I am trying to prove an equation given in the CLRS exercise book. The equation is:
Sigma k=0 to k=infinity (k-1)/2^k = 0
I solved the LHS but my answer is 1 whereas the RHS should be 0
Following is my solution:
Let's say S = k/2^k = 1/2 + 2/2^2 + 3/2^3 + 4/2^4 ....
2S = 1 + 2/2 + 3/2^2 + 4/2^3 ...
2S - S = 1 + ( 2/2 - 1/2) + (3/2^2 - 2/2^2) + (4/2^3 - 3/2^3)..
S = 1+ 1/2 + 1/2^2 + 1/2^3 + 1/2^4..
S = 2 -- eq 1
Now let's say S1 = (k-1)/2^k = 0/2 + 1/2^2 + 2/2^3 + 3/2^4...
S - S1 = 1/2 + (2/2^2 - 1/2^2) + (3/2^3 - 2/2^3) + (4/2^4 - 3/2^4)....
S - S1 = 1/2 + 1/2^2 + 1/2^3 + 1/2^4...
= 1
From eq 1
2 - S1 = 1
S1 = 1
Whereas the required RHS is 0. Is there anything wrong with my solution? Thanks..
Yes, you have issues in your solution to the problem.
While everything is correct in formulating the value of S, you have calculated the value of S1 incorrectly. You missed substituting the value for k=0 in S1. Whereas, for S, even after putting the value of k, the first term will be 0, so no effect.
Therefore,
S1 = (k-1)/2^k = -1 + 0/2 + 1/2^2 + 2/2^3 + 3/2^4...
// you missed -1 here because you started substituting values from k=1
S - S1 = -(-1) + 1/2 + (2/2^2 - 1/2^2) + (3/2^3 - 2/2^3) + (4/2^4 - 3/2^4)....
S - S1 = 1 + (1/2 + 1/2^2 + 1/2^3 + 1/2^4...)
= 1 + 1
= 2.
From eq 1
2 - S1 = 2
S1 = 0.
Related
Is there anyway to calculate the sum of 1 to n in Theta(log n)?
Of course, the obvious way to do it is sum = n*(n+1)/2.
However, for practicing, I want to calculate in Theta(log n).
For example,
sum=0; for(int i=1; i<=n; i++) { sum += i}
this code will calculate in Theta(n).
Fair way (without using math formulas) assumes direct summing all n values, so there is no way to avoid O(n) behavior.
If you want to make some artificial approach to provide exactly O(log(N)) time, consider, for example, using powers of two (knowing that Sum(1..2^k = 2^(k-1) + 2^(2*k-1) - for example, Sum(8) = 4 + 32). Pseudocode:
function Sum(n)
if n < 2
return n
p = 1 //2^(k-1)
p2 = 2 //2^(2*k-1)
while p * 4 < n:
p = p * 2;
p2 = p2 * 4;
return p + p2 + ///sum of 1..2^k
2 * p * (n - 2 * p) + ///(n - 2 * p) summands over 2^k include 2^k
Sum(n - 2 * p) ///sum of the rest over 2^k
Here 2*p = 2^k is the largest power of two not exceeding N. Example:
Sum(7) = Sum(4) + 5 + 6 + 7 =
Sum(4) + (4 + 1) + (4 + 2) + (4 + 3) =
Sum(4) + 3 * 4 + Sum(3) =
Sum(4) + 3 * 4 + Sum(2) + 1 * 2 + Sum(1) =
Sum(4) + 3 * 4 + Sum(2) + 1 * 2 + Sum(1) =
2 + 8 + 12 + 1 + 2 + 2 + 1 = 28
I'm wondering if someone can help me try to figure this out.
I want f(str) to take a string str of digits and return the sum of all substrings as numbers, and I want to write f as a function of itself so that I can try to solve this with memoization.
It's not jumping out at me as I stare at
Solve("1") = 1
Solve("2") = 2
Solve("12") = 12 + 1 + 2
Solve("29") = 29 + 2 + 9
Solve("129") = 129 + 12 + 29 + 1 + 2 + 9
Solve("293") = 293 + 29 + 93 + 2 + 9 + 3
Solve("1293") = 1293 + 129 + 293 + 12 + 29 + 93 + 1 + 2 + 9 + 3
Solve("2395") = 2395 + 239 + 395 + 23 + 39 + 95 + 2 + 3 + 9 + 5
Solve("12395") = 12395 + 1239 + 2395 + 123 + 239 + 395 + 12 + 23 + 39 + 95 + 1 + 2 + 3 + 9 + 5
You have to break f down into two functions.
