Documentation for regulator framework with device tree - linux-kernel

I would like to know if there is any documentation for the linux kernel regulator framework with device tree. I am totally lost with consumer name and lists. I need to add consumers from device tree but I cant see consumer list at all in the device tree files.
I am using AM335x based custom board based on TI sitara.

By reading both documentation (DeviceTree and Regulator) you should be able to find what you want. But as usual the best documentation is the code itself. The driver ti-abb-regulator is using the DeviceTree and the Regulator framework.

In addition, Federico has already said, there are so-called MFD(MultiFunction) devices. These are often referred PMIC(Power Management IC) that are used in conjunction with a SOC from TI. For AM335x it maybe TPS65217, TPS65910A, TPS65910x, TPS650250, etc. If so, that means some of them you can find follow this link: MFD.

I was just looking into this myself, and my conclusion is that the setup in device tree is pretty different from the way it's done in the board file.
What you'll need to do is to add your drivers to the device tree as well, and then use the "[name]-supply" notation, e.g.:
cpus {
cpu0 {
cpu0-supply = <&omap_tps65912_dcdc1>;
};
};
If you look for this in other board files, you'll see how it works.

Related

Where to find device-tree?

Coming form this question yesterday, I decided to port this library to my board. I was aware that I needed to change something, so I compiled the library, call it on a small program and see what happens. The 1st problem is here:
// Check for GPIO and peripheral addresses from device tree.
// Adapted from code in the RPi.GPIO library at:
// http://sourceforge.net/p/raspberry-gpio-python/
FILE *fp = fopen("/proc/device-tree/soc/ranges", "rb");
if (fp == NULL) {
return MMIO_ERROR_OFFSET;
}
This lib is aimed for Rpi, os the structure of the system on my board is not the same. So I was wondering if somebody could tell me where I could find this file or how it looks like so I can find it by my self in order to proceed the job.
Thanks.
You don't necessarily want that "file" (or more precisely /proc node).
The code this is found in is setting up to do direct memory mapped I/O using what appears to be a pi-specific gpio-flavored version of the /dev/mem type of device driver for exposing hardware special function registers to userspace.
To port this to your board, you would need to first determine if there is a /dev/mem or similar capability in your kernel which you can activate. Then you would need to determine the appropriate I/O registers for GPIO pins. The pi-specific code is reading the Device Tree to figure this out, but there are other ways, for example you can manually read the programmer's manual of the SoC on which you are running.
Another approach you can consider is adding some small microcontroller (or yes, barebones ***duino) to the system, and using that to collect information from various sensors and peripherals. This can then be forwarded to the SoC over a UART link, or queried out via I2C or similar - add a small amount of cost and some degree of bottleneck, but also means that the software on the SoC then becomes very portable - to a different comparable chip, or perhaps even to run on a desktop PC during development.

My attributes are way too racy, what should I do?

In a linux device driver, creating sysfs attributes in probe is way too racy--specifically, it experiences a race condition with userspace. The recommended workaround is to add your attributes to various default attribute groups so they can be automatically created before probe. For a device driver, struct device_driver contains const struct attribute_group **groups for this purpose.
However, struct attribute_group only got a field for binary attributes in Linux 3.11. With older kernels (specifically, 3.4), how should a device driver create sysfs binary attributes before probe?
Quoting (emphasis mine) Greg Kroah-Hartman from his comment to a merge request (that was merged by Linus as a part of 3.11 development cycle):
Here are some driver core patches for 3.11-rc2. They aren't really
bugfixes, but a bunch of new helper macros for drivers to properly
create attribute groups, which drivers and subsystems need to fix up a
ton of race issues with incorrectly creating sysfs files (binary and
normal) after userspace has been told that the device is present.
Also here is the ability to create binary files as attribute groups, to solve that race condition, which was impossible to do before this, so that's my fault the drivers were broken.
So it looks like there really is no way to solve this problem on old kernels.

what is the use of Flattened device tree - Linux Kernel

I am going through the Uboot & kernel startup process. What exactly is the use of the FDT (Flat device tree) ?
Many link i have read they state that uboot pass the board & SOC configuration information to Kernel in the form of FDT
https://wiki.freebsd.org/FlattenedDeviceTree
Why kernel need the board configuration information ?
I am asking this question because when ever we make device driver in linux we use to initialize the device at probe() or module_init() call & use request_mem_region() & ioremap() function to get the range of address
& then set the clock & other register of the driver.
What does request_mem_region() actually do and when it is needed?
Now if my device drivers for onchip & offchip devices are doing the full board initialisation.
Then what is the use of flattened device tree for the kernel ?
You are right in assuming that the board files and device-trees are required for initialisation of on-chip blocks and off-chip peripherals.
While booting-up, the respective drivers for all on-chip blocks of an SoC and off-chip peripherals interfaced to it need to be "probed" i.e. loaded and called. On bus-es like USB and PCI, the peripherals can be detected physically and enumerated and their corresponding driver probed. However in general such a facility is NOT available is case of the rest of the peripherals on the rest of the buses like I2C, SPI etc.
In addition to above, when the device-driver is probed, one also needs to provide some information to it about the way in which we intend to configure and utilise the hardware. This varies depending upon the use case. For example the baud-rate at which we would like to operate an UART port.
Both the above classes of information i.e.
Physical Topology of the hardware.
Configuration options of the hardware.
were usually defined as structs within the "board" file.
However using the board-file approach required one to re-build the kernel even to simply modify a configurable option to a different value during initialisation. Also when several physical boards differing slightly in their topology/configuration exist, the "board" file approach becomes too cumbersome to maintain.
Hence the interest in maintaining this information separately in a device-tree. Any device-driver can parse the relevant branches and leaves of the device-tree to obtain the information it requires.
When developing your own device-driver, if your platform supports the device-tree, then you are encouraged to utilise the device tree to store the "platform data" required by your device-driver. This should help you clearly separate :
the generic driver code for your device in the <driver.c> file and
the device's config options specific to this platform into the device-tree.
A step-by-step approach to porting the Linux kernel to a board/SoC should help you appreciate the nuances involved and the advantages of using a device-tree.

