A concise way to access an element of a set in pseudocode - algorithm

Let networklocs be a set of elements of the form (n, t, l) where n is a node in the network, t is a clock tick and l is the location of n at time t. How can I get (in a concise way in pseudo-code) the element of networklocs where node and time is given?
I know I can write a function like
getElement(ni,t)
for all (nj,t',l') in networklocs
if nj=ni and t'= t then return (nj,t',l')
But is there a more concise way to access an element of the set networklocs in the pseudo-code?
Note that I would like to keep networklocs as a set, so solutions with maps or arrays do not fit.

Note that returning ni and t is useless because they're already known. In notation and practice, you'd want
Let M be a map: <N, T> -> L
The operation you want is just a map lookup:
l <- M <n, t>
Although the map is the most likely notation, a predicate logic expression can also be used:
Let get(n,t) be x = <n, t, l> | x \in networklocs
The loop you provided as an example is neither correct nor pseudocode. It's a concrete implementation of a map, and it doesn't say what to do when the key is not found.

Related

SML Syntax Breakdown

I am trying to study SML (for full transparency this is in preparation for an exam (exam has not started)) and one area that I have been struggling with is higher level functions such as map and foldl/r. I understand that they are used in situations where you would use a for loop in oop languages (I think). What I am struggling with though is what each part in a fold or map function is doing. Here are some examples that if someone could break them down I would be very appreciative
fun cubiclist L = map (fn x=> x*x*x) L;
fun min (x::xs) = foldr (fn (a,b) => if (a < b) then a else b) x xs;
So if I could break down the parts I see and high light the parts I'm struggling with I believe that would be helpful.
Obviously right off the bat you have the name of the functions and the parameters that are being passed in but one question I have on that part is why are we just passing in a variable to cubiclist but for min we pass in (x::xs)? Is it because the map function is automatically applying the function to each part in the map? Also along with that will the fold functions typically take the x::xs parameters while map will just take a variable?
Then we have the higher order function along with the anonymous functions with the logic/operations that we want to apply to each element in the list. But the parameters being passed in for the foldr anonymous function I'm not quite sure about. I understand we are trying to capture the lowest element in the list and the then a else b is returning either a or b to be compared with the other elements in the list. I'm pretty sure that they are rutnred and treated as a in future comparisons but where do we get the following b's from? Where do we say b is the next element in the list?
Then the part that I really don't understand and have no clue is the L; and x xs; at the end of the respective functions. Why are they there? What are they doing? what is their purpose? is it just syntax or is there actually a purpose for them being there, not saying that syntax isn't a purpose or a valid reason, but does they actually do something? Are those variables that can be changed out with something else that would provide a different answer?
Any help/explanation is much appreciated.
In addition to what #molbdnilo has already stated, it can be helpful to a newcomer to functional programming to think about what we're actually doing when we crate a loop: we're specifying a piece of code to run repeatedly. We need an initial state, a condition for the loop to terminate, and an update between each iteration.
Let's look at simple implementation of map.
fun map f [] = []
| map f (x :: xs) = f x :: map f xs
The initial state of the contents of the list.
The termination condition is the list is empty.
The update is that we tack f x onto the front of the result of mapping f to the rest of the list.
The usefulness of map is that we abstract away f. It can be anything, and we don't have to worry about writing the loop boilerplate.
Fold functions are both more complex and more instructive when comparing to loops in procedural languages.
A simple implementation of fold.
fun foldl f init [] = init
| foldl f init (x :: xs) = foldl f (f init x) xs
We explicitly provide an initial value, and a list to operate on.
The termination condition is the list being empty. If it is, we return the initial value provided.
The update is to call the function again. This time the initial value is updated, and the list is the tail of the original.
Consider summing a list of integers.
foldl op+ 0 [1,2,3,4]
foldl op+ 1 [2,3,4]
foldl op+ 3 [3,4]
foldl op+ 6 [4]
foldl op+ 10 []
10
Folds are important to understand because so many fundamental functions can be implemented in terms of foldl or foldr. Think of folding as a means of reducing (many programming languages refer to these functions as "reduce") a list to another value of some type.
map takes a function and a list and produces a new list.
In map (fn x=> x*x*x) L, the function is fn x=> x*x*x, and L is the list.
This list is the same list as cubiclist's parameter.
foldr takes a function, an initial value, and a list and produces some kind of value.
In foldr (fn (a,b) => if (a < b) then a else b) x xs, the function is fn (a,b) => if (a < b) then a else b, the initial value is x, and the list is xs.
x and xs are given to the function by pattern-matching; x is the argument's head and xs is its tail.
(It follows from this that min will fail if it is given an empty list.)