Let N[i] be the ith digit of the input. Let T[i] be the sum of substrings of the first i-1 characters of the input. Let B[i] be the sum of suffixes of the first i characters of the input.
So if the input is "12395", then B[3] = 9+39+239+1239, and T[3] = 123+12+23+1+2+3.
The recurrence relations are:
T[0] = B[0] = 0
T[i+1] = T[i] + B[i]
B[i+1] = B[i]*10 + (i+1)*N[i]
The last line needs some explanation: the suffixes of the first i+2 characters are the suffixes of the first i+1 characters with the N[i] appended on the end, as well as the single-character string N[i]. The sum of these is (B[i]*10+N[i]*i) + N[i] which is the same as B[i]*10+N[i]*(i+1).
Also f(N) = T[len(N)] + B[len(N)].
This gives a short, linear-time, iterative solution, which you could consider to be a dynamic program:
def solve(n):
rt, rb = 0, 0
for i in xrange(len(n)):
rt, rb = rt+rb, rb*10+(i+1)*int(n[i])
return rt+rb
print solve("12395")
One way to look at this problem is to consider the contribution of each digit to the final sum.
For example, consider the digit Di at position i (from the end) in the number xn-1…xi+1Diyi-1…y0. (I used x, D, and y just to be able to talk about the digit positions.) If we look at all the substrings which contain D and sort them by the position of D from the end of the number, we'll see the following:
D
xD
xxD
…
xx…xD
Dy
xDy
xxDy
…
xx…xDy
Dyy
xDyy
xxDyy
…
xx…xDyy
and so on.
In other words, D appears in every position from 0 to i once for each prefix length from 0 to n-i-1 (inclusive), or a total of n-i times in each digit position. That means that its total contribution to the sum is D*(n-i) times the sum of the powers of 10 from 100 to 10i. (As it happens, that sum is exactly (10i+1−1)⁄9.)
That leads to a slightly simpler version of the iteration proposed by Paul Hankin:
def solve(n):
ones = 0
accum = 0
for m in range(len(n),0,-1):
ones = 10 * ones + 1
accum += m * ones * int(n[m-1])
return accum
By rearranging the sums in a different way, you can come up with this simple recursion, if you really really want a recursive solution:
# Find the sum of the digits in a number represented as a string
digitSum = lambda n: sum(map(int, n))
# Recursive solution by summing suffixes:
solve2 = lambda n: solve2(n[1:]) + (10 * int(n) - digitSum(n))/9 if n else 0
In case it's not obvious, 10*n-digitSum(n) is always divisible by 9, because:
10*n == n + 9*n == (mod 9) n mod 9 + 0
digitSum(n) mod 9 == n mod 9. (Because 10k == 1 mod n for any k.)
Therefore (10*n - digitSum(n)) mod 9 == (n - n) mod 9 == 0.
Looking at this pattern:
Solve("1") = f("1") = 1
Solve("12") = f("12") = 1 + 2 + 12 = f("1") + 2 + 12
Solve("123") = f("123") = 1 + 2 + 12 + 3 + 23 + 123 = f("12") + 3 + 23 + 123
Solve("1239") = f("1239") = 1 + 2 + 12 + 3 + 23 + 123 + 9 + 39 + 239 + 1239 = f("123") + 9 + 39 + 239 + 1239
Solve("12395") = f("12395") = 1 + 2 + 12 + 3 + 23 + 123 + 9 + 39 + 239 + 1239 + 5 + 95 + 395 + 2395 + 12395 = f("1239") + 5 + 95 + 395 + 2395 + 12395
To get the new terms, with n being the length of str, you are including the substrings made up of the 0-based index ranges of characters in str: (n-1,n-1), (n-2,n-1), (n-3,n-1), ... (n-n, n-1).
You can write a function to get the sum of the integers formed from the substring index ranges. Calling that function g(str), you can write the function recursively as f(str) = f(str.substring(0, str.length - 1)) + g(str) when str.length > 1, and the base case with str.length == 1 would just return the integer value of str. (The parameters of substring are the start index of a character in str and the length of the resulting substring.)
