Genetic algorithm selection and crossover questions - genetic-algorithm

I have been using my own GA for a while where I use random selection and elitism (top 10% or so) to get 50% of my population. I then do crossover to produce the next 50%, followed by mutation of course. It sounds strange, but it has gotten me far enough in my problem to be satisfied with it for now.
I'd like to start using more elaborate selection methods, specifically ranked selection. I'd also like to employ a crossover probability.
My questions are:
When doing ranked selection, is each individual only allowed to be selected once?
What typically happens to the parents after crossover? Do they get replaced by children or do they also go onto the next generation?

When doing ranked selection, is each individual only allowed to be selected once?
Well, if every individual was allowed to be selected only once, you would have to copy the whole population to form the new one. In ranked selection you just pick probabilistically with probability proportional to the rank of the individual and let the chance decide whether or which individual gets copied more times.
What typically happens to the parents after crossover? Do they get replaced by children or do they also go onto the next generation?
It depends. If you have a so-called generational scheme, you always generate a whole new population that replaces the old one completely. The members of this new population are from these four "sources":
Elites copied directly from the parent population.
Individuals selected from the parent population which were neither crossed over nor mutated (i.e. copied directly too).
Children of parents that were selected from the parent population which were crossed over but not mutated.
Mutated children of parents that were selected from the parent population and crossed over.
On the other hand, you can have a so-called steady state scheme. In this scheme, in each iteration you select just enough individuals to be able to perform crossover, cross them over (if probability allows), mutate them (if probability allows) and then you somehow put them back into the original population. That means that someone must get thrown away. This may be the parents or the children (if one is worse than the other) or an arbitrary member of the population based on your replacement strategy. You can do e.g. "inversed" selection, i.e. selection with probabilites the other way around (the worst gets the highest while the best gets the lowest).
One final remark - in the realm of GAs, almost any mechanism you come up with may work for your particular problem, or it may not. You just have to try. It's a stochastic method after all.

Related

Question about mating pool, selection and crossover

I am currently trying to coding a genetic algorithm which intended to find the optimal solution for timetable planning. I have successfully created the population and also able to calculate the fitness, what I confuse is that mating pool and the selection.
I am planning to do the tournament solution.
What I know So far is that I need to select a random number of candidate, and choose the "most fit" and the first parent. Repeat the step and find the second parent. the crossover each other. But How many crossovers I need to do? Until the same size of the population size that I set. then How about my original population?
Can Someone help me?
Your original population dies. If you want to keep the best solution(s) you can copy it to the new population (this is called elitism). You then generate offspring until your new population is full. Have a look at this Outline of the Basic Genetic Algorithm.
Cross-over is just one way to make children "different" from parents (in addition to mutation). This is independent from how you select good parents (e.g. tournaments). But note that there are so many GA variants that this may not be true for all of them.
I would consider to start with only mutation (no cross-over). This is much easier to implement, and sometimes good enough. You can always add cross-over later and see if you get an improvement.

Choosing parents to crossover in genetic algorithms?

First of all, this is a part of a homework.
I am trying to implement a genetic algorithm. I am confused about selecting parents to crossover.
In my notes (obviously something is wrong) this is what is done as example;
Pc (possibility of crossover) * population size = estimated chromosome count to crossover (if not even, round to one of closest even)
Choose a random number in range [0,1] for every chromosome and if this number is smaller then Pc, choose this chromosome for a crossover pair.
But when second step applied, chosen chromosome count is equals to result found in first step. Which is not always guaranteed because of randomness.
So this does not make any sense. I searched for selecting parents for crossover but all i found is crossover techniques (one-point, cut and slice etc.) and how to crossover between chosen parents (i do not have a problem with these). I just don't know which chromosomesi should choose for crossover. Any suggestions or simple example?
You can implement it like this:
For every new child you decide if it will result from crossover by random probability. If yes, then you select two parents, eg. through roulette wheel selection or tournament selection. The two parents make a child, then you mutate it with mutation probability and add it to the next generation. If no, then you select only one "parent" clone it, mutate it with probability and add it to the next population.
Some other observations I noted and that I like to comment. I often read the word "chromosomes" when it should be individual. You hardly ever select chromosomes, but full individuals. A chromosome is just one part of a solution. That may be nitpicking, but a solution is not a chromosome. A solution is an individual that consists of several chromosomes which consist of genes which show their expression in the form of alleles. Often an individual has only one chromosome, but it's still not okay to mix terms.
Also I noted that you tagged genetic programming which is basically only a special type of a genetic algorithm. In GP you consider trees as a chromosome which can represent mathematical formulas or computer programs. Your question does not seem to be about GP though.
This is very late answer, but hoping it will help someone in the future. Even if two chromosomes are not paired (and produced children), they goes to the next generation (without crossover) but after some mutation (subject to probability again). And on the other hand, if two chromosomes paired, then they produce two children (replacing the original two parents) for the next generation. So, that's why the no of chromosomes remain same in two generations.

