F# Downcasting Slow? - events

I have a situation where I need to downcast twice in one procedure using :?>. I have a custom EventArgs class (which inherits System.EventArgs), and an instance of an abstract class within that custom EventArgs. Upon receiving the event, I need to downcast twice. Once for the custom EventArgs, and once for the abstract class within that custom EventArgs. I have to do this potentially millions of times a day, so I'm wondering if there's anything inherently slow about downcasting.

For grins, I put together the following little function:
let castToStream (o:Object) = o :?> Stream
and called it with the following code:
[<EntryPoint>]
let main argv =
let stm1 = new FileStream("output.tmp", FileMode.Create, FileAccess.ReadWrite, FileShare.Read)
let obj = stm1 :> Object
let stm2 = castToStream obj
0 // return an integer exit code
When it is compiled, castToStream turns into this IL:
.method public static class [mscorlib]System.IO.Stream
castToStream(object o) cil managed
{
// Code size 8 (0x8)
.maxstack 8
IL_0000: nop
IL_0001: ldarg.0
IL_0002: unbox.any [mscorlib]System.IO.Stream
IL_0007: ret
} // end of method Program::castToStream
which in this case is effectively 1 real instruction, unbox.any. Unbox.any for a reference type is equivalent to a castclass instruction. From the description, you'll take a one-time initial hit to load the type if it's not already loaded, then it's going to be a whatever magic is necessary to determine if the types are equivalent (likely using Type.IsAssignableFrom(), but I don't know for sure). However, unless your class hierarchy is super deep (and it shouldn't be), I would expect this to take microseconds on a typical machine.
For the curious, I initially had the code for castToStream inline, but the f# compiler saw through my shenanigans and removed all the casting entirely.

Related

When does c++ right value destruct in this scenario?

Here is the code:
class SomeType {
public:
SomeType() {}
~SomeType() {}
std::string xxx;
}
bool funtion_ab() {
SomeType(); // This is a right val;
// The right val destructs here when I test the code. I want to make sure that it would always destructs here.
int a = 0, b = 10;
....// other code
return true;
}
Please tell me if you know the truth. Thank you!
What you have is called a temporary object. From §6.7.7,
Temporary objects are created
when a prvalue is converted to an xvalue
or, more specifically,
[Note 3: Temporary objects are materialized:
...
when a prvalue that has type other than cv void appears as a discarded-value expression ([expr.context]).
— end note]
and, on the lifetime, the same section has this to say
Temporary objects are destroyed as the last step in evaluating the full-expression ([intro.execution]) that (lexically) contains the point where they were created.
You can read more about the expression semantics, but in your case "full-expression" is fairly unambiguous.
SomeType();
The "full-expression" containing your constructor call is... the constructor call itself. So the destructor will be called immediately after evaluating the constructor. There are some exceptions to this rule (such as if the temporary object is thrown as an exception or is bound as a reference), but none of those apply here.
As noted in the comments, compilers are free to inline your constructor and destructor calls and then are free to notice that they do nothing and omit them entirely. Optimizers can do fun stuff with your code, provided it doesn't change the semantics. But a strict reading of the standard states that the destructor is called exactly where you suggested.