For the example Solve("12395"), the recursive equation f(str) = f(str.substring(0, str.length - 1)) + g(str) yields:
f("12395") =
f("1239") + g("12395") =
(f("123") + g("1239")) + g("12395") =
((f("12") + g("123")) + g("1239")) + g("12395") =
(((f("1") + g("12")) + g("123")) + g("1239")) + g("12395") =
1 + (2 + 12) + (3 + 23 + 123) + (9 + 39 + 239 + 1239) + (5 + 95 + 395 + 2395 + 12395)
Given a number N, print in how many ways it can be represented as
N = a + b + c + d
with
1 <= a <= b <= c <= d; 1 <= N <= M
My observation:
For N = 4: Only 1 way - 1 + 1 + 1 + 1
For N = 5: Only 1 way - 1 + 1 + 1 + 2
For N = 6: 2 ways - 1 + 1 + 1 + 3
1 + 1 + 2 + 2
For N = 7: 3 ways - 1 + 1 + 1 + 4
1 + 1 + 2 + 3
1 + 2 + 2 + 2
For N = 8: 5 ways - 1 + 1 + 1 + 5
1 + 1 + 2 + 4
1 + 1 + 3 + 3
1 + 2 + 2 + 3
2 + 2 + 2 + 2
So I have reduced it to a DP solution as follows:
DP[4] = 1, DP[5] = 1;
for(int i = 6; i <= M; i++)
DP[i] = DP[i-1] + DP[i-2];
Is my observation correct or am I missing any thing. I don't have any test cases to run on. So please let me know if the approach is correct or wrong.
It's not correct. Here is the correct one:
Lets DP[n,k] be the number of ways to represent n as sum of k numbers.
Then you are looking for DP[n,4].
DP[n,1] = 1
DP[n,2] = DP[n-2, 2] + DP[n-1,1] = n / 2
DP[n,3] = DP[n-3, 3] + DP[n-1,2]
DP[n,4] = DP[n-4, 4] + DP[n-1,3]
I will only explain the last line and you can see right away, why others are true.
Let's take one case of n=a+b+c+d.
If a > 1, then n-4 = (a-1)+(b-1)+(c-1)+(d-1) is a valid sum for DP[n-4,4].
If a = 1, then n-1 = b+c+d is a valid sum for DP[n-1,3].
Also in reverse:
For each valid n-4 = x+y+z+t we have a valid n=(x+1)+(y+1)+(z+1)+(t+1).
For each valid n-1 = x+y+z we have a valid n=1+x+y+z.
Unfortunately, your recurrence is wrong, because for n = 9, the solution is 6, not 8.
If p(n,k) is the number of ways to partition n into k non-zero integer parts, then we have
p(0,0) = 1
p(n,k) = 0 if k > n or (n > 0 and k = 0)
p(n,k) = p(n-k, k) + p(n-1, k-1)
Because there is either a partition of value 1 (in which case taking this part away yields a partition of n-1 into k-1 parts) or you can subtract 1 from each partition, yielding a partition of n - k. It's easy to show that this process is a bijection, hence the recurrence.
UPDATE:
For the specific case k = 4, OEIS tells us that there is another linear recurrence that depends only on n:
a(n) = 1 + a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9)
This recurrence can be solved via standard methods to get an explicit formula. I wrote a small SAGE script to solve it and got the following formula:
a(n) = 1/144*n^3 + 1/32*(-1)^n*n + 1/48*n^2 - 1/54*(1/2*I*sqrt(3) - 1/2)^n*(I*sqrt(3) + 3) - 1/54*(-1/2*I*sqrt(3) - 1/2)^n*(-I*sqrt(3) + 3) + 1/16*I^n + 1/16*(-I)^n + 1/32*(-1)^n - 1/32*n - 13/288
OEIS also gives the following simplification:
a(n) = round((n^3 + 3*n^2 -9*n*(n % 2))/144)
Which I have not verified.
#include <iostream>
using namespace std;
int func_count( int n, int m )
{
if(n==m)
return 1;
if(n<m)
return 0;
if ( m == 1 )
return 1;
if ( m==2 )
return (func_count(n-2,2) + func_count(n - 1, 1));
if ( m==3 )
return (func_count(n-3,3) + func_count(n - 1, 2));
return (func_count(n-1, 3) + func_count(n - 4, 4));
}
int main()
{
int t;
cin>>t;
cout<<func_count(t,4);
return 0;
}
I think that the definition of a function f(N,m,n) where N is the sum we want to produce, m is the maximum value for each term in the sum and n is the number of terms in the sum should work.
f(N,m,n) is defined for n=1 to be 0 if N > m, or N otherwise.
for n > 1, f(N,m,n) = the sum, for all t from 1 to N of f(S-t, t, n-1)
This represents setting each term, right to left.
