Is it possible to capture a kernel function's return value using a kretprobe and communicate it to another kretprobe which is hooked on to another kernel function.
One example of how to do this using eBPF & bcc:
#!/usr/bin/env python
from bcc import BPF
BPF(text="""
#include <uapi/linux/ptrace.h>
BPF_HASH(rvalues, u64, unsigned long);
int kretprobe__randomize_stack_top(struct pt_regs *ctx) {
u64 zero = 0;
unsigned long rvalue = PT_REGS_RC(ctx);
rvalues.lookup(&zero);
return 0;
}
int kretprobe__load_elf_binary(struct pt_regs *ctx) {
u64 zero = 0;
unsigned long *rvalue_ptr = rvalues.lookup(&zero);
if (rvalue_ptr) {
unsigned long rvalue = *rvalue_ptr;
bpf_trace_printk("value returned by randomize_stack_top: %d", rvalue);
}
return 0;
}
""").trace_print()
The value returned by randomize_stack_top is saved in the hash map rvalues with the key 0 (it's also possible to use a BPF_ARRAY since the key is fixed here). The value is retrieved in load_elf_binary with a simple lookup on the hash map.
Note: If you have several processes calling these functions, you can use their PID as keys for the hash map to discriminate between different returned values.
bcc offers an higher-level, Python API to load eBPF programs in the kernel and interact with them. eBPF programs can be used instead of kernel modules to instrument kprobes. For more information on bcc, see the tutorial on the repository.
Related
Ok, muddling though Stack on the particulars about void*, books like The C Programming Language (K&R) and The C++ Programming Language (Stroustrup). What have I learned? That void* is a generic pointer with no type inferred. It requires a cast to any defined type and printing void* just yields the address.
What else do I know? void* can't be dereferenced and thus far remains the one item in C/C++ from which I have discovered much written about but little understanding imparted.
I understand that it must be cast such as *(char*)void* but what makes no sense to me for a generic pointer is that I must somehow already know what type I need in order to grab a value. I'm a Java programmer; I understand generic types but this is something I struggle with.
So I wrote some code
typedef struct node
{
void* data;
node* link;
}Node;
typedef struct list
{
Node* head;
}List;
Node* add_new(void* data, Node* link);
void show(Node* head);
Node* add_new(void* data, Node* link)
{
Node* newNode = new Node();
newNode->data = data;
newNode->link = link;
return newNode;
}
void show(Node* head)
{
while (head != nullptr)
{
std::cout << head->data;
head = head->link;
}
}
int main()
{
List list;
list.head = nullptr;
list.head = add_new("My Name", list.head);
list.head = add_new("Your Name", list.head);
list.head = add_new("Our Name", list.head);
show(list.head);
fgetc(stdin);
return 0;
}
I'll handle the memory deallocation later. Assuming I have no understanding of the type stored in void*, how do I get the value out? This implies I already need to know the type, and this reveals nothing about the generic nature of void* while I follow what is here although still no understanding.
Why am I expecting void* to cooperate and the compiler to automatically cast out the type that is hidden internally in some register on the heap or stack?
I'll handle the memory deallocation later. Assuming I have no understanding of the type stored in void*, how do I get the value out?
You can't. You must know the valid types that the pointer can be cast to before you can dereference it.
Here are couple of options for using a generic type:
If you are able to use a C++17 compiler, you may use std::any.
If you are able to use the boost libraries, you may use boost::any.
Unlike Java, you are working with memory pointers in C/C++. There is no encapsulation whatsoever. The void * type means the variable is an address in memory. Anything can be stored there. With a type like int * you tell the compiler what you are referring to. Besides the compiler knows the size of the type (say 4 bytes for int) and the address will be a multiple of 4 in that case (granularity/memory alignment). On top, if you give the compiler the type it will perform consistency checks at compilation time. Not after. This is not happening with void *.