Removing a std::function<()> from a vector c++

I'm building a publish-subscribe class (called SystermInterface), which is responsible to receive updates from its instances, and publish them to subscribers.
Adding a subscriber callback function is trivial and has no issues, but removing it yields an error, because std::function<()> is not comparable in C++.
std::vector<std::function<void()> subs;
void subscribe(std::function<void()> f)
{
subs.push_back(f);
}
void unsubscribe(std::function<void()> f)
{
std::remove(subs.begin(), subs.end(), f); // Error
}
I've came down to five solutions to this error:
Registering the function using a weak_ptr, where the subscriber must keep the returned shared_ptr alive.
Solution example at this link.
Instead of registering at a vector, map the callback function by a custom key, unique per callback function.
Solution example at this link
Using vector of function pointers. Example
Make the callback function comparable by utilizing the address.
Use an interface class (parent class) to call a virtual function.
In my design, all intended classes inherits a parent class called
ServiceCore, So instead of registering a callback function, just
register ServiceCore reference in the vector.
Given that the SystemInterface class has a field attribute per instance (ID) (Which is managed by ServiceCore, and supplied to SystemInterface by constructing a ServiceCore child instance).
To my perspective, the first solution is neat and would work, but it requires handling at subscribers, which is something I don't really prefer.
The second solution would make my implementation more complex, where my implementation looks as:
using namespace std;
enum INFO_SUB_IMPORTANCE : uint8_t
{
INFO_SUB_PRIMARY, // Only gets the important updates.
INFO_SUB_COMPLEMENTARY, // Gets more.
INFO_SUB_ALL // Gets all updates
};
using CBF = function<void(string,string)>;
using INFO_SUBTREE = map<INFO_SUB_IMPORTANCE, vector<CBF>>;
using REQINF_SUBS = map<string, INFO_SUBTREE>; // It's keyed by an iterator, explaining it goes out of the question scope.
using INFSRC_SUBS = map<string, INFO_SUBTREE>;
using WILD_SUBS = INFO_SUBTREE;
REQINF_SUBS infoSubrs;
INFSRC_SUBS sourceSubrs;
WILD_SUBS wildSubrs;
void subscribeInfo(string info, INFO_SUB_IMPORTANCE imp, CBF f) {
infoSubrs[info][imp].push_back(f);
}
void subscribeSource(string source, INFO_SUB_IMPORTANCE imp, CBF f) {
sourceSubrs[source][imp].push_back(f);
}
void subscribeWild(INFO_SUB_IMPORTANCE imp, CBF f) {
wildSubrs[imp].push_back(f);
}
The second solution would require INFO_SUBTREE to be an extended map, but can be keyed by an ID:
using KEY_T = uint32_t; // or string...
using INFO_SUBTREE = map<INFO_SUB_IMPORTANCE, map<KEY_T,CBF>>;
For the third solution, I'm not aware of the limitations given by using function pointers, and the consequences of the fourth solution.
The Fifth solution would eliminate the purpose of dealing with CBFs, but it'll be more complex at subscriber-side, where a subscriber is required to override the virtual function and so receives all updates at one place, in which further requires filteration of the message id and so direct the payload to the intended routines using multiple if/else blocks, which will increase by increasing subscriptions.
What I'm looking for is an advice for the best available option.
Regarding your proposed solutions:
That would work. It can be made easy for the caller: have subscribe() create the shared_ptr and corresponding weak_ptr objects, and let it return the shared_ptr.
Then the caller must not lose the key. In a way this is similar to the above.
This of course is less generic, and then you can no longer have (the equivalent of) captures.
You can't: there is no way to get the address of the function stored inside a std::function. You can do &f inside subscribe() but that will only give you the address of the local variable f, which will go out of scope as soon as you return.
That works, and is in a way similar to 1 and 2, although now the "key" is provided by the caller.
Options 1, 2 and 5 are similar in that there is some other data stored in subs that refers to the actual std::function: either a std::shared_ptr, a key or a pointer to a base class. I'll present option 6 here, which is kind of similar in spirit but avoids storing any extra data:
Store a std::function<void()> directly, and return the index in the vector where it was stored. When removing an item, don't std::remove() it, but just set it to std::nullptr. Next time subscribe() is called, it checks if there is an empty element in the vector and reuses it:
std::vector<std::function<void()> subs;
std::size_t subscribe(std::function<void()> f) {
if (auto it = std::find(subs.begin(), subs.end(), std::nullptr); it != subs.end()) {
*it = f;
return std::distance(subs.begin(), it);
} else {
subs.push_back(f);
return subs.size() - 1;
}
}
void unsubscribe(std::size_t index) {
subs[index] = std::nullptr;
}
The code that actually calls the functions stored in subs must now of course first check against std::nullptrs. The above works because std::nullptr is treated as the "empty" function, and there is an operator==() overload that can check a std::function against std::nullptr, thus making std::find() work.
One drawback of option 6 as shown above is that a std::size_t is a rather generic type. To make it safer, you might wrap it in a class SubscriptionHandle or something like that.
As for the best solution: option 1 is quite heavy-weight. Options 2 and 5 are very reasonable, but 6 is, I think, the most efficient.

Does Dart create new methods for each new instance?

