I am running an executable in Condor that basically processes an input Image and saves a binary image in a given folder. I use this code in 213 images.
My condor configuration file contents are as following:
universe = vanilla
executable = /datasets/me/output_cpen_database/source_codes_techniques/test/vole
arguments = cmfd -I /datasets/me/cpen_database/scale1/$(Process)/$(Process).png -O /datasets/me/output_cpen_database/scale1/dct/$(Process)/ --numThreads 10 --chan GRAY --featvec DCT --blockSize 16 --minDistEuclidian 50 --kdsort --fastsats --minSameShift 1000 --markRegions --useOrig --writePost --writeMatrix
initialdir = /datasets/me/output_cpen_database/source_codes_techniques/test
requirements = (OpSysAndVer == "Ubuntu12")
request_cpus = 5
request_memory = 20000
output = logs/output-$(Process).log
error = logs/error-$(Process).log
log = logs/log-$(Process).log
Notification = Complete
Notify_User = mymail#gmail.com
Queue 214
Some images are processed OK, but in some cases I receive the following error in my mailbox:
Condor job 1273.47
/datasets/me/output_cpen_database/source_codes_techniques/test/vole cmfd -I /datasets/me/cpen_database/scale1/47/47.png -O /datasets/me/output_cpen_database/scale1/dct/47/ --numThreads 10 --chan GRAY --featvec DCT --blockSize 16 --minDistEuclidian 50 --kdsort --fastsats --minSameShift 1000 --markRegions --useOrig --writePost --writeMatrix
died on signal 9 (Killed)
I was thinking if this happens because of lack of memory, but this image's (named 47) size is not longer than 20MB (actually it has 16.7MB).
As I said before, the condor runs this executable ok for some other images .
Should I have to increase the request_memory in my configuration file? what is happening here?
Usually, a job dying on signal 9 means problems with some of the shared libraries required by your executable. What I would check is whether or not all jobs die on a particular host. If that's the case, you could run the code manually and see if you get a missing shared library error.
Related
I am using coarray to parallelize a fortran code. The code is working properly in my pc (ubuntu 18, OpenCoarrays 2.0.0). However when I run the code on the cluster (centos) it crashes with the following error:
=====================================================================================
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= EXIT CODE: 9
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
=====================================================================================
APPLICATION TERMINATED WITH THE EXIT STRING: Killed (signal 9)
Error: Command:
/APP/enhpc/mpi/mpich2-gcc-hd/bin/mpiexec -n 10 -machinefile machines ./IPS
failed to run
using top command during running the code I found out that memory increases when the code is running. The problem is coming from where I copy some data from another processor:
for example a(:)=b(:)[k]
Since the code is running on my pc properly what can be the reason for memory increase in cluster?
I have to mention that I am running the code with cores on a single node.
It increases continuously. It is a centos cluster. I do not know what kind of architecture it has. I am using OpenCoarrays v2.9.1 which is using coarray fortran (CAF) for compiling. Also GNU v 10.1. I wrote a simple code as follows:
program hello_image
integer::m,n,i
integer,allocatable:: A(:)[:],B(:)
m=1e3
n=1e6
allocate(A(n)[*],B(n))
A(:)=10
B(:)=20
write(*,*) j,this_image()
do j=1,m
Do i=1,n
B(i)=A(i)[3] ! this line means that the data is copied from processor 3 to other processors
enddo
write(*,*) j,this_image()
enddo
end program hello_image
When I am running this code in my pc the memory usage for all clusters are a constant value of 0.1% and they are not increasing. However, when I run the same code in the cluster the memory usage is continously increasing.
Output from My pc:
output from cluster:
Hello to the community:
I recently started to use ORCA software for some quantum calculation but I have been having a lot of problems to lunch a parallel calculation in the cluster of my University.
To install Orca I used the static version:
orca_4_2_1_linux_x86-64_openmpi314.tar.xz.
In a shared direction of the cluster (/data/shared/opt/ORCA/).