In a nutshell, you are working bare metal. The types are compiler directives and do not hold runtime information. Nor does it track the objects you are dynamically creating. It is merely a segment in memory that is allocated where you can eventually store anything.
The main reason to use void* is that different things may be pointed at. Thus, I may pass in an int* or Node* or anything else. But unless you know either the type or the length, you can't do anything with it.
But if you know the length, you can handle the memory pointed at without knowing the type. Casting it as a char* is used because it is a single byte, so if I have a void* and a number of bytes, I can copy the memory somewhere else, or zero it out.
Additionally, if it is a pointer to a class, but you don't know if it is a parent or inherited class, you may be able to assume one and find out a flag inside the data which tells you which one. But no matter what, when you want to do much beyond passing it to another function, you need to cast it as something. char* is just the easiest single byte value to use.
Your confusion derived from habit to deal with Java programs. Java code is set of instruction for a virtual machine, where function of RAM is given to a sort of database, which stores name, type, size and data of each object. Programming language you're learning now is meant to be compiled into instruction for CPU, with same organization of memory as underlying OS have. Existing model used by C and C++ languages is some abstract built on top of most of popular OSes in way that code would work effectively after being compiled for that platform and OS. Naturally that organization doesn't involve string data about type, except for famous RTTI in C++.
For your case RTTI cannot be used directly, unless you would create a wrapper around your naked pointer, which would store the data.
In fact C++ library contains a vast collection of container class templates that are useable and portable, if they are defined by ISO standard. 3/4 of standard is just description of library often referred as STL. Use of them is preferable over working with naked pointers, unless you mean to create own container for some reason. For particular task only C++17 standard offered std::any class, previously present in boost library. Naturally, it is possible to reimplement it, or, in some cases, to replace by std::variant.
Assuming I have no understanding of the type stored in void*, how do I get the value out
You don't.
What you can do is record the type stored in the void*.
In c, void* is used to pass around a binary chunk of data that points at something through one layer of abstraction, and recieve it at the other end, casting it back to the type that the code knows it will be passed.
void do_callback( void(*pfun)(void*), void* pdata ) {
pfun(pdata);
}
void print_int( void* pint ) {
printf( "%d", *(int*)pint );
}
int main() {
int x = 7;
do_callback( print_int, &x );
}
here, we forget thet ype of &x, pass it through do_callback.
It is later passed to code inside do_callback or elsewhere that knows that the void* is actually an int*. So it casts it back and uses it as an int.
The void* and the consumer void(*)(void*) are coupled. The above code is "provably correct", but the proof does not lie in the type system; instead, it depends on the fact we only use that void* in a context that knows it is an int*.
In C++ you can use void* similarly. But you can also get fancy.
Suppose you want a pointer to anything printable. Something is printable if it can be << to a std::ostream.
struct printable {
void const* ptr = 0;
void(*print_f)(std::ostream&, void const*) = 0;
printable() {}
printable(printable&&)=default;
printable(printable const&)=default;
printable& operator=(printable&&)=default;
printable& operator=(printable const&)=default;
template<class T,std::size_t N>
printable( T(&t)[N] ):
ptr( t ),
print_f( []( std::ostream& os, void const* pt) {
T* ptr = (T*)pt;
for (std::size_t i = 0; i < N; ++i)
os << ptr[i];
})
{}
template<std::size_t N>
printable( char(&t)[N] ):
ptr( t ),
print_f( []( std::ostream& os, void const* pt) {
os << (char const*)pt;
})
{}
template<class T,
std::enable_if_t<!std::is_same<std::decay_t<T>, printable>{}, int> =0
>
printable( T&& t ):
ptr( std::addressof(t) ),
print_f( []( std::ostream& os, void const* pt) {
os << *(std::remove_reference_t<T>*)pt;
})
{}
friend
std::ostream& operator<<( std::ostream& os, printable self ) {
self.print_f( os, self.ptr );
return os;
}
explicit operator bool()const{ return print_f; }
};
what I just did is a technique called "type erasure" in C++ (vaguely similar to Java type erasure).
void send_to_log( printable p ) {
std::cerr << p;
}
Live example.