How to implement a union-find (disjoint set) data structure in Coq?

I am quite new to Coq, but for my project I have to use a union-find data structure in Coq. Are there any implementations of the union-find (disjoint set) data structure in Coq?
If not, can someone provide an implementation or some ideas? It doesn't have to be very efficient. (no need to do path compression or all the fancy optimizations) I just need a data structure that can hold an arbitrary data type (or nat if it's too hard) and perform: union and find.
Thanks in advance
If all you need is a mathematical model, with no concern for actual performance, I would go for the most straightforward one: a functional map (finite partial function) in which each element optionally links to another element with which it has been merged.
If an element links to nothing, then its canonical representative is itself.
If an element links to another element, then its canonical representative is the canonical representative of that other element.
Note: in the remaining of this answer, as is standard with union-find, I will assume that elements are simply natural numbers. If you want another type of elements, simply have another map that binds all elements to unique numbers.
Then you would define a function find : UnionFind → nat → nat that returns the canonical representative of a given element, by following links as long as you can. Notice that the function would use recursion, whose termination argument is not trivial. To make it happen, I think that the easiest way is to maintain the invariant that a number only links to a lesser number (i.e. if i links to j, then i > j). Then the recursion terminates because, when following links, the current element is a decreasing natural number.
Defining the function union : UnionFind → nat → nat → UnionFind is easier: union m i j simply returns an updated map with max i' j' linking to min i' j', where i' = find m i and j' = find m j.
[Side note on performance: maintaining the invariant means that you cannot adequately choose which of a pair of partitions to merge into the other, based on their ranks; however you can still implement path compression if you want!]
As for which data structure exactly to use for the map: there are several available.
The standard library (look under the title FSets) has several implementations (FMapList, FMapPositive and so on) satisfying the interface FMapInterface.
The stdpp libray has gmap.
Again if performance is not a concern, just pick the simplest encoding or, more importantly, the one that makes your proofs the simplest. I am thinking of just a list of natural numbers.
The positions of the list are the elements in reverse order.
The values of the list are offsets, i.e. the number of positions to skip forward in order to reach the target of the link.
For an element i linking to j (i > j), the offset is i − j.
For a canonical representative, the offset is zero.
With my best pseudo-ASCII-art skills, here is a map where the links are { 6↦2, 4↦2, 3↦0, 2↦1 } and the canonical representatives are { 5, 1, 0 }:
6 5 4 3 2 1 0 element
↓ ↓ ↓ ↓ ↓ ↓ ↓
/‾‾‾‾‾‾‾‾‾↘
[ 4 ; 0 ; 2 ; 3 ; 1 ; 0 ; 0 ] map
\ \____↗↗ \_↗
\___________/
The motivation is that the invariant discussed above is then enforced structurally. Hence, there is hope that find could actually be defined by structural induction (on the structure of the list), and have termination for free.
A related paper is: Sylvain Conchon and Jean-Christophe Filliâtre. A Persistent Union-Find Data Structure. In ACM SIGPLAN Workshop on ML.
It describes the implementation of an efficient union-find data structure in ML, that is persistent from the user perspective, but uses mutation internally. What may be more interesting for you, is that they prove it correct in Coq, which implies that they have a Coq model for union-find. However, this model reflects the memory store for the imperative program that they seek to prove correct. I’m not sure how applicable it is to your problem.
Maëlan has a good answer, but for an even simpler and more inefficient disjoint set data structure, you can just use functions to nat to represent them. This avoids any termination stickiness. In essence, the preimages of any total function form disjoint sets over the domain. Another way of looking at this is as representing any disjoint set G as the curried application find_root G : nat -> nat since find_root is the essential interface that disjoint sets provide.
This is also analogous to using functions to represent Maps in Coq like in Software Foundations. https://softwarefoundations.cis.upenn.edu/lf-current/Maps.html
Require Import Arith.
Search eq_nat_decide.
(* disjoint set *)
Definition ds := nat -> nat.
Definition init_ds : ds := fun x => x.
Definition find_root (g : ds) x := g x.
Definition in_same_set (g : ds) x y :=
eq_nat_decide (g x) (g y).
Definition union (g : ds) x y : ds :=
fun z =>
if in_same_set g x z
then find_root g y
else find_root g z.
You can also make it generic over the type held in the disjoint set like so
Definition ds (a : Type) := a -> nat.
Definition find_root {a} (g : ds a) x := g x.
Definition in_same_set {a} (g : ds a) x y :=
eq_nat_decide (g x) (g y).
Definition union {a} (g : ds a) x y : ds a :=
fun z =>
if in_same_set g x z
then find_root g y
else find_root g z.
To initialize the disjoint set for a particular a, you need an Enum instance for your type a basically.
Definition init_bool_ds : ds bool := fun x => if x then 0 else 1.
You may want to trade out eq_nat_decide for eqb or some other roughly equivalent thing depending on your proof style and needs.

