, but only if the vertex holds a city or road from the player whom route is being checked.
Loops may exist. Every encountered edge is added to a list if not already in there. When all possibleRoutes are checked, but the amount of edges in this list is less then the total amount of edges of the player, one or more loops exist. When this is the case, any nonchecked edge is made a new possibleRoute from, and is being checked again for the route.
Length of longest route is determined by simply iterating over all routes. The first route encountered having equal or more then 5 edges is returned.
This implementation supports most variants of Catan. The edges can decide for themselves if they want to connect to another, see
SidePiece.canConnect(point, to.getSidePiece());
A road, ship, bridge have SidePiece interface implemented. A road has as implementation
public boolean canConnect(GraphPoint graphPoint, SidePiece otherPiece)
{
return (player.equals(graphPoint.getPlayer()) || graphPoint.getPlayer() == null)
&& otherPiece.connectsWithRoad();
}
What I'd do:
Pick a vertex with a road
Pick at most two roads to follow
Follow the the road; backtrack here if it branches, and choose that which was longer
If current vertex is in the visited list, backtrack to 3
Add the vertex to the visited list, recurse from 3
If there is no more road at 3, return the length
When you've followed at most 2 roads, add them up, note the length
If there were 3 roads at the initial vertex, backtrack to 2.
Sorry for the prolog-ish terminology :)
Here is my version if anyone needs it. Written in Typescript.
longestRoadLengthForPlayer(player: PlayerColors): number {
let longestRoad = 0
let mainLoop = (currentLongestRoad: number, tileEdge: TileEdge, passedCorners: TileCorner[], passedEdges: TileEdge[]) => {
if (!(passedEdges.indexOf(tileEdge) > -1) && tileEdge.owner == player) {
passedEdges.push(tileEdge)
currentLongestRoad++
for (let endPoint of tileEdge.hexEdge.endPoints()) {
let corner = this.getTileCorner(endPoint)!
if ((corner.owner == player || corner.owner == PlayerColors.None) && !(passedCorners.indexOf(corner) > -1)) {
passedCorners.push(corner)
for (let hexEdge of corner.hexCorner.touchingEdges()) {
let edge = this.getTileEdge(hexEdge)
if (edge != undefined && edge != tileEdge) {
mainLoop(currentLongestRoad, edge, passedCorners, passedEdges)
}
}
} else {
checkIfLongestRoad(currentLongestRoad)
}
}
} else {
checkIfLongestRoad(currentLongestRoad)
}
}
for (let tileEdge of this.tileEdges) {
mainLoop(0, tileEdge, [], [])
}
function checkIfLongestRoad(roadLength: number) {
if (roadLength > longestRoad) {
longestRoad = roadLength
}
}
return longestRoad
}
You could use Dijkstra and just change the conditions to choose the longest path instead.
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
It's efficient, but won't always find the path that in reality is shortest/longest although it will work most of the times.

Algorithm for Finding Redundant Edges in a Graph or Tree

Is there an established algorithm for finding redundant edges in a graph?
For example, I'd like to find that a->d and a->e are redundant, and then get rid of them, like this:
=>
Edit: Strilanc was nice enough to read my mind for me. "Redundant" was too strong of a word, since in the example above, neither a->b or a->c is considered redundant, but a->d is.
You want to compute the smallest graph which maintains vertex reachability.
This is called the transitive reduction of a graph. The wikipedia article should get you started down the right road.
Since the Wikipedia article mentioned by #Craig gives only a hit for an implementation, I post my implementation with Java 8 streams:
Map<String, Set<String>> reduction = usages.entrySet().stream()
.collect(toMap(
Entry::getKey,
(Entry<String, Set<String>> entry) -> {
String start = entry.getKey();
Set<String> neighbours = entry.getValue();
Set<String> visited = new HashSet<>();
Queue<String> queue = new LinkedList<>(neighbours);
while (!queue.isEmpty()) {
String node = queue.remove();
usages.getOrDefault(node, emptySet()).forEach(next -> {
if (next.equals(start)) {
throw new RuntimeException("Cycle detected!");
}
if (visited.add(next)) {
queue.add(next);
}
});
}
return neighbours.stream()
.filter(s -> !visited.contains(s))
.collect(toSet());
}
));
Several ways to attack this, but first you're going to need to define the problem a little more precisely. First, the graph you have here is acyclic and directed: will this always be true?