Here we created an ad-hoc "virtual" interface to the concept of printing on a type.
The type need not support any actual interface (no binary layout requirements), it just has to support a certain syntax.
We create our own virtual dispatch table system for an arbitrary type.
This is used in the C++ standard library. In c++11 there is std::function<Signature>, and in c++17 there is std::any.
std::any is void* that knows how to destroy and copy its contents, and if you know the type you can cast it back to the original type. You can also query it and ask it if it a specific type.
Mixing std::any with the above type-erasure techinque lets you create regular types (that behave like values, not references) with arbitrary duck-typed interfaces.
My kernel module code needs to send signal [def.] to a user land program, to transfer its execution to registered signal handler.
I know how to send signal between two user land processes, but I can not find any example online regarding the said task.
To be specific, my intended task might require an interface like below (once error != 1, code line int a=10 should not be executed):
void __init m_start(){
...
if(error){
send_signal_to_userland_process(SIGILL)
}
int a = 10;
...
}
module_init(m_start())
An example I used in the past to send signal to user space from hardware interrupt in kernel space. That was just as follows:
KERNEL SPACE
#include <asm/siginfo.h> //siginfo
#include <linux/rcupdate.h> //rcu_read_lock
#include <linux/sched.h> //find_task_by_pid_type
static int pid; // Stores application PID in user space
#define SIG_TEST 44
Some "includes" and definitions are needed. Basically, you need the PID of the application in user space.
struct siginfo info;
struct task_struct *t;
memset(&info, 0, sizeof(struct siginfo));
info.si_signo = SIG_TEST;
// This is bit of a trickery: SI_QUEUE is normally used by sigqueue from user space, and kernel space should use SI_KERNEL.
// But if SI_KERNEL is used the real_time data is not delivered to the user space signal handler function. */
info.si_code = SI_QUEUE;
// real time signals may have 32 bits of data.
info.si_int = 1234; // Any value you want to send
rcu_read_lock();
// find the task with that pid
t = pid_task(find_pid_ns(pid, &init_pid_ns), PIDTYPE_PID);
if (t != NULL) {
rcu_read_unlock();
if (send_sig_info(SIG_TEST, &info, t) < 0) // send signal
printk("send_sig_info error\n");
} else {
printk("pid_task error\n");
rcu_read_unlock();
//return -ENODEV;
}
The previous code prepare the signal structure and send it. Bear in mind that you need the application's PID. In my case the application from user space send its PID through ioctl driver procedure:
static long dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
ioctl_arg_t args;
switch (cmd) {
case IOCTL_SET_VARIABLES:
if (copy_from_user(&args, (ioctl_arg_t *)arg, sizeof(ioctl_arg_t))) return -EACCES;
pid = args.pid;
break;
USER SPACE
Define and implement the callback function:
#define SIG_TEST 44
void signalFunction(int n, siginfo_t *info, void *unused) {
printf("received value %d\n", info->si_int);
}
In main procedure:
int fd = open("/dev/YourModule", O_RDWR);
if (fd < 0) return -1;
args.pid = getpid();
ioctl(fd, IOCTL_SET_VARIABLES, &args); // send the our PID as argument
struct sigaction sig;
sig.sa_sigaction = signalFunction; // Callback function
sig.sa_flags = SA_SIGINFO;
sigaction(SIG_TEST, &sig, NULL);
I hope it helps, despite the fact the answer is a bit long, but it is easy to understand.
You can use, e.g., kill_pid(declared in <linux/sched.h>) for send signal to the specified process. To form parameters to it, see implementation of sys_kill (defined as SYSCALL_DEFINE2(kill) in kernel/signal.c).
Note, that it is almost useless to send signal from the kernel to the current process: kernel code should return before user-space program ever sees signal fired.