Optimal placement of objects wrt pairwise similarity weights

Ok this is an abstract algorithmic challenge and it will remain abstract since it is a top secret where I am going to use it.
Suppose we have a set of objects O = {o_1, ..., o_N} and a symmetric similarity matrix S where s_ij is the pairwise correlation of objects o_i and o_j.
Assume also that we have an one-dimensional space with discrete positions where objects may be put (like having N boxes in a row or chairs for people).
Having a certain placement, we may measure the cost of moving from the position of one object to that of another object as the number of boxes we need to pass by until we reach our target multiplied with their pairwise object similarity. Moving from a position to the box right after or before that position has zero cost.
Imagine an example where for three objects we have the following similarity matrix:
1.0 0.5 0.8
S = 0.5 1.0 0.1
0.8 0.1 1.0
Then, the best ordering of objects in the tree boxes is obviously:
[o_3] [o_1] [o_2]
The cost of this ordering is the sum of costs (counting boxes) for moving from one object to all others. So here we have cost only for the distance between o_2 and o_3 equal to 1box * 0.1sim = 0.1, the same as:
[o_3] [o_1] [o_2]
On the other hand:
[o_1] [o_2] [o_3]
would have cost = cost(o_1-->o_3) = 1box * 0.8sim = 0.8.
The target is to determine a placement of the N objects in the available positions in a way that we minimize the above mentioned overall cost for all possible pairs of objects!
An analogue is to imagine that we have a table and chairs side by side in one row only (like the boxes) and you need to put N people to sit on the chairs. Now those ppl have some relations that is -lets say- how probable is one of them to want to speak to another. This is to stand up pass by a number of chairs and speak to the guy there. When the people sit on two successive chairs then they don't need to move in order to talk to each other.
So how can we put those ppl down so that every distance-cost between two ppl are minimized. This means that during the night the overall number of distances walked by the guests are close to minimum.
Greedy search is... ok forget it!
I am interested in hearing if there is a standard formulation of such problem for which I could find some literature, and also different searching approaches (e.g. dynamic programming, tabu search, simulated annealing etc from combinatorial optimization field).
Looking forward to hear your ideas.
PS. My question has something in common with this thread Algorithm for ordering a list of Objects, but I think here it is better posed as problem and probably slightly different.
That sounds like an instance of the Quadratic Assignment Problem. The speciality is due to the fact that the locations are placed on one line only, but I don't think this will make it easier to solve. The QAP in general is NP hard. Unless I misinterpreted your problem you can't find an optimal algorithm that solves the problem in polynomial time without proving P=NP at the same time.
If the instances are small you can use exact methods such as branch and bound. You can also use tabu search or other metaheuristics if the problem is more difficult. We have an implementation of the QAP and some metaheuristics in HeuristicLab. You can configure the problem in the GUI, just paste the similarity and the distance matrix into the appropriate parameters. Try starting with the robust Taboo Search. It's an older, but still quite well working algorithm. Taillard also has the C code for it on his website if you want to implement it for yourself. Our implementation is based on that code.
There has been a lot of publications done on the QAP. More modern algorithms combine genetic search abilities with local search heuristics (e. g. Genetic Local Search from Stützle IIRC).
Here's a variation of the already posted method. I don't think this one is optimal, but it may be a start.
Create a list of all the pairs in descending cost order.
While list not empty:
Pop the head item from the list.
If neither element is in an existing group, create a new group containing
the pair.
If one element is in an existing group, add the other element to whichever
end puts it closer to the group member.
If both elements are in existing groups, combine them so as to minimize
the distance between the pair.
Group combining may require reversal of order in a group, and the data structure should
be designed to support that.
Let me help the thread (of my own) with a simplistic ordering approach.
1. Order the upper half of the similarity matrix.
2. Start with the pair of objects having the highest similarity weight and place them in the center positions.
3. The next object may be put on the left or the right side of them. So each time you may select the object that when put to left or right
has the highest cost to the pre-placed objects. Goto Step 2.
The selection of Step 3 is because if you left this object and place it later this cost will be again the greatest of the remaining, and even more (farther to the pre-placed objects). So the costly placements should be done as earlier as it can be.
This is too simple and of course does not discover a good solution.
Another approach is to
1. start with a complete ordering generated somehow (random or from another algorithm)
2. try to improve it using "swaps" of object pairs.
I believe local minima would be a huge deterrent.

