I query ES index to filter results and get aggregations by selected terms. A sample query is like this:
GET buyer_requests/vehicle_requests/_search
{
"query": {
"filtered": {
"filter": {
"and": [
{
"terms": {
"vehicle.make.raw": [
"Audi",
"BMW",
"Chevrolet"
]
}
},
{
"range": {
"style.price": {
"gte": 15000,
"lte": 20000
}
}
},
{
"geo_distance": {
"distance": "20000km",
"info.pin": {
"lat": 42,
"lon": 21
}
}
}
]
}
}
},
"aggs": {
"makes": {
"filter": {
"range": {
"style.price": {
"gte": 5000,
"lte": 40000
}
}
},
"aggs": {
"makes": {
"terms": {
"field": "vehicle.make.raw",
"order": {
"_term": "asc"
}
}
}
}
},
"model": {
"filter": {
"and": [
{
"terms": {
"vehicle.make.raw": [
"Audi",
"BMW",
"Chevrolet"
]
}
}
]
},
"aggs": {
"models": {
"terms": {
"field": "vehicle.model.raw",
"size": 10,
"order": {
"_term": "asc"
}
}
}
}
}
}
}
The result I get is something like:
How can I get in "buckets" section on "models" terms another field from result set. I want to get reference to Makes so the result would look like this:
"model": {
"doc_count": 7,
"models": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "3 Series",
"make": "bmw", <----------- this key
"doc_count": 3
},
{
"key": "4 Series",
"make": "bmw", <----------- this key
"doc_count": 4
},
{
"key": "Camaro",
"make": "chevrolet", <----------- this key
"doc_count": 2
}
]
}
}
You need to move your models aggregation as a sub-aggregation of the make aggregation and re-arrange the filter aggregation a bit. The result won't be syntactically like you expect, but semantically you'll get the data you need.
GET buyer_requests/vehicle_requests/_search
{
"query": {
"filtered": {
"filter": {
"and": [
{
"terms": {
"vehicle.make.raw": [
"Audi",
"BMW",
"Chevrolet"
]
}
},
{
"range": {
"style.price": {
"gte": 15000,
"lte": 20000
}
}
},
{
"geo_distance": {
"distance": "20000km",
"info.pin": {
"lat": 42,
"lon": 21
}
}
}
]
}
}
},
"aggs": {
"makes": {
"filter": {
"and": [
{
"terms": {
"vehicle.make.raw": [
"Audi",
"BMW",
"Chevrolet"
]
}
},
{
"range": {
"style.price": {
"gte": 5000,
"lte": 40000
}
}
}
]
},
"aggs": {
"makes": {
"terms": {
"field": "vehicle.make.raw",
"order": {
"_term": "asc"
}
},
"aggs": {
"models": {
"terms": {
"field": "vehicle.model.raw",
"size": 10,
"order": {
"_term": "asc"
}
}
}
}
}
}
}
}
}
Related
I have build a query based on serial_diff aggregation. I am trying to sort the result based on the result of the serial_diff agg. I am struggling to get the result in order, below.
GET db/_search
{
"size": 0,
"query": {
"bool": {
"must": [
{
"terms": {
"Name": [
"q"
]
}
}
],
"filter": [
{
"range": {
"ts": {
"gte": "2020-03-09T09:00:00.000Z",
"lte": "2020-03-09T12:40:00.000Z",
"format": "date_optional_time"
}
}
}
]
}
},
"aggs": {
"sourceNameCount": {
"cardinality": {
"field": "sourceName"
}
},
"sourceName": {
"terms": {
"size": 100,
"field": "sourceName"
},
"aggs": {
"timeseries": {
"date_histogram": {
"field": "ts",
"min_doc_count": 1,
"interval": "15m",
"order": {
"_key": "asc"
}
},
"aggs": {
"the_sum":{
"avg":{
"field": "libVal"
}
},
"ts_diff":{
"serial_diff": {
"buckets_path": "the_sum",
"lag": 1
}
}
}
}
}
}
}
}
I'm trying to get the billing of a product selled by a specific user, but it seems that the query is not being applied to the sum aggregation.
Could someone help me, please?