Your interface is violating the spirit of Linux. Don't do that..... A system call (in particular those related to your driver) should only fail with errno (see syscalls(2)...); consider eventfd(2) or netlink(7) for such asynchronous kernel <-> userland communications (and expect user code to be able to poll(2) them).
A kernel module could fail to be loaded. I'm not familiar with the details (never coded any kernel modules) but this hello2.c example suggests that the module init function can return a non zero error code on failure.
People are really expecting that signals (which is a difficult and painful concept) are behaving as documented in signal(7) and what you want to do does not fit in that picture. So a well behaved kernel module should never asynchronously send any signal to processes.
If your kernel module is not behaving nicely your users would be pissed off and won't use it.
If you want to fork your experimental kernel (e.g. for research purposes), don't expect it to be used a lot; only then could you realistically break signal behavior like you intend to do, and you could code things which don't fit into the kernel module picture (e.g. add a new syscall). See also kernelnewbies.
I have been studying I2C driver (client) code for a while.
I have seen this function "i2c_get_clientdata" and "i2c_set_clientdata" every where.
I have seen the this question here .
Use of pointer to structure instead of creating static local copy
Some times i think like it is like "container_of" macro to get a pointer to the structure.
But still i didn't understood properly why to use it and when to use it.
Below i am posting a sample code where I see its usage.
If any one could help me understand why it is used there and when we shall use it when we write our own drivers.
struct max6875_data {
struct i2c_client *fake_client;
struct mutex update_lock;
u32 valid;
u8 data[USER_EEPROM_SIZE];
unsigned long last_updated[USER_EEPROM_SLICES];
};
static ssize_t max6875_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct i2c_client *client = kobj_to_i2c_client(kobj);
struct max6875_data *data = i2c_get_clientdata(client);
int slice, max_slice;
if (off > USER_EEPROM_SIZE)
return 0;
if (off + count > USER_EEPROM_SIZE)
count = USER_EEPROM_SIZE - off;
/* refresh slices which contain requested bytes */
max_slice = (off + count - 1) >> SLICE_BITS;
for (slice = (off >> SLICE_BITS); slice <= max_slice; slice++)
max6875_update_slice(client, slice);
memcpy(buf, &data->data[off], count);
return count;
}
Those functions are used to get/set the void *driver_data pointer that is part of the struct device, itself part of struct i2c_client.
This is a void pointer that is for the driver to use. One would use this pointer mainly to pass driver related data around.
That is what is happening in your example. The max6875_read is a callback getting a structu kobject. That kobject is an i2c_client which is enough to communicate with the underlying device using the driver_data pointer here allows to get back the driver related data (instead of using global variables for example).
AMD OpenCL Programming Guide, Section 6.3 Constant Memory Optimization:
Globally scoped constant arrays. These arrays are initialized,
globally scoped, and in the constant address space (as specified in
section 6.5.3 of the OpenCL specification). If the size of an array is
below 64 kB, it is placed in hardware constant buffers; otherwise, it
uses global memory. An example of this is a lookup table for math
functions.
I want to use this "globally scoped constant array". I have such code in pure C
#define SIZE 101
int *reciprocal_table;
int reciprocal(int number){
return reciprocal_table[number];
}
void kernel(int *output)
{
for(int i=0; i < SIZE; i+)
output[i] = reciprocal(i);
}
I want to port it into OpenCL
__kernel void kernel(__global int *output){
int gid = get_global_id(0);
output[gid] = reciprocal(gid);
}
int reciprocal(int number){
return reciprocal_table[number];
}
What should I do with global variable reciprocal_table? If I try to add __global or __constant to it I get an error:
global variable must be declared in addrSpace constant
I don't want to pass __constant int *reciprocal_table from kernel to reciprocal. Is it possible to initialize global variable somehow? I know that I can write it down into code, but does other way exist?
P.S. I'm using AMD OpenCL
UPD Above code is just an example. I have real much more complex code with a lot of functions. So I want to make array in program scope to use it in all functions.