You can then solve the problem using this relationship, probably using memoization.
For maximum n=4, and N=5000, (and implementing cleverly to quickly work out when there are 0 possibilities), I think that this is probably computable quickly enough for most purposes.
I have been thinking over this problem for a few days now and am hung up on calculating the number of times the second nested for-loop will run. I believe that I have the correct formula for determining the running time for the other two for-loops, but this third one has me hung up. I have the first loop running n-1 times. The equation to determine the number of times loop #2 runs is; The summation of 1 to n-1. If anyone could help me understand how to find the number of times loop #3 runs it would be greatly appreciated.
for ( int i=1; i<=n-1; i++ ) {
for ( int j=i+1; j<=n; j++ ) {
for ( int k=1; k<=j; k++ ) {
}
}
}
The third loop runs C times:
C = Sum( Sum ( Sum ( 1 , k = 1 .. j ) , j = i+1 .. n ) , i = 1 .. n-1 )
= Sum( Sum ( j , j = i+1 .. n ) , i = 1 .. n-1 )
= 2 + 3 + 4 + ... + n
+ 3 + 4 + ... + n
...
+ n
= 2*1 + 3*2 + 4*3 + 5*4 + ... + n*(n-1)
= (1*1 + 1) + (2*2 + 2) + (3*3 + 3) + ... + ((n-1)*(n-1) + n-1)
= (1^2 + 2^2 + ... (n-1)^2) + (1 + 2 + 3 + ... + (n-1))
= (n-1)*n*(2*n-1)/6 + (n-1)*n/2
= (n-1)*n*(2*n+2)/6
= O(n^3)
Here I used the formulas:
1^2 + 2^2 + ... + m^2 = m*(m+1)*(2*m+1)/6
and
1 + 2 + ... + m = m*(m+1)/2
Determine the positive number c & n0 for the following recurrences (Using Substitution Method):
T(n) = T(ceiling(n/2)) + 1 ... Guess is Big-Oh(log base 2 of n)
T(n) = 3T(floor(n/3)) + n ... Guess is Big-Omega (n * log base 3 of n)
T(n) = 2T(floor(n/2) + 17) + n ... Guess is Big-Oh(n * log base 2 of n).
I am giving my Solution for Problem 1:
Our Guess is: T(n) = O (log_2(n)).
By Induction Hypothesis assume T(k) <= c * log_2(k) for all k < n,here c is a const & c > 0
T(n) = T(ceiling(n/2)) + 1
<=> T(n) <= c*log_2(ceiling(n/2)) + 1
<=> " <= c*{log_2(n/2) + 1} + 1
<=> " = c*log_2(n/2) + c + 1
<=> " = c*{log_2(n) - log_2(2)} + c + 1
<=> " = c*log_2(n) - c + c + 1
<=> " = c*log_2(n) + 1
<=> T(n) not_<= c*log_2(n) because c*log_2(n) + 1 not_<= c*log_2(n).
To solve this remedy used a trick a follows:
T(n) = T(ceiling(n/2)) + 1
<=> " <= c*log(ceiling(n/2)) + 1
<=> " <= c*{log_2 (n/2) + b} + 1 where 0 <= b < 1
<=> " <= c*{log_2 (n) - log_2(2) + b) + 1
<=> " = c*{log_2(n) - 1 + b} + 1
<=> " = c*log_2(n) - c + bc + 1
<=> " = c*log_2(n) - (c - bc - 1) if c - bc -1 >= 0
c >= 1 / (1 - b)
<=> T(n) <= c*log_2(n) for c >= {1 / (1 - b)}
so T(n) = O(log_2(n)).
This solution is seems to be correct to me ... My Ques is: Is it the proper approach to do?
Thanks to all of U.
For the first exercise:
We want to show by induction that T(n) <= ceiling(log(n)) + 1.
Let's assume that T(1) = 1, than T(1) = 1 <= ceiling(log(1)) + 1 = 1 and the base of the induction is proved.