{
"query": {
"bool": {
"filter": [
{ "term": { "seller": 1 } },
{"term": { "product": 2 } }
]
}
},
"size": 0,
"aggs": {
"product": {
"terms": {
"field": "product"
},
"aggregations": {
"billing": {
"sum": {
"field": "price"
}
},
"aggregation": {
"bucket_sort": {
"sort": [
{
"billing": {
"order": "desc"
}
}
]
}
}
}
}
}
}
Try nesting your existing aggregations within another terms aggregation on "seller".
{
"query": {
"bool": {
"filter": [
{
"term": {
"seller": 1
}
},
{
"term": {
"product": 2
}
}
]
}
},
"size": 0,
"aggs": {
"seller": {
"terms": {
"field": "seller",
"size": 1
},
"aggs": {
"product": {
"terms": {
"field": "product",
"size": 1
},
"aggregations": {
"billing": {
"sum": {
"field": "price"
}
},
"aggregation": {
"bucket_sort": {
"sort": [
{
"billing": {
"order": "desc"
}
}
]
}
}
}
}
}
}
}
}
I have the following request which will return the count of all documents with a status of either "Accepted","Released" or closed.
{
"size": 0,
"query": {
"bool": {
"must": [
{
"query_string": {
"query": "*",
"analyze_wildcard": true
}
}
],
"must_not": []
}
},
"aggs": {
"slices": {
"terms": {
"field": "status.raw",
"include": {
"pattern": "Accepted|Released|Closed"
}
}
}
}
}
In my case the response is:
"buckets": [
{
"key": "Closed",
"doc_count": 2216
},
{
"key": "Accepted",
"doc_count": 8
},
{
"key": "Released",
"doc_count": 6
}
]
Now I'd like to add all of them up into a single field.
I tried using pipeline aggregations and even tried the following sum_bucket (which apparently only works on multi-bucket):
"total":{
"sum_bucket":{
"buckets_path": "slices"
}
}
Anyone able to help me out with this?
With sum_bucket and your already existent aggregation:
"aggs": {
"slices": {
"terms": {
"field": "status.raw",
"include": {
"pattern": "Accepted|Released|Closed"
}
}
},
"sum_total": {
"sum_bucket": {
"buckets_path": "slices._count"
}
}
}
What I would do is to use the filters aggregation instead and define all the buckets you need, like this:
{
"size": 0,
"query": {
"bool": {
"must": [
{
"query_string": {
"query": "*",
"analyze_wildcard": true
}
}
],
"must_not": []
}
},
"aggs": {
"slices": {
"filters": {
"filters": {
"accepted": {
"term": {
"status.raw": "Accepted"
}
},
"released": {
"term": {
"status.raw": "Released"
}
},
"closed": {
"term": {
"status.raw": "Closed"
}
},
"total": {
"terms": {
"status.raw": [
"Accepted",
"Released",
"Closed"
]
}
}
}
}
}
}
}
You could add count with value_count sub aggregation and then use sum_bucket pipeline aggregation
{
"aggs": {
"unique_status": {
"terms": {
"field": "status.raw",
"include": "Accepted|Released|Closed"
},
"aggs": {
"count": {
"value_count": {
"field": "status.raw"
}
}
}
},
"sum_status": {
"sum_bucket": {
"buckets_path": "unique_status>count"
}
}
},
"size": 0
}
I have a query as follows:
{
"size": 0,
"query": {
"filtered": {
"query": {
"bool": {
"must": [
{
"match": {
"_type": "grx-ipx"
}
},
{
"range": {
"#timestamp": {
"gte": "2015-09-08T15:00:00.000Z",
"lte": "2015-09-08T15:10:00.000Z"
}
}
}
]
}
},
"filter": {
"and": [
{
"terms": {
"inSightCustID": [
"ASD001",
"ZXC049"
]
}
},
{
"terms": {
"reportFamily": [
"GRXoIPX",
"LTEoIPX"
]
}
}
]
}
}
},
"_source": [
"inSightCustID",
"fiveMinuteIn",
"reportFamily",
"#timestamp"
],
"aggs": {
"timestamp": {
"terms": {
"field": "#timestamp",
"size": 5
},
"aggs": {
"reportFamily": {
"terms": {
"field": "reportFamily"
},
"aggs": {
"averageFiveMinute": {
"avg": {
"field": "fiveMinuteIn"
}
}
}
}
}
},
"distinct_timestamps": {
"cardinality": {
"field": "#timestamp"
}
}
}
}
This result of this query looks like:
...