UPD2 Changed example code and added citation from Programming Guide
#define SIZE 2
int constant array[SIZE] = {0, 1};
kernel void
foo (global int* input,
global int* output)
{
const uint id = get_global_id (0);
output[id] = input[id] + array[id];
}
I can get the above to compile with Intel as well as AMD. It also works without the initialization of the array but then you would not know what's in the array and since it's in the constant address space, you could not assign any values.
Program global variables have to be in the __constant address space, as stated by section 6.5.3 in the standard.
UPDATE Now, that I fully understood the question:
One thing that worked for me is to define the array in the constant space and then overwrite it by passing a kernel parameter constant int* array which overwrites the array.
That produced correct results only on the GPU Device. The AMD CPU Device and the Intel CPU Device did not overwrite the arrays address. It also is probably not compliant to the standard.
Here's how it looks:
#define SIZE 2
int constant foo[SIZE] = {100, 100};
int
baz (int i)
{
return foo[i];
}
kernel void
bar (global int* input,
global int* output,
constant int* foo)
{
const uint id = get_global_id (0);
output[id] = input[id] + baz (id);
}
For input = {2, 3} and foo = {0, 1} this produces {2, 4} on my HD 7850 Device (Ubuntu 12.10, Catalyst 9.0.2). But on the CPU I get {102, 103} with either OCL Implementation (AMD, Intel). So I can not stress, how much I personally would NOT do this, because it's only a matter of time, before this breaks.
Another way to achieve this is would be to compute .h files with the host during runtime with the definition of the array (or predefine them) and pass them to the kernel upon compilation via a compiler option. This, of course, requires recompilation of the clProgram/clKernel for every different LUT.
I struggled to get this work in my own program some time ago.
I did not find any way to initialize a constant or global scope array from the host via some clEnqueueWriteBuffer or so. The only way is to write it explicitely in your .cl source file.
So here my trick to initialize it from the host is to use the fact that you are actually compiling your source from the host, which also means you can alter your src.cl file before compiling it.
First my src.cl file reads:
__constant double lookup[SIZE] = { LOOKUP }; // precomputed table (in constant memory).
double func(int idx) {
return(lookup[idx])
}
__kernel void ker1(__global double *in, __global double *out)
{
... do something ...
double t = func(i)
...
}
notice the lookup table is initialized with LOOKUP.
Then, in the host program, before compiling your OpenCL code:
compute the values of my lookup table in host_values[]
on your host, run something like:
char *buf = (char*) malloc( 10000 );
int count = sprintf(buf, "#define LOOKUP "); // actual source generation !
for (int i=0;i<SIZE;i++) count += sprintf(buf+count, "%g, ",host_values[i]);
count += sprintf(buf+count,"\n");
then read the content of your source file src.cl and place it right at buf+count.
you now have a source file with an explicitely defined lookup table that you just computed from the host.
compile your buffer with something like clCreateProgramWithSource(context, 1, (const char **) &buf, &src_sz, err);
voilĂ !
It looks like "array" is a look-up table of sorts. You'll need to clCreateBuffer and clEnqueueWriteBuffer so the GPU has a copy of it to use.
I've been reading about the requirement that if OpenSSL is used in a multi-threaded application, you have to register a thread identification function (and also a mutex creation function) with OpenSSL.
On Linux, according to the example provided by OpenSSL, a thread is normally identified by registering a function like this:
static unsigned long id_function(void){
return (unsigned long)pthread_self();
}
pthread_self() returns a pthread_t, and this works on Linux since pthread_t is just a typedef of unsigned long.
On Windows pthreads, FreeBSD, and other operating systems, pthread_t is a struct, with the following structure:
struct {
void * p; /* Pointer to actual object */
unsigned int x; /* Extra information - reuse count etc */
}
This can't be simply cast to an unsigned long, and when I try to do so, it throws a compile error. I tried taking the void *p and casting that to an unsigned long, on the theory that the memory pointer should be consistent and unique across threads, but this just causes my program to crash a lot.