Explanation of struct ieee80211_local in Linux kernel

Can anybody explain me the ieee80211_local structure and its members?
The structure is defined in /net/mac80211/ieee80211_i.h of the Linux source code, somewhere near line no. 930, it may vary with different kernel versions.
According to a presentation by Daniel Camps Mur struct ieee80211_local "…contains information about the real hardware, and is created when the interface is first added."
In another set of slides by Johannes Berg it is stated that the struct "represents a wireless device." On the same slide, you can find a statement about the element ieee80211_hw "…is the part of ieee80211_local that is visible to drivers."
Interestingly, the struct is not mentioned in the 802.11 subsystems documentation by Johannes Berg.
Looking at a source code cross reference of the Linux kernel, you can see that the
ieee80211_local struct is never used outside of the mac80211 part. Therefore, I think that it is indeed an internally used representation of a wireless device from mac80211's point of view.
In contrast, you can see that the ieee80211_hw element is used in both mac80211 and various wireless device drivers which underlines that it is used to communicate between mac80211 and drivers.
BTW, the struct was introduced with the very first commit of ieee80211_i.h by Jiri Benc in 2007.
If you need to know more details about the struct and its members, it looks like you want to do some development at the mac80211 code. I would suggest to get in touch with the active developers. The Linux wireless mailing list may be a good starting point for that.

Multiple mice on OS X

I am developing an OS X application that is supposed to take input from two mice. I want to read the motion of each mouse independently. What would be the best way to do this?
If that is not possible, is there a way to disable/enable either of the mice programmatically?
The HID Class Device Interface is definitely what you need. There are basically two steps:
First you need to find the mouse devices. To do this you need to construct a matching dictionary and then search the IO Registry with it. There is some sample code here, you will need to add some additional elements to the dictionary so you just get the mice instead of the all HID devices on the system. Something like this should do the trick:
// Set up a matching dictionary to search the I/O Registry by class
// name for all HID class devices`
hidMatchDictionary = IOServiceMatching(kIOHIDDeviceKey);
// Add key for device usage page - 0x01 for "Generic Desktop"
UInt32 usagePage = 0x01;
CFNumberRef usagePageRef = ::CFNumberCreate( kCFAllocatorDefault, kCFNumberLongType, &usagePage );
::CFDictionarySetValue( hidMatchDictionary, CFSTR( kIOHIDPrimaryUsagePageKey ), usagePageRef );
::CFRelease( usagePageRef );
// Add key for device usage - 0x02 for "Mouse"
UInt32 usage = 0x02;
CFNumberRef usageRef = ::CFNumberCreate( kCFAllocatorDefault, kCFNumberLongType, &usage );
::CFDictionarySetValue( hidMatchDictionary, CFSTR( kIOHIDPrimaryUsageKey ), usageRef );
::CFRelease( usageRef );
You then need to listen to the X/Y/button queues from the devices you found above. This sample code should point you in the right direction. Using the callbacks is much more efficient than polling!
The HID code looks much more complex than it is - it's made rather "wordy" by the CF stuff.
It looks like the HID Manager is what you're looking for.
You're going to want to check out the I/O Kit and HID (Human Interface Device) manager stuff.
HID manager is part of I/O Kit, so looking into there might be useful. There are two APIs for HID management, the older API is a bit more painful and then you have the new 10.5 and above API which is a bit more comfortable.
Important thing to understand is this isn't going to probably be just a quick fix, it may take some significant work to get it running. If you can assume you'll have 10.5 or better installed, using the Leopard API will definitely help.
Also; depending on how you accomplish what you're doing, may be important for you to hide the mouse cursor as it may still move a lot even if you're receiving the information from both mice. If your application grabs the screen, I'd use CoreGraphics to disable the cursor and just draw my own.
You might also consider finding a wrapper for one of these APIs, an example can be found in this question.
Unless you can force one of the mice to not be dealt with as a mouse, both will continue to control the pointer. However, you can use IOKit to write a custom USB HID driver to allow your app to read from one or both of the mice (although this would probably interfere with using them as normal mice). Building Customized User Client Drivers for USB Devices would be a good place to start for how to interact directly with USB mice.
You could look at the USB/PS-2 device interrupt.
Even if you don't want to rewrite a so called driver, it could be usefull since all the mice send their data through.
You could also check this page that could give some hints http://multicursor-wm.sourceforge.net/
maybe it's a solution for you to use usb->rsr232 converter and go by reading the serial port by yourself ?

Resources