"aggregations": {
"distinct_timestamps": {
"value": 3,
"value_as_string": "1970-01-01T00:00:00.003Z"
},
"timestamp": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1441724700000,
"key_as_string": "2015-09-08T15:05:00.000Z",
"doc_count": 10,
"reportFamily": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "GRXoIPX",
"doc_count": 5,
"averageFiveMinute": {
"value": 1687.6
}
},
{
"key": "LTEoIPX",
"doc_count": 5,
"averageFiveMinute": {
"value": 56710.6
}
}
]
}
},
...
What I want to do is for each bucket in the reportFamily aggregation, I want to show the sum of the averageFiveMinute values. So for instance, in the example above, I would also like to show the sum of 1687.6 and 56710.6. I want to do this for all reportFamily aggregations.
Here is what I have tried:
{
"size": 0,
"query": {
"filtered": {
"query": {
"bool": {
"must": [
{
"match": {
"_type": "grx-ipx"
}
},
{
"range": {
"#timestamp": {
"gte": "2015-09-08T15:00:00.000Z",
"lte": "2015-09-08T15:10:00.000Z"
}
}
}
]
}
},
"filter": {
"and": [
{
"terms": {
"inSightCustID": [
"ASD001",
"ZXC049"
]
}
},
{
"terms": {
"reportFamily": [
"GRXoIPX",
"LTEoIPX"
]
}
}
]
}
}
},
"_source": [
"inSightCustID",
"fiveMinuteIn",
"reportFamily",
"#timestamp"
],
"aggs": {
"timestamp": {
"terms": {
"field": "#timestamp",
"size": 5
},
"aggs": {
"reportFamily": {
"terms": {
"field": "reportFamily"
},
"aggs": {
"averageFiveMinute": {
"avg": {
"field": "fiveMinuteIn"
}
}
}
},
"sum_AvgFiveMinute": {
"sum_bucket": {
"buckets_path": "reportFamily>averageFiveMinute"
}
}
}
},
"distinct_timestamps": {
"cardinality": {
"field": "#timestamp"
}
}
}
}
I have added:
"sum_AvgFiveMinute": {
"sum_bucket": {
"buckets_path": "reportFamily>averageFiveMinute"
}
}
But unfortunately, this triggers an exception Parse Failure [Could not find aggregator type [sum_bucket] in [sum_AvgFiveMinute]
I expected the results to be something like:
...
"aggregations": {
"distinct_timestamps": {
"value": 3,
"value_as_string": "1970-01-01T00:00:00.003Z"
},
"timestamp": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1441724700000,
"key_as_string": "2015-09-08T15:05:00.000Z",
"doc_count": 10,
"reportFamily": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "GRXoIPX",
"doc_count": 5,
"averageFiveMinute": {
"value": 1687.6
}
},
{
"key": "LTEoIPX",
"doc_count": 5,
"averageFiveMinute": {
"value": 56710.6
}
}
]
},
"sum_AvgFiveMinute": {
"value": 58398.2
}
},
...
What is wrong with this query and how can I achieve the expected result?
Here is a link to the sum bucket aggregation docs.
Many thanks for the help.
I want to calculate the difference of nested aggregations between two dates.
To be more concrete is it possible to calculate the difference between date_1.buckets.field_1.buckets.field_2.buckets.field_3.value - date_2.buckets.field_1.buckets.field_2.buckets.field_3.value given the below request/response. Is that possible with elasticsearch v.1.0.1?