Functional programming with OCAML

I'm new to functional programming and I'm trying to implement a basic algorithm using OCAML for course that I'm following currently.
I'm trying to implement the following algorithm :
Entries :
- E : a non-empty set of integers
- s : an integer
- d : a positive float different of 0
Output :
- T : a set of integers included into E
m <- min(E)
T <- {m}
FOR EACH e ∈ sort_ascending(E \ {m}) DO
IF e > (1+d)m AND e <= s THEN
T <- T U {e}
m <- e
RETURN T
let f = fun (l: int list) (s: int) (d: float) ->
List.fold_left (fun acc x -> if ... then (list_union acc [x]) else acc)
[(list_min l)] (list_sort_ascending l) ;;
So far, this is what I have, but I don't know how to handle the modification of the "m" variable mentioned in the algorithm... So I need help to understand what is the best way to implement the algorithm, maybe I'm not gone in the right direction.
Thanks by advance to anyone who will take time to help me !
The basic trick of functional programming is that although you can't modify the values of any variables, you can call a function with different arguments. In the initial stages of switching away from imperative ways of thinking, you can imagine making every variable you want to modify into the parameters of your function. To modify the variables, you call the function recursively with the desired new values.
This technique will work for "modifying" the variable m. Think of m as a function parameter instead.
You are already using this technique with acc. Each call inside the fold gets the old value of acc and returns the new value, which is then passed to the function again. You might imagine having both acc and m as parameters of this inner function.
Assuming list_min is defined you should think the problem methodically. Let's say you represent a set with a list. Your function takes this set and some arguments and returns a subset of the original set, given the elements meet certain conditions.
Now, when I read this for the first time, List.filter automatically came to my mind.
List.filter : ('a -> bool) -> 'a list -> 'a list
But you wanted to modify the m so this wouldn't be useful. It's important to know when you can use library functions and when you really need to create your own functions from scratch. You could clearly use filter while handling m as a reference but it wouldn't be the functional way.
First let's focus on your predicate:
fun s d m e -> (float e) > (1. +. d)*.(float m) && (e <= s)
Note that +. and *. are the plus and product functions for floats, and float is a function that casts an int to float.
Let's say the function predicate is that predicate I just mentioned.
Now, this is also a matter of opinion. In my experience I wouldn't use fold_left just because it's just complicated and not necessary.
So let's begin with my idea of the code:
let m = list_min l;;
So this is the initial m
Then I will define an auxiliary function that reads the m as an argument, with l as your original set, and s, d and m the variables you used in your original imperative code.
let rec f' l s d m =
match l with
| [] -> []
| x :: xs -> if (predicate s d m x) then begin
x :: (f' xs s d x)
end
else
f' xs s d m in
f' l s d m
Then for each element of your set, you check if it satisfies the predicate, and if it does, you call the function again but you replace the value of m with x.
Finally you could just call f' from a function f:
let f (l: int list) (s: int) (d: float) =
let m = list_min l in
f' l s d m
Be careful when creating a function like your list_min, what would happen if the list was empty? Normally you would use the Option type to handle those cases but you assumed you're dealing with a non-empty set so that's great.
When doing functional programming it's important to think functional. Pattern matching is super recommended, while pointers/references should be minimal. I hope this is useful. Contact me if you any other doubt or recommendation.