breeding parents for multiple children in genetic algorithm

I'm building my first Genetic Algorithm in javascript, using a collection of tutorials.
I'm building a somewhat simpler structure to this scheduling tutorial http://www.codeproject.com/KB/recipes/GaClassSchedule.aspx#Chromosome8, but I've run into a problem with breeding.
I get a population of 60 individuals, and now I'm picking the top two individuals to breed, and then selecting a few random other individuals to breed with the top two, am I not going to end up with a fairly small amount of parents rather quickly?
I figure I'm not going to be making much progress in the solution if I breed the top two results with each of the next 20.
Is that correct? Is there a generally accepted method for doing this?
I have a sample of genetic algorithms in Javascript here.
One problem with your approach is that you are killing diversity in the population by mating always the top 2 individuals. That will never work very well because it's too greedy, and you'll actually be defeating the purpose of having a genetic algorithm in the first place.
This is how I am implementing mating with elitism (which means I am retaining a percentage of unaltered best fit individuals and randomly mating all the rest), and I'll let the code do the talking:
// save best guys as elite population and shove into temp array for the new generation
for(var e = 0; e < ELITE; e++) {
tempGenerationHolder.push(fitnessScores[e].chromosome);
}
// randomly select a mate (including elite) for all of the remaining ones
// using double-point crossover should suffice for this silly problem
// note: this should create INITIAL_POP_SIZE - ELITE new individualz
for(var s = 0; s < INITIAL_POP_SIZE - ELITE; s++) {
// generate random number between 0 and INITIAL_POP_SIZE - ELITE - 1
var randInd = Math.floor(Math.random()*(INITIAL_POP_SIZE - ELITE));
// mate the individual at index s with indivudal at random index
var child = mate(fitnessScores[s].chromosome, fitnessScores[randInd].chromosome);
// push the result in the new generation holder
tempGenerationHolder.push(child);
}
It is fairly well commented but if you need any further pointers just ask (and here's the github repo, or you can just do a view source on the url above). I used this approach (elitism) a number of times, and for basic scenarios it usually works well.
Hope this helps.
When I've implemented genetic algorithms in the past, what I've done is to pick the parents always probabilistically - that is, you don't necessarily pick the winners, but you will pick the winners with a probability depending on how much better they are than everyone else (based on the fitness function).
I cannot remember the name of the paper to back it up, but there is a mathematical proof that "ranking" selection converges faster than "proportional" selection. If you try looking around for "genetic algorithm selection strategy" you may find something about this.
EDIT:
Just to be more specific, since pedalpete asked, there are two kinds of selection algorithms: one based on rank, one based on fitness proportion. Consider a population with 6 solutions and the following fitness values:
Solution Fitness Value
A 5
B 4
C 3
D 2
E 1
F 1
In ranking selection, you would take the top k (say, 2 or 4) and use those as the parents for your next generation. In proportional ranking, to form each "child", you randomly pick the parent with a probability based on fitness value:
Solution Probability
A 5/16
B 4/16
C 3/16
D 2/16
E 1/16
F 1/16
In this scheme, F may end up being a parent in the next generation. With a larger population size (100 for example - may be larger or smaller depending on the search space), this will mean that the bottom solutions will end up being a parent some of the time. This is OK, because even "bad" solutions have some "good" aspects.
Keeping the absolute fittest individuals is called elitism, and it does tend to lead to faster convergence, which, depending on the fitness landscape of the problem, may or may not be what you want. Faster convergence is good if it reduces the amount of effort taken to find an acceptable solution but it's bad if it means that you end up with a local optimum and ignore better solutions.
Picking the other parents completely at random isn't going to work very well. You need some mechanism whereby fitter candidates are more likely to be selected than weaker ones. There are several different selection strategies that you can use, each with different pros and cons. Some of the main ones are described here. Typically you will use roulette wheel selection or tournament selection.
As for combining the elite individuals with every single one of the other parents, that is a recipe for destroying variation in the population (as well as eliminating the previously preserved best candidates).
If you employ elitism, keep the elite individuals unchanged (that's the point of elitism) and then mate pairs of the other parents (which may or may not include some or all of the elite individuals, depending on whether they were also picked out as parents by the selection strategy). Each parent will only mate once unless it was picked out multiple times by the selection strategy.
Your approach is likely to suffer from premature convergence. There are lots of other selection techniques to pick from though. One of the more popular that you may wish to consider is Tournament selection.
Different selection strategies provide varying levels of 'selection pressure'. Selection pressure is how strongly the strategy insists on choosing the best programs. If the absolute best programs are chosen every time, then your algorithm effectively becomes a hill-climber; it will get trapped in local optimum with no way of navigating to other peaks in the fitness landscape. At the other end of the scale, no fitness pressure at all means the algorithm will blindly stumble around the fitness landscape at random. So, the challenge is to try to choose an operator with sufficient (but not excessive) selection pressure, for the problem you are tackling.
One of the advantages of the tournament selection operator is that by just modifying the size of the tournament, you can easily tweak the level of selection pressure. A larger tournament will give more pressure, a smaller tournament less.