And putted in my ~/.bash_profile:
export PATH="/data/shared/opt/ORCA/orca_4_2_1_linux_x86-64_openmpi314:$PATH"
export LD_LIBRARY_PATH="/data/shared/opt/ORCA/orca_4_2_1_linux_x86-64_openmpi314:$LD_LIBRARY_PATH"
For the installation of the corresponding OpenMPI version (3.1.4)
tar -xvf openmpi-3.1.4.tar.gz
cd openmpi-3.1.4
./configure --prefix="/data/shared/opt/ORCA/openmpi314/"
make -j 10
make install
When I use the frontend server all is wonderful:
With a .sh like this:
#! /bin/bash
export PATH="/data/shared/opt/ORCA/openmpi314/bin:$PATH"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/data/shared/opt/ORCA/openmpi314/lib"
$(which orca) test.inp > test.out
and an input like this:
# Computation of myjob at b3lyp/6-31+G(d,p)
%pal nprocs 10 end
%maxcore 8192
! RKS B3LYP 6-31+G(d,p)
! TightSCF Grid5 NoFinalGrid
! Opt
! Freq
%cpcm
smd true
SMDsolvent "water"
end
* xyz 0 1
C 0 0 0
O 0 0 1.5
*
The problem appears when I use the nodes:
.inp file:
#! Computation at RKS B3LYP/6-31+G(d,p) for cis1_bh267_m_Cell_152
%pal nprocs 12 end
%maxcore 8192
! RKS B3LYP 6-31+G(d,p)
! TightSCF Grid5 NoFinalGrid
! Opt
! Freq
%cpcm
smd true
SMDsolvent "water"
end
* xyz 0 1
C -4.38728130 0.21799058 0.17853303
C -3.02072869 0.82609890 -0.29733316
F -2.96869122 2.10937041 0.07179384
F -3.01136328 0.87651596 -1.63230798
C -1.82118365 0.05327804 0.23420220
O -2.26240947 -0.92805650 1.01540713
C -0.53557484 0.33394113 -0.05236121
C 0.54692198 -0.46942807 0.50027196
O 0.31128292 -1.43114232 1.22440290
C 1.93990391 -0.12927675 0.16510948
C 2.87355011 -1.15536140 -0.00858832
C 4.18738231 -0.82592189 -0.32880964
C 4.53045856 0.52514329 -0.45102225
N 3.63662927 1.52101319 -0.26705841
C 2.36381718 1.20228695 0.03146190
F -4.51788749 0.24084604 1.49796862
F -4.53935644 -1.04617745 -0.19111502
F -5.43718443 0.87033190 -0.30564680
H -1.46980819 -1.48461498 1.39034280
H -0.26291843 1.15748249 -0.71875720
H 2.57132559 -2.20300864 0.10283592
H 4.93858460 -1.60267627 -0.48060140
H 5.55483009 0.83859415 -0.70271364
H 1.67507560 2.05019549 0.17738396
*
.sh file (Slurm job):
#!/bin/bash
#SBATCH -p deflt #which partition I want
#SBATCH -o cis1_bh267_m_Cell_152_myjob.out #path for the slurm output
#SBATCH -e cis1_bh267_m_Cell_152_myjob.err #path for the slurm error output
#SBATCH -c 12 #number of cpu(logical cores)/task (task is normally an MPI process, default is one and the option to change it is -n)
#SBATCH -t 2-00:00 #how many time I want the resources (this impacts the job priority as well)
#SBATCH --job-name=cis1_bh267_m_Cell_152 #(to recognize your jobs when checking them with "squeue -u USERID")
#SBATCH -N 1 #number of node, usually 1 when no parallelization over nodes
#SBATCH --nice=0 #lowering your priority if >0
#SBATCH --gpus=0 #number of gpu you want
# This block is echoing some SLURM variables
echo "Jobid = $SLURM_JOBID"
echo "Host = $SLURM_JOB_NODELIST"
echo "Jobname = $SLURM_JOB_NAME"
echo "Subcwd = $SLURM_SUBMIT_DIR"
echo "SLURM_CPUS_PER_TASK = $SLURM_CPUS_PER_TASK"
# This block is for the execution of the program
export PATH="/data/shared/opt/ORCA/openmpi314/bin:$PATH"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/data/shared/opt/ORCA/openmpi314/lib"
$(which orca) ${SLURM_JOB_NAME}.inp > ${SLURM_JOB_NAME}.log --use-hwthread-cpus
I used the --use-hwthread-cpus flag as a recommendation but the same problem appears with and without this flag.