Next, you need to define what you mean by a "redundant edge". In this case, you start with a graph which has two paths a->c: one via b and one direct one. From this I infer that by "redundant" you mean something like this. Let G=< V, E > be a graph, with V the set of vertices and E ⊆ V×V the set of edges. It kinda looks like you're defining all edges from vi to vj shorter than the longest edge as "redundant". So the easiest thing would be to use depth first search, enumerate the paths, and when you find a new one that's longer, save it as the best candidate.
I can't imagine what you want it for, though. Can you tell?
I think the easiest way to do that, actually imagine how it would look in the real work, imagine if you have joints, Like
(A->B)(B->C)(A->C), imagine if distance between near graphs is equals 1, so
(A->B) = 1, (B->C) = 1, (A->C) = 2.
So you can remove joint (A->C).
In other words, minimize.
This is just my idea how I would think about it at start. There are various articles and sources on the net, you can look at them and go deeper.
Resources, that Will help you:
Algorithm for Removing Redundant Edges in the Dual Graph of a Non-Binary CSP
Graph Data Structure and Basic Graph Algorithms
Google Books, On finding minimal two connected Subgraphs
Graph Reduction
Redundant trees for preplanned recovery in arbitraryvertex-redundant or edge-redundant graphs
I had a similar problem and ended up solving it this way:
My data structure is made of dependends dictionary, from a node id to a list of nodes that depend on it (ie. its followers in the DAG). Note it works only for a DAG - that is directed, acyclic graph.
I haven't calculated the exact complexity of it, but it swallowed my graph of several thousands in a split second.
_transitive_closure_cache = {}
def transitive_closure(self, node_id):
"""returns a set of all the nodes (ids) reachable from given node(_id)"""
global _transitive_closure_cache
if node_id in _transitive_closure_cache:
return _transitive_closure_cache[node_id]
c = set(d.id for d in dependents[node_id])
for d in dependents[node_id]:
c.update(transitive_closure(d.id)) # for the non-pythonists - update is update self to Union result
_transitive_closure_cache[node_id] = c
return c
def can_reduce(self, source_id, dest_id):
"""returns True if the edge (source_id, dest_id) is redundant (can reach from source_id to dest_id without it)"""
for d in dependents[source_id]:
if d.id == dest_id:
continue
if dest_id in transitive_closure(d.id):
return True # the dest node can be reached in a less direct path, then this link is redundant
return False
# Reduce redundant edges:
for node in nodes:
dependents[node.id] = [d for d in dependents[node.id] if not can_reduce(node.id, d.id)]

Finding all cycles in a directed graph

How can I find (iterate over) ALL the cycles in a directed graph from/to a given node?
For example, I want something like this:
A->B->A
A->B->C->A
but not:
B->C->B
I found this page in my search and since cycles are not same as strongly connected components, I kept on searching and finally, I found an efficient algorithm which lists all (elementary) cycles of a directed graph. It is from Donald B. Johnson and the paper can be found in the following link:
http://www.cs.tufts.edu/comp/150GA/homeworks/hw1/Johnson%2075.PDF
A java implementation can be found in:
http://normalisiert.de/code/java/elementaryCycles.zip
A Mathematica demonstration of Johnson's algorithm can be found here, implementation can be downloaded from the right ("Download author code").
Note: Actually, there are many algorithms for this problem. Some of them are listed in this article:
http://dx.doi.org/10.1137/0205007
According to the article, Johnson's algorithm is the fastest one.
Depth first search with backtracking should work here.
Keep an array of boolean values to keep track of whether you visited a node before. If you run out of new nodes to go to (without hitting a node you have already been), then just backtrack and try a different branch.
The DFS is easy to implement if you have an adjacency list to represent the graph. For example adj[A] = {B,C} indicates that B and C are the children of A.
For example, pseudo-code below. "start" is the node you start from.
dfs(adj,node,visited):
if (visited[node]):
if (node == start):
"found a path"
return;
visited[node]=YES;
for child in adj[node]:
dfs(adj,child,visited)
visited[node]=NO;
Call the above function with the start node:
visited = {}
dfs(adj,start,visited)
The simplest choice I found to solve this problem was using the python lib called networkx.