The aggregation query request looks like this:
{
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": {
"bool": {
"must": [
{
"terms": {
"date": [
"2014-08-18 00:00:00.0",
"2014-08-15 00:00:00.0"
]
}
}
]
}
}
}
},
"aggs": {
"date_1": {
"filter": {
"terms": {
"date": [
"2014-08-18 00:00:00.0"
]
}
},
"aggs": {
"my_agg_1": {
"terms": {
"field": "field_1",
"size": 2147483647,
"order": {
"_term": "desc"
}
},
"aggs": {
"my_agg_2": {
"terms": {
"field": "field_2",
"size": 2147483647,
"order": {
"_term": "desc"
}
},
"aggs": {
"my_agg_3": {
"sum": {
"field": "field_3"
}
}
}
}
}
}
}
},
"date_2": {
"filter": {
"terms": {
"date": [
"2014-08-15 00:00:00.0"
]
}
},
"aggs": {
"my_agg_1": {
"terms": {
"field": "field_1",
"size": 2147483647,
"order": {
"_term": "desc"
}
},
"aggs": {
"my_agg_1": {
"terms": {
"field": "field_2",
"size": 2147483647,
"order": {
"_term": "desc"
}
},
"aggs": {
"my_agg_3": {
"sum": {
"field": "field_3"
}
}
}
}
}
}
}
}
}
}
And the response looks like this:
{
"took": 236,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"failed": 0
},
"hits": {
"total": 1646,
"max_score": 0,
"hits": []
},
"aggregations": {
"date_1": {
"doc_count": 823,
"field_1": {
"buckets": [
{
"key": "field_1_key_1",
"doc_count": 719,
"field_2": {
"buckets": [
{
"key": "key_1",
"doc_count": 275,
"field_3": {
"value": 100
}
}
]
}
}
]
}
},
"date_2": {
"doc_count": 823,
"field_1": {
"buckets": [
{
"key": "field_1_key_1",
"doc_count": 719,
"field_2": {
"buckets": [
{
"key": "key_1",
"doc_count": 275,
"field_3": {
"value": 80
}
}
]
}
}
]
}
}
}
}
Thank you.
With elasticsearch new version (eg: 5.6.9) is possible:
{
"size": 0,
"query": {
"constant_score": {
"filter": {
"bool": {
"filter": [
{
"range": {
"date_created": {
"gte": "2018-06-16T00:00:00+02:00",
"lte": "2018-06-16T23:59:59+02:00"
}
}
}
]
}
}
}
},
"aggs": {
"by_millisec": {
"range" : {
"script" : {
"lang": "painless",
"source": "doc['date_delivered'][0] - doc['date_created'][0]"
},
"ranges" : [
{ "key": "<1sec", "to": 1000.0 },
{ "key": "1-5sec", "from": 1000.0, "to": 5000.0 },
{ "key": "5-30sec", "from": 5000.0, "to": 30000.0 },
{ "key": "30-60sec", "from": 30000.0, "to": 60000.0 },
{ "key": "1-2min", "from": 60000.0, "to": 120000.0 },
{ "key": "2-5min", "from": 120000.0, "to": 300000.0 },
{ "key": "5-10min", "from": 300000.0, "to": 600000.0 },
{ "key": ">10min", "from": 600000.0 }
]
}
}
}
}
No arithmetic operations are allowed between two aggregations' result from elasticsearch DSL, not even using scripts. (Upto version 1.1.1, at least I know)
Such operations need to be handeled in client side after processing the aggs result.
Reference
elasticsearch aggregation to sort by ratio of aggregations
In 1.0.1 I couldn't find anything but in 1.4.2 you could try scripted_metric aggregation (still experimental).
Here are the scripted_metric documentation page
I am not good with the elasticsearch syntax but I think your metric inputs would be:
init_script- just initialize a accumulator for each date:
"init_script": "_agg.d1Val = 0; _agg.d2Val = 0;"
map_script- test the date of the document and add to the right accumulator:
"map_script": "if (doc.date == firstDate) { _agg.d1Val += doc.field_3; } else { _agg.d2Val = doc.field_3;};",
reduce_script - accumulate intermediate data from various shards and return the final results:
"reduce_script": "totalD1 = 0; totalD2 = 0; for (agg in _aggs) { totalD1 += agg.d1Val ; totalD2 += agg.d2Val ;}; return totalD1 - totalD2"
I don't think that in this case you need a combine_script.
If course, if you can't use 1.4.2 than this is no help :-)