All the error is:
There are not enough slots available in the system to satisfy the 12 slots that were requested by the application: /data/shared/opt/ORCA/orca_4_2_1_linux_x86-64_openmpi314/orca_gtoint_mpi
Either request fewer slots for your application, or make more slots available for use. A "slot" is the Open MPI term for an allocatable unit where we can launch a process. The number of slots available are defined by the environment in which Open MPI processes are run:
1. Hostfile, via "slots=N" clauses (N defaults to number of processor cores if not provided)
2. The --host command line parameter, via a ":N" suffix on the hostname (N defaults to 1 if not provided)
3. Resource manager (e.g., SLURM, PBS/Torque, LSF, etc.)
4. If none of a hostfile, the --host command line parameter, or an RM is present, Open MPI defaults to the number of processor cores In all the above cases, if you want Open MPI to default to the number
of hardware threads instead of the number of processor cores, use the --use-hwthread-cpus option.
Alternatively, you can use the --oversubscribe option to ignore the number of available slots when deciding the number of processes to launch.
*[file orca_tools/qcmsg.cpp, line 458]:
.... aborting the run*
When I go to the output of the calculation, it looks like start to run but when launch the parallel jobs fail and give:
ORCA finished by error termination in GTOInt
Calling Command: mpirun -np 12 --use-hwthread-cpus /data/shared/opt/ORCA/orca_4_2_1_linux_x86-64_openmpi314/orca_gtoint_mpi cis1_bh267_m_Cell_448.int.tmp cis1_bh267_m_Cell_448
[file orca_tools/qcmsg.cpp, line 458]:
.... aborting the run
We have two kind of nodes on the cluster:
A punch of them are:
Xeon 6-core E-2136 # 3.30GHz (12 logical cores) and Nvidia GTX 1070Ti
And the other ones:
AMD Epyc 24-core (24 logical cores) and 4x Nvidia RTX 2080Ti
Using the command scontrol show node the details of one node of each group are:
First Group:
NodeName=fang1 Arch=x86_64 CoresPerSocket=6
CPUAlloc=12 CPUTot=12 CPULoad=12.00
AvailableFeatures=(null)
ActiveFeatures=(null)
Gres=gpu:gtx1070ti:1
NodeAddr=fang1 NodeHostName=fang1 Version=19.05.5
OS=Linux 5.7.12-arch1-1 #1 SMP PREEMPT Fri, 31 Jul 2020 17:38:22 +0000
RealMemory=15923 AllocMem=0 FreeMem=171 Sockets=1 Boards=1
State=ALLOCATED ThreadsPerCore=2 TmpDisk=7961 Weight=1 Owner=N/A MCS_label=N/A
Partitions=deflt,debug,long
BootTime=2020-10-27T09:56:18 SlurmdStartTime=2020-10-27T15:33:51
CfgTRES=cpu=12,mem=15923M,billing=12,gres/gpu=1,gres/gpu:gtx1070ti=1
AllocTRES=cpu=12,gres/gpu=1,gres/gpu:gtx1070ti=1
CapWatts=n/a
CurrentWatts=0 AveWatts=0
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s
Second Group
NodeName=fang50 Arch=x86_64 CoresPerSocket=24
CPUAlloc=48 CPUTot=48 CPULoad=48.00
AvailableFeatures=(null)
ActiveFeatures=(null)
Gres=gpu:rtx2080ti:4
NodeAddr=fang50 NodeHostName=fang50 Version=19.05.5
OS=Linux 5.7.12-arch1-1 #1 SMP PREEMPT Fri, 31 Jul 2020 17:38:22 +0000
RealMemory=64245 AllocMem=0 FreeMem=807 Sockets=1 Boards=1
State=ALLOCATED ThreadsPerCore=2 TmpDisk=32122 Weight=1 Owner=N/A MCS_label=N/A
Partitions=deflt,long
BootTime=2020-12-15T10:09:43 SlurmdStartTime=2020-12-15T10:14:17
CfgTRES=cpu=48,mem=64245M,billing=48,gres/gpu=4,gres/gpu:rtx2080ti=4
AllocTRES=cpu=48,gres/gpu=4,gres/gpu:rtx2080ti=4
CapWatts=n/a
CurrentWatts=0 AveWatts=0
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s