It implements the Johnson's algorithm mentioned in the best answer of this question but it makes quite simple to execute.
In short you need the following:
import networkx as nx
import matplotlib.pyplot as plt
# Create Directed Graph
G=nx.DiGraph()
# Add a list of nodes:
G.add_nodes_from(["a","b","c","d","e"])
# Add a list of edges:
G.add_edges_from([("a","b"),("b","c"), ("c","a"), ("b","d"), ("d","e"), ("e","a")])
#Return a list of cycles described as a list o nodes
list(nx.simple_cycles(G))
Answer: [['a', 'b', 'd', 'e'], ['a', 'b', 'c']]
First of all - you do not really want to try find literally all cycles because if there is 1 then there is an infinite number of those. For example A-B-A, A-B-A-B-A etc. Or it may be possible to join together 2 cycles into an 8-like cycle etc., etc... The meaningful approach is to look for all so called simple cycles - those that do not cross themselves except in the start/end point. Then if you wish you can generate combinations of simple cycles.
One of the baseline algorithms for finding all simple cycles in a directed graph is this: Do a depth-first traversal of all simple paths (those that do not cross themselves) in the graph. Every time when the current node has a successor on the stack a simple cycle is discovered. It consists of the elements on the stack starting with the identified successor and ending with the top of the stack. Depth first traversal of all simple paths is similar to depth first search but you do not mark/record visited nodes other than those currently on the stack as stop points.
The brute force algorithm above is terribly inefficient and in addition to that generates multiple copies of the cycles. It is however the starting point of multiple practical algorithms which apply various enhancements in order to improve performance and avoid cycle duplication. I was surprised to find out some time ago that these algorithms are not readily available in textbooks and on the web. So I did some research and implemented 4 such algorithms and 1 algorithm for cycles in undirected graphs in an open source Java library here : http://code.google.com/p/niographs/ .
BTW, since I mentioned undirected graphs : The algorithm for those is different. Build a spanning tree and then every edge which is not part of the tree forms a simple cycle together with some edges in the tree. The cycles found this way form a so called cycle base. All simple cycles can then be found by combining 2 or more distinct base cycles. For more details see e.g. this : http://dspace.mit.edu/bitstream/handle/1721.1/68106/FTL_R_1982_07.pdf .
The DFS-based variants with back edges will find cycles indeed, but in many cases it will NOT be minimal cycles. In general DFS gives you the flag that there is a cycle but it is not good enough to actually find cycles. For example, imagine 5 different cycles sharing two edges. There is no simple way to identify cycles using just DFS (including backtracking variants).
Johnson's algorithm is indeed gives all unique simple cycles and has good time and space complexity.
But if you want to just find MINIMAL cycles (meaning that there may be more then one cycle going through any vertex and we are interested in finding minimal ones) AND your graph is not very large, you can try to use the simple method below.
It is VERY simple but rather slow compared to Johnson's.
So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix.
This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it.
Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't.
First of all let's find the answer to the question if there is a cycle.
The algorithm is dead-simple. Below is snippet in Scala.
val NO_EDGE = Integer.MAX_VALUE / 2
def shortestPath(weights: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
weights(i)(j) = throughK
}
}
}
Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise.
After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).
To reconstruct the cycle itself we need to use slightly modified version of algorithm with parent tracking.
def shortestPath(weights: Array[Array[Int]], parents: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
parents(i)(j) = k
weights(i)(j) = throughK
}
}
}
Parents matrix initially should contain source vertex index in an edge cell if there is an edge between the vertices and -1 otherwise.
After function returns, for each edge you will have reference to the parent node in the shortest path tree.
And then it's easy to recover actual cycles.