Every possible combination of logic for tree - Algorithm?

The letters represent a true/false value
True allows the traversal of the lower levels; false means the lower letters will all be false too.
For example, if a is false, all the letters beneath will also be false.
Given any formation of tree, always with 3 levels, how do I calculate all the valid combinations of true/false values for the all letters?
Im looking for names of algorithms, links to resources. Not how you would implement it.
Thanks, any help appreciated.
There is a simple recursive algorithm. The following results in enumerations of sets of letters assigned T; since letters are assigned either T or F, it's obvious how to derive the complete mapping:
# I use ++ for the operation of concatenating lists/sets
# and [X] to produce a list/set consisting of the single element X
enumerate(Q, Accum):
if Q is empty:
return [Accum]
else:
remove the head of Q and put it in Head
return enumerate(Q, Accum) ++
enumerate(children(Head) ++ Q, Accum ++ [Head])
To enumerate the combinations of a forest, call
enumerate(Roots(Forest), [])

Ocaml homework need some advices

We have N sets of integers A1, A2, A3 ... An. Find an algorithm that returns a list containg one element from each of the sets, with the property that the difference between the largest and the smallest element in the list is minimal
Example:
IN: A1 = [0,4,9], A2 = [2,6,11], A3 = [3,8,13], A4 = [7,12]
OUT: [9,6,8,7]
I have an idea about this exercise, first we need sort all the elements on one list(every element need to be assigned to its set), so with that input we get this:
[[0,1],[2,2],[3,3],[4,1],[6,2],[7,4],[8,3],[9,1],[11,2],[12,4],[13,3]]
later on we create all possible list and find this one with the difference between smallest and largest element, and return correct out like this: [9,6,8,7]
I am newbie in ocaml so I have some questions about coding this stuff:
Can I create a function with N(infinite amount of) arguments?
Should I create a new type, like list of pair to realize assumptions?
Sorry for my bad english, hope you will understand what I wanted to express.
This answer is about the algorithmic part, not the OCaml code.
You might want to implement your proposed solution first, to have a working one and to compare its results with an improved solution, which I now write about.
Here is a hint about how to improve the algorithmic part. Consider sorting all sets, not only the first one. Now, the list of all minimum elements from all sets is a candidate to the output.
To consider other candidate output, how can you move from there?
I'm just going to answer your questions, rather than comment on your proposed solution. (But I think you'll have to work on it a little more before you're done.)
You can write a function that takes a list of lists. This is pretty much the same
as allowing an arbitrary number of arguments. But really it just has one argument
(like all functions in OCaml).
You can just use built-in types like lists and tuples, you don't need to create or
declare them explicitly.
Here's an example function that takes a list of lists and combines them into one big long list:
let rec concat lists =
match lists with
| [] -> []
| head :: tail -> head # concat tail
Here is the routine you described in the question to get you started. Note that
I did not pay any attention to efficiency. Also added the reverse apply (pipe)
operator for clarity.
let test_set = [[0;4;9];[2;6;11];[3;8;13]; [7;12]]
let (|>) g f = f g
let linearize sets =
let open List in sets
|> mapi (fun i e -> e |> map (fun x -> (x, i+1) ))
|> flatten |> sort (fun (e1,_) (e2, _) -> compare e1 e2)
let sorted = linearize test_set
Your approach does not sound very efficient, with an n number of sets, each with x_i elments, your sorted list will have (n * x_i) elements, and the number of sub-lists you can generate out of that would be: (n * x_i)! (factorial)
I'd like to propose a different approach, but you'll have to work out the details:
Tag (index) each element with it's set identifier (like you have done).
Sort each set individually.
Build the exact opposite to that of your desired result!
Optimize!
I hope you can figure out steps 3, 4 on your own... :)

Resources