I use in the script of Slurm the flag -c, --cpus-per-task = integer; and in the input for Orca the command %pal nprocs integer end. I tested different combinations of this two parameters in order to see if I am using more CPU than the available:
-c, --cpus-per-task = integer
%pal nprocs integer end
None
6
None
3
None
2
1
2
1
12
2
6
3
4
12
12
With different amount of memories: 8000 MBi and 2000 MBi (my total memory is around 15 GBi). And in all the cases the same error appears. I am not an expert user neither in ORCA non in informatic (but maybe you guess this for the extension of the question), so maybe the solution is simple but I really don’t have it, Idon't know what's going on!
A lot of thanks in advance,
Alejandro.
Faced the same issue.
Explicit declaration --prefix ${OMPI_HOME} directly as ORCA parameter and using of static linked ORCA version helps me:
export RSH_COMMAND="/usr/bin/ssh"
export PARAMS="--mca routed direct --oversubscribe -machinefile ${HOSTS_FILE} --prefix ${OMPI_HOME}"
$ORCA_DIR/orca $WORKDIR/$JOBFILE.inp "$PARAMS" > $WORKDIR/$JOBFILE.out
Also, It's better to build OpenMPI 3.1.x with --disable-builtin-atomics flag.
Thank you #Alexey for your answer. And sorry for the wrong Tag, like I said, I am pretty rookie on this stuff.
The problem was not in the Orca or OpenMPI configuration but in the bash script used for scheduled the Slurm job.
I thought that the entire Orca job itself was what Slurm call a "task". For that reason I declared the flag --cpus-per-task equal to the number of parallel jobs that I want to do with Orca. But the problem is that each parallel Orca job (that is launch using OpenMPI) is a task for Slurm. Therefore with my Slurm script I was reserving a node with at least 12 CPU, but when Orca launch their parallel jobs, each one ask for 12 CPU, so: "There are not enough slots available ..." because I needed 144 CPU.
The rest of the cases in the table of my Question fails for another reason. I was launching at the same time 5 different Orca calculation. Now, because --cpus-per-task could be None, 1, 2 or 3; the five calculation might enter in the same node or in another node with this amount of free CPU, but when Orca ask for the parallel jobs, fail again because there are not this amount of CPU on the node.
The solution that I found is pretty simple. On the .sh script for Slurm I putted this:
#SBATCH --mincpus=n*m
#SBATCH --ntasks=n
#SBATCH --cpus-per-task m
Instead of only:
#SBATCH --cpus-per-task m
Where n will be equal to the number of parallel jobs specified on the Orca input (%pal nprocs n end) and m the number of CPU that you want to use for each parallel Orca job.
In my case I used n = 12, m = 1. With the flag --mincpus I ensured to take a node with at least 12 CPU and allocated them. With the --cpus-per-task is pretty evident what this flag do (even for me :-) ), which, by the way, has a default value of 1 and I don't know if more than 1 CPU for each OpenMPI Orca job improve the velocity of the calculation. And --ntasks gives the information to Slurm of how many task you will do.
Of course if you know the number of task and the CPU per task is easy to know how many CPU you need to reserve, but I don't know if this is easy to Slurm too :-). So, to be sure that I allocate the correct number of CPU i used --mincpus flag, but maybe is not needed. The thing is that it works now ^_^.