All in all we have the following program to find all minimal cycles
val NO_EDGE = Integer.MAX_VALUE / 2;
def shortestPathWithParentTracking(
weights: Array[Array[Int]],
parents: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
parents(i)(j) = parents(i)(k)
weights(i)(j) = throughK
}
}
}
def recoverCycles(
cycleNodes: Seq[Int],
parents: Array[Array[Int]]): Set[Seq[Int]] = {
val res = new mutable.HashSet[Seq[Int]]()
for (node <- cycleNodes) {
var cycle = new mutable.ArrayBuffer[Int]()
cycle += node
var other = parents(node)(node)
do {
cycle += other
other = parents(other)(node)
} while(other != node)
res += cycle.sorted
}
res.toSet
}
and a small main method just to test the result
def main(args: Array[String]): Unit = {
val n = 3
val weights = Array(Array(NO_EDGE, 1, NO_EDGE), Array(NO_EDGE, NO_EDGE, 1), Array(1, NO_EDGE, NO_EDGE))
val parents = Array(Array(-1, 1, -1), Array(-1, -1, 2), Array(0, -1, -1))
shortestPathWithParentTracking(weights, parents)
val cycleNodes = parents.indices.filter(i => parents(i)(i) < NO_EDGE)
val cycles: Set[Seq[Int]] = recoverCycles(cycleNodes, parents)
println("The following minimal cycle found:")
cycles.foreach(c => println(c.mkString))
println(s"Total: ${cycles.size} cycle found")
}
and the output is
The following minimal cycle found:
012
Total: 1 cycle found
To clarify:
Strongly Connected Components will find all subgraphs that have at least one cycle in them, not all possible cycles in the graph. e.g. if you take all strongly connected components and collapse/group/merge each one of them into one node (i.e. a node per component), you'll get a tree with no cycles (a DAG actually). Each component (which is basically a subgraph with at least one cycle in it) can contain many more possible cycles internally, so SCC will NOT find all possible cycles, it will find all possible groups that have at least one cycle, and if you group them, then the graph will not have cycles.
to find all simple cycles in a graph, as others mentioned, Johnson's algorithm is a candidate.
I was given this as an interview question once, I suspect this has happened to you and you are coming here for help. Break the problem into three questions and it becomes easier.
how do you determine the next valid
route
how do you determine if a point has
been used
how do you avoid crossing over the
same point again
Problem 1)
Use the iterator pattern to provide a way of iterating route results. A good place to put the logic to get the next route is probably the "moveNext" of your iterator. To find a valid route, it depends on your data structure. For me it was a sql table full of valid route possibilities so I had to build a query to get the valid destinations given a source.
Problem 2)
Push each node as you find them into a collection as you get them, this means that you can see if you are "doubling back" over a point very easily by interrogating the collection you are building on the fly.
Problem 3)
If at any point you see you are doubling back, you can pop things off the collection and "back up". Then from that point try to "move forward" again.
Hack: if you are using Sql Server 2008 there is are some new "hierarchy" things you can use to quickly solve this if you structure your data in a tree.
In the case of undirected graph, a paper recently published (Optimal listing of cycles and st-paths in undirected graphs) offers an asymptotically optimal solution. You can read it here http://arxiv.org/abs/1205.2766 or here http://dl.acm.org/citation.cfm?id=2627951
I know it doesn't answer your question, but since the title of your question doesn't mention direction, it might still be useful for Google search
Start at node X and check for all child nodes (parent and child nodes are equivalent if undirected). Mark those child nodes as being children of X. From any such child node A, mark it's children of being children of A, X', where X' is marked as being 2 steps away.). If you later hit X and mark it as being a child of X'', that means X is in a 3 node cycle. Backtracking to it's parent is easy (as-is, the algorithm has no support for this so you'd find whichever parent has X').
Note: If graph is undirected or has any bidirectional edges, this algorithm gets more complicated, assuming you don't want to traverse the same edge twice for a cycle.
If what you want is to find all elementary circuits in a graph you can use the EC algorithm, by JAMES C. TIERNAN, found on a paper since 1970.
The very original EC algorithm as I managed to implement it in php (hope there are no mistakes is shown below). It can find loops too if there are any. The circuits in this implementation (that tries to clone the original) are the non zero elements. Zero here stands for non-existence (null as we know it).
Apart from that below follows an other implementation that gives the algorithm more independece, this means the nodes can start from anywhere even from negative numbers, e.g -4,-3,-2,.. etc.
In both cases it is required that the nodes are sequential.