What can I register with OpenSSL as the thread identification function when using Windows pthreads or FreeBSD or any of the other operating systems like this?
Also, as an additional question:
Does anyone know if this also needs to be done if OpenSSL is compiled into and used with QT, and if so how to register QThreads with OpenSSL? Surprisingly, I can't seem to find the answer in QT's documentation.
I will just put this code here. It is not panacea, as it doesn't deal with FreeBSD, but it is helpful in most cases when all you need is to support Windows and and say Debian. Of course, the clean solution assumes usage of CRYPTO_THREADID_* family introduced recently. (to give an idea, it has a CRYPTO_THREADID_cmp callback, which can be mapped to pthread_equal)
#include <pthread.h>
#include <openssl/err.h>
#if defined(WIN32)
#define MUTEX_TYPE HANDLE
#define MUTEX_SETUP(x) (x) = CreateMutex(NULL, FALSE, NULL)
#define MUTEX_CLEANUP(x) CloseHandle(x)
#define MUTEX_LOCK(x) WaitForSingleObject((x), INFINITE)
#define MUTEX_UNLOCK(x) ReleaseMutex(x)
#define THREAD_ID GetCurrentThreadId()
#else
#define MUTEX_TYPE pthread_mutex_t
#define MUTEX_SETUP(x) pthread_mutex_init(&(x), NULL)
#define MUTEX_CLEANUP(x) pthread_mutex_destroy(&(x))
#define MUTEX_LOCK(x) pthread_mutex_lock(&(x))
#define MUTEX_UNLOCK(x) pthread_mutex_unlock(&(x))
#define THREAD_ID pthread_self()
#endif
/* This array will store all of the mutexes available to OpenSSL. */
static MUTEX_TYPE *mutex_buf=NULL;
static void locking_function(int mode, int n, const char * file, int line)
{
if (mode & CRYPTO_LOCK)
MUTEX_LOCK(mutex_buf[n]);
else
MUTEX_UNLOCK(mutex_buf[n]);
}
static unsigned long id_function(void)
{
return ((unsigned long)THREAD_ID);
}
int thread_setup(void)
{
int i;
mutex_buf = malloc(CRYPTO_num_locks() * sizeof(MUTEX_TYPE));
if (!mutex_buf)
return 0;
for (i = 0; i < CRYPTO_num_locks( ); i++)
MUTEX_SETUP(mutex_buf[i]);
CRYPTO_set_id_callback(id_function);
CRYPTO_set_locking_callback(locking_function);
return 1;
}
int thread_cleanup(void)
{
int i;
if (!mutex_buf)
return 0;
CRYPTO_set_id_callback(NULL);
CRYPTO_set_locking_callback(NULL);
for (i = 0; i < CRYPTO_num_locks( ); i++)
MUTEX_CLEANUP(mutex_buf[i]);
free(mutex_buf);
mutex_buf = NULL;
return 1;
}
I only can answer the Qt part. Use QThread::currentThreadId(), or even QThread::currentThread() as the pointer value should be unique.
From the OpenSSL doc you linked:
threadid_func(CRYPTO_THREADID *id) is needed to record the currently-executing thread's identifier into id. The implementation of this callback should not fill in id directly, but should use CRYPTO_THREADID_set_numeric() if thread IDs are numeric, or CRYPTO_THREADID_set_pointer() if they are pointer-based. If the application does not register such a callback using CRYPTO_THREADID_set_callback(), then a default implementation is used - on Windows and BeOS this uses the system's default thread identifying APIs, and on all other platforms it uses the address of errno. The latter is satisfactory for thread-safety if and only if the platform has a thread-local error number facility.
As shown providing your own ID is really only useful if you can provide a better ID than OpenSSL's default implementation.
The only fail-safe way to provide IDs, when you don't know whether pthread_t is a pointer or an integer, is to maintain your own per-thread IDs stored as a thread-local value.