It is also important to take into account the amount of memory that you declare in the input of Orca in order of do not exceed the available memory. For example, if you have 12 task and a RAM of 15000 MBi, the right amount of memory to declared should be no more than 15000/12 = 1250 MBi
I had a similar problem with parallel jobs before. The slurm also output not enough slots error.
My solution is to change parallel threads into parallel processes. For my system is to change
#SBATCH -c 24
into
#SBATCH -n 24
and everything works just fine.
After a timeout occurs on thin, the process keep using high cpu. The only way is to restart it (I let it run more than a day)
this is the output of strace
ruby#localhost:~$ strace -p 17830
Process 17830 attached
brk(0x7cf38000) = 0x7cf38000
brk(0x7d3ac000) = 0x7d3ac000
brk(0x7d655000) = 0x7d655000
brk(0x7de8c000) = 0x7de8c000
brk(0x7e616000) = 0x7e616000
brk(0x7a0c9000) = 0x7a0c9000
.. and one similar line each 3 - 4 seconds
Why this happen? I've seen this also on mongrel. Why if the http request already ended it keeps up?
Hello everyone,
I have a bash file which has the following code:
./lda --num_topics 15 --alpha 0.1 --beta 0.01 --training_data_file testdata/test_data.txt --model_file Model_Files/lda_model_t15.txt --burn_in_iterations 120 --total_iterations 150
This works perfectly fine normally but when I run it in a cluster it is not loading the data that it is supposed to load from the connected .cc files. I have given #!/bin/bash in the header. What can I do to rectify this situation? Please help!
You will need to mention the full path to the lda executable. Since it's not invoked by you manually, the system will not know where to find the executable if invoked by the shell. Since this is not a shell command, you don't necessarily need the #!/bin/bash even.
/<FullPath>/lda --num_topics 15 --alpha 0.1 --beta 0.01 --training_data_file testdata/test_data.txt --model_file Model_Files/lda_model_t15.txt --burn_in_iterations 120 --total_iterations 150
I installed Linpack on a 2-Node cluster with Xeon processors. Sometimes if I start Linpack with this command:
mpiexec -np 28 -print-rank-map -f /root/machines.HOSTS ./xhpl_intel64
linpack starts and prints the output, sometimes I only see the mpi mappings printed and then nothing following. To me this seems like random behaviour because I don't change anything between the calls and as already mentioned, Linpack sometimes starts, sometimes not.
In top I can see that xhpl_intel64processes have been created and they are heavily using the CPU but when watching the traffic between the nodes, iftop is telling me that it nothing is sent.
I am using MPICH2 as MPI implementation. This is my HPL.dat:
# cat HPL.dat
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
10000 Ns
1 # of NBs
250 NBs
0 PMAP process mapping (0=Row-,1=Column-major)
1 # of process grids (P x Q)
2 Ps
14 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
4 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast
1 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin-exch,1=long,2=mix)
64 swapping threshold
0 L1 in (0=transposed,1=no-transposed) form
0 U in (0=transposed,1=no-transposed) form
1 Equilibration (0=no,1=yes)
8 memory alignment in double (> 0)
edit2:
I now just let the program run for a while and after 30min it tells me:
# mpiexec -np 32 -print-rank-map -f /root/machines.HOSTS ./xhpl_intel64
(node-0:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
(node-1:16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)
Assertion failed in file ../../socksm.c at line 2577: (it_plfd->revents & 0x008) == 0
internal ABORT - process 0
APPLICATION TERMINATED WITH THE EXIT STRING: Hangup (signal 1)
Is this a mpi problem?
Do you know what type of problem this could be?
I figured out what the problem was: MPICH2 uses different random ports each time it starts and if these are blocked your application wont start up correctly.
The solution for MPICH2 is to set the environment variable MPICH_PORT_RANGE to START:END, like this:
export MPICH_PORT_RANGE=50000:51000
Best,
heinrich