You might need to study the original paper, James C. Tiernan Elementary Circuit Algorithm
<?php
echo "<pre><br><br>";
$G = array(
1=>array(1,2,3),
2=>array(1,2,3),
3=>array(1,2,3)
);
define('N',key(array_slice($G, -1, 1, true)));
$P = array(1=>0,2=>0,3=>0,4=>0,5=>0);
$H = array(1=>$P, 2=>$P, 3=>$P, 4=>$P, 5=>$P );
$k = 1;
$P[$k] = key($G);
$Circ = array();
#[Path Extension]
EC2_Path_Extension:
foreach($G[$P[$k]] as $j => $child ){
if( $child>$P[1] and in_array($child, $P)===false and in_array($child, $H[$P[$k]])===false ){
$k++;
$P[$k] = $child;
goto EC2_Path_Extension;
} }
#[EC3 Circuit Confirmation]
if( in_array($P[1], $G[$P[$k]])===true ){//if PATH[1] is not child of PATH[current] then don't have a cycle
$Circ[] = $P;
}
#[EC4 Vertex Closure]
if($k===1){
goto EC5_Advance_Initial_Vertex;
}
//afou den ksana theoreitai einai asfales na svisoume
for( $m=1; $m<=N; $m++){//H[P[k], m] <- O, m = 1, 2, . . . , N
if( $H[$P[$k-1]][$m]===0 ){
$H[$P[$k-1]][$m]=$P[$k];
break(1);
}
}
for( $m=1; $m<=N; $m++ ){//H[P[k], m] <- O, m = 1, 2, . . . , N
$H[$P[$k]][$m]=0;
}
$P[$k]=0;
$k--;
goto EC2_Path_Extension;
#[EC5 Advance Initial Vertex]
EC5_Advance_Initial_Vertex:
if($P[1] === N){
goto EC6_Terminate;
}
$P[1]++;
$k=1;
$H=array(
1=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
2=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
3=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
4=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
5=>array(1=>0,2=>0,3=>0,4=>0,5=>0)
);
goto EC2_Path_Extension;
#[EC5 Advance Initial Vertex]
EC6_Terminate:
print_r($Circ);
?>
then this is the other implementation, more independent of the graph, without goto and without array values, instead it uses array keys, the path, the graph and circuits are stored as array keys (use array values if you like, just change the required lines). The example graph start from -4 to show its independence.
<?php
$G = array(
-4=>array(-4=>true,-3=>true,-2=>true),
-3=>array(-4=>true,-3=>true,-2=>true),
-2=>array(-4=>true,-3=>true,-2=>true)
);
$C = array();
EC($G,$C);
echo "<pre>";
print_r($C);
function EC($G, &$C){
$CNST_not_closed = false; // this flag indicates no closure
$CNST_closed = true; // this flag indicates closure
// define the state where there is no closures for some node
$tmp_first_node = key($G); // first node = first key
$tmp_last_node = $tmp_first_node-1+count($G); // last node = last key
$CNST_closure_reset = array();
for($k=$tmp_first_node; $k<=$tmp_last_node; $k++){
$CNST_closure_reset[$k] = $CNST_not_closed;
}
// define the state where there is no closure for all nodes
for($k=$tmp_first_node; $k<=$tmp_last_node; $k++){
$H[$k] = $CNST_closure_reset; // Key in the closure arrays represent nodes
}
unset($tmp_first_node);
unset($tmp_last_node);
# Start algorithm
foreach($G as $init_node => $children){#[Jump to initial node set]
#[Initial Node Set]
$P = array(); // declare at starup, remove the old $init_node from path on loop
$P[$init_node]=true; // the first key in P is always the new initial node
$k=$init_node; // update the current node
// On loop H[old_init_node] is not cleared cause is never checked again
do{#Path 1,3,7,4 jump here to extend father 7
do{#Path from 1,3,8,5 became 2,4,8,5,6 jump here to extend child 6
$new_expansion = false;
foreach( $G[$k] as $child => $foo ){#Consider each child of 7 or 6
if( $child>$init_node and isset($P[$child])===false and $H[$k][$child]===$CNST_not_closed ){
$P[$child]=true; // add this child to the path
$k = $child; // update the current node
$new_expansion=true;// set the flag for expanding the child of k
break(1); // we are done, one child at a time
} } }while(($new_expansion===true));// Do while a new child has been added to the path
# If the first node is child of the last we have a circuit
if( isset($G[$k][$init_node])===true ){
$C[] = $P; // Leaving this out of closure will catch loops to
}
# Closure
if($k>$init_node){ //if k>init_node then alwaya count(P)>1, so proceed to closure
$new_expansion=true; // $new_expansion is never true, set true to expand father of k
unset($P[$k]); // remove k from path
end($P); $k_father = key($P); // get father of k
$H[$k_father][$k]=$CNST_closed; // mark k as closed
$H[$k] = $CNST_closure_reset; // reset k closure
$k = $k_father; // update k
} } while($new_expansion===true);//if we don't wnter the if block m has the old k$k_father_old = $k;
// Advance Initial Vertex Context
}//foreach initial
}//function
?>
I have analized and documented the EC but unfortunately the documentation is in Greek.