Now, we assume that for every 1 <= i < nhold that T(i) <= ceiling(log(i)) + 1.
For the inductive step we have to distinguish the cases when n is even and when is odd.
If n is even: T(n) = T(ceiling(n/2)) + 1 = T(n/2) + 1 <= ceiling(log(n/2)) + 1 + 1 = ceiling(log(n) - 1) + 1 + 1 = ceiling(log(n)) + 1.
If n is odd: T(n) = T(ceiling(n/2)) + 1 = T((n+1)/2) + 1 <= ceiling(log((n+1)/2)) + 1 + 1 = ceiling(log(n+1) - 1) + 1 + 1 = ceiling(log(n+1)) + 1 = ceiling(log(n)) + 1
The last passage is tricky, but is possibile because n is odd and then it cannot be a power of 2.
Problem #1:
T(1) = t0
T(2) = T(1) + 1 = t0 + 1
T(4) = T(2) + 1 = t0 + 2
T(8) = T(4) + 1 = t0 + 3
...
T(2^(m+1)) = T(2^m) + 1 = t0 + (m + 1)
Letting n = 2^(m+1), we get that T(n) = t0 + log_2(n) = O(log_2(n))
Problem #2:
T(1) = t0
T(3) = 3T(1) + 3 = 3t0 + 3
T(9) = 3T(3) + 9 = 3(3t0 + 3) + 9 = 9t0 + 18
T(27) = 3T(9) + 27 = 3(9t0 + 18) + 27 = 27t0 + 81
...
T(3^(m+1)) = 3T(3^m) + 3^(m+1) = ((3^(m+1))t0 + (3^(m+1))(m+1)
Letting n = 3^(m+1), we get that T(n) = nt0 + nlog_3(n) = O(nlog_3(n)).
Problem #3:
Consider n = 34. T(34) = 2T(17+17) + 34 = 2T(34) + 34. We can solve this to find that T(34) = -34. We can also see that for odd n, T(n) = 1 + T(n - 1). We continue to find what values are fixed:
T(0) = 2T(17) + 0 = 2T(17)
T(17) = 1 + T(16)
T(16) = 2T(25) + 16
T(25) = T(24) + 1
T(24) = 2T(29) + 24
T(29) = T(28) + 1
T(28) = 2T(31) + 28
T(31) = T(30) + 1
T(30) = 2T(32) + 30
T(32) = 2T(33) + 32
T(33) = T(32) + 1
We get T(32) = 2T(33) + 32 = 2T(32) + 34, meaning that T(32) = -34. Working backword, we get
T(32) = -34
T(33) = -33
T(30) = -38
T(31) = -37
T(28) = -46
T(29) = -45
T(24) = -96
T(25) = -95
T(16) = -174
T(17) = -173
T(0) = -346
As you can see, this recurrence is a little more complicated than the others, and as such, you should probably take a hard look at this one. If I get any other ideas, I'll come back; otherwise, you're on your own.
EDIT:
After looking at #3 some more, it looks like you're right in your assessment that it's O(nlog_2(n)). So you can try listing a bunch of numbers - I did it from n=0 to n=45. You notice a pattern: it goes from negative numbers to positive numbers around n=43,44. To get the next even-index element of the sequence, you add powers of two, in the following order: 4, 8, 4, 16, 4, 8, 4, 32, 4, 8, 4, 16, 4, 8, 4, 64, 4, 8, 4, 16, 4, 8, 4, 32, ...
These numbers are essentially where you'd mark an arbitary-length ruler... quarters, halves, eights, sixteenths, etc. As such, we can solve the equivalent problem of finding the order of the sum 1 + 2 + 1 + 4 + 1 + 2 + 1 + 8 + ... (same as ours, divided by 4, and ours is shifted, but the order will still work). By observing that the sum of the first k numbers (where k is a power of 2) is equal to sum((n/(2^(k+1))2^k) = (1/2)sum(n) for k = 0 to log_2(n), we get that the simple recurrence is given by (n/2)log_2(n). Multiply by 4 to get ours, and shift x to the right by 34 and perhaps add a constant value to the result. So we're playing around with y = 2nlog_n(x) + k' for some constant k'.
Phew. That was a tricky one. Note that this recurrence does not admit of any arbitary "initial condiditons"; in other words, the recurrence does not describe a family of sequences, but one specific one, with no parameterization.