Grouping individuals into families

We have a simulation program where we take a very large population of individual people and group them into families. Each family is then run through the simulation.
I am in charge of grouping the individuals into families, and I think it is a really cool problem.
Right now, my technique is pretty naive/simple. Each individual record has some characteristics, including married/single, age, gender, and income level. For married people I select an individual and loop through the population and look for a match based on a match function. For people/couples with children I essentially do the same thing, looking for a random number of children (selected according to an empirical distribution) and then loop through all of the children and pick them out and add them to the family based on a match function. After this, not everybody is matched, so I relax the restrictions in my match function and loop through again. I keep doing this, but I stop before my match function gets too ridiculous (marries 85-year-olds to 20-year-olds for example). Anyone who is leftover is written out as a single person.
This works well enough for our current purposes, and I'll probably never get time or permission to rework it, but I at least want to plan for the occasion or learn some cool stuff - even if I never use it. Also, I'm afraid the algorithm will not work very well for smaller sample sizes. Does anybody know what type of algorithms I can study that might relate to this problem or how I might go about formalizing it?
For reference, I'm comfortable with chapters 1-26 of CLRS, but I haven't really touched NP-Completeness or Approximation Algorithms. Not that you shouldn't bring up those topics, but if you do, maybe go easy on me because I probably won't understand everything you are talking about right away. :) I also don't really know anything about evolutionary algorithms.
Edit: I am specifically looking to improve the following:
Less ridiculous marriages.
Less single people at the end.
Perhaps what you are looking for is cluster analysis?
Lets try to think of your problem like this (starting by solving the spouses matching):
If you were to have a matrix where each row is a male and each column is a female, and every cell in that matrix is the match function's returned value, what you are now looking for is selecting cells so that there won't be a row or a column in which more than one cell is selected, and the total sum of all selected cells should be maximal. This is very similar to the N Queens Problem, with the modification that each allocation of a "queen" has a reward (which we should maximize).
You could solve this problem by using a graph where:
You have a root,
each of the first raw's cells' values is an edge's weight leading to first depth vertices
each of the second raw's cells' values is an edge's weight leading to second depth vertices..
Etc.
(Notice that when you find a match to the first female, you shouldn't consider her anymore, and so for every other female you find a match to)
Then finding the maximum allocation can be done by BFS, or better still by A* (notice A* typically looks for minimum cost, so you'll have to modify it a bit).
For matching between couples (or singles, more on that later..) and children, I think KNN with some modifications is your best bet, but you'll need to optimize it to your needs. But now I have to relate to your edit..
How do you measure your algorithm's efficiency?
You need a function that receives the expected distribution of all states (single, married with one children, single with two children, etc.), and the distribution of all states in your solution, and grades the solution accordingly. How do you calculate the expected distribution? That's quite a bit of statistics work..
First you need to know the distribution of all states (single, married.. as mentioned above) in the population,
then you need to know the distribution of ages and genders in the population,
and last thing you need to know - the distribution of ages and genders in your population.
Only then, according to those three, can you calculate how many people you expect to be in each state.. And then you can measure the distance between what you expected and what you got... That is a lot of typing.. Sorry for the general parts...

Resources