There are two steps (algorithms) involved in finding all cycles in a DAG.
The first step is to use Tarjan's algorithm to find the set of strongly connected components.
Start from any arbitrary vertex.
DFS from that vertex. For each node x, keep two numbers, dfs_index[x] and dfs_lowval[x].
dfs_index[x] stores when that node is visited, while dfs_lowval[x] = min(dfs_low[k]) where
k is all the children of x that is not the directly parent of x in the dfs-spanning tree.
All nodes with the same dfs_lowval[x] are in the same strongly connected component.
The second step is to find cycles (paths) within the connected components. My suggestion is to use a modified version of Hierholzer's algorithm.
The idea is:
Choose any starting vertex v, and follow a trail of edges from that vertex until you return to v.
It is not possible to get stuck at any vertex other than v, because the even degree of all vertices ensures that, when the trail enters another vertex w there must be an unused edge leaving w. The tour formed in this way is a closed tour, but may not cover all the vertices and edges of the initial graph.
As long as there exists a vertex v that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from v, following unused edges until you return to v, and join the tour formed in this way to the previous tour.
Here is the link to a Java implementation with a test case:
http://stones333.blogspot.com/2013/12/find-cycles-in-directed-graph-dag.html
I stumbled over the following algorithm which seems to be more efficient than Johnson's algorithm (at least for larger graphs). I am however not sure about its performance compared to Tarjan's algorithm.
Additionally, I only checked it out for triangles so far. If interested, please see "Arboricity and Subgraph Listing Algorithms" by Norishige Chiba and Takao Nishizeki (http://dx.doi.org/10.1137/0214017)
DFS from the start node s, keep track of the DFS path during traversal, and record the path if you find an edge from node v in the path to s. (v,s) is a back-edge in the DFS tree and thus indicates a cycle containing s.
Regarding your question about the Permutation Cycle, read more here:
https://www.codechef.com/problems/PCYCLE
You can try this code (enter the size and the digits number):
# include<cstdio>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int num[1000];
int visited[1000]={0};
int vindex[2000];
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
int t_visited=0;
int cycles=0;
int start=0, index;
while(t_visited < n)
{
for(int i=1;i<=n;i++)
{
if(visited[i]==0)
{
vindex[start]=i;
visited[i]=1;
t_visited++;
index=start;
break;
}
}
while(true)
{
index++;
vindex[index]=num[vindex[index-1]];
if(vindex[index]==vindex[start])
break;
visited[vindex[index]]=1;
t_visited++;
}
vindex[++index]=0;
start=index+1;
cycles++;
}
printf("%d\n",cycles,vindex[0]);
for(int i=0;i<(n+2*cycles);i++)
{
if(vindex[i]==0)
printf("\n");
else
printf("%d ",vindex[i]);
}
}
DFS c++ version for the pseudo-code in second floor's answer:
void findCircleUnit(int start, int v, bool* visited, vector<int>& path) {
if(visited[v]) {
if(v == start) {
for(auto c : path)
cout << c << " ";
cout << endl;
return;
}
else
return;
}
visited[v] = true;
path.push_back(v);
for(auto i : G[v])
findCircleUnit(start, i, visited, path);
visited[v] = false;
path.pop_back();
}
http://www.me.utexas.edu/~bard/IP/Handouts/cycles.pdf
The CXXGraph library give a set of algorithms and functions to detect cycles.
For a full algorithm explanation visit the wiki.

Resources