I'm currently designing a class structure for a project I'm working on. I have a method that uses one instance state. I don't now wheter it's better to make this method static and parse this instance state as an argument or just tie the method to the instance.
If performance was no issue I would tie the method without any doubt to the instance, because it's much cleaner that way. But in my case performance will be really crucial. So, does it make any difference performance-wise to make the method static / non-static?
If it makes no difference, will that be true for the generated *.dart.js javascript aswell?
Edit:
After reading my own question it's not really coherent. I will try to formulate it again, but clearer.
This code ...
class MyClass {
void foo() {}
}
void main() {
MyClass a = new MyClass();
MyClass b = new MyClass();
print(a.foo == b.foo);
}
... outputs false. This make me think that for each new instance a new method is created. If that is true this seems to me as a waste of memory. So, does each new instance create a copy of all it's bound methods?
PS: The question is basically the same as this question, but then for Dart.
No, creating two instances doesn't duplicate the methods. Methods are like static functions where the object instance is passesd as argument with the name this.
Don't worry too much about performance before you run into actual performance issues especially at such micro-level.
Usually performance isn't a matter for the bigger part of your applications code base because most of the code is usually run very seldom.
When you run into performance issues you can investigate and find the real hot spots that are executed often enough so that optimization actually makes a difference.
Dart classes don't have different methods for different instances.
There is only one method per class.
Extracting a function creates a new function object every time you do it, and those objects may or may not be equal depending on which function you extract from which objects:
class MyClass {
void foo() {}
}
void main() {
MyClass a = new MyClass();
MyClass b = new MyClass();
print(a.foo == b.foo); // False.
print(a.foo == a.foo); // True
print(identical(a.foo, a.foo)); // False!
}
When you perform a method extraction from an object, you create a new object. The new object is a "closure" which contains the function to call and the object to call it on. Two such closures are equal (according to operator==) if they refer to the same function on the same object. That's why a.foo and b.foo are not equal - they are equivalent to () => a.foo() and () => b.foo() respectively, and since a and b are not the same object, the function objects are not considered equal.

F# constructor syntax - overiding and augmenting new

I have a non-disposable class with Open/Close syntax that I'd like to be able to use, so I'm trying to inherit from it, and work the Open into the new and the Close into Dispose.
The second part is ok, but I can't work out how to do the Open:
type DisposableOpenCloseClass(openargs) =
inherit OpenCloseClass()
//do this.Open(openargs) <-- compiler no like
interface IDisposable
with member this.Dispose() = this.Close()
(cf. this question which I asked a long time ago, but I can't join the dots to this one)
Key is as this:
type OpenCloseClass() =
member this.Open(x) = printfn "opened %d" x
member this.Close() = printfn "closed"
open System
type DisposableOpenCloseClass(openargs) as this =
inherit OpenCloseClass()
do this.Open(openargs)
interface IDisposable
with member this.Dispose() = this.Close()
let f() =
use docc = new DisposableOpenCloseClass(42)
printfn "inside"
f()
As Brian suggests, you can use the as this clause. However, in F#, it is usually recomended to use subclassing (inheritance) only when there is a really good reason for that (e.g. you need to implement some virtual class and pass it to a .NET library).
If I was implementing your example, I would probably prefer function returning IDisposable using a simple object expression:
let disposableOpenClose(openargs) =
let oc = new OpenCloseClass()
oc.Open(openargs)
{ new IDisposable with
member this.Dispose() = oc.Close() }
let f() =
use docc = disposableOpenClose(42)
printfn "inside"
To some point, this is just a personal preference, but I think it is a preferred option, because it is simpler than using inheritance (although I don't have any document to link here :-)). Also, the compiled code may be a bit simpler, because handling as this may require some runtime checks.

What's so great about Func<> delegate?

Sorry if this is basic but I was trying to pick up on .Net 3.5.
Question: Is there anything great about Func<> and it's 5 overloads? From the looks of it, I can still create a similar delgate on my own say, MyFunc<> with the exact 5 overloads and even more.
eg: public delegate TResult MyFunc<TResult>() and a combo of various overloads...
The thought came up as I was trying to understand Func<> delegates and hit upon the following scenario:
Func<int,int> myDelegate = (y) => IsComposite(10);
This implies a delegate with one parameter of type int and a return type of type int. There are five variations (if you look at the overloads through intellisense). So I am guessing that we can have a delegate with no return type?
So am I justified in saying that Func<> is nothing great and just an example in the .Net framework that we can use and if needed, create custom "func<>" delegates to suit our own needs?
Thanks,
The greatness lies in establishing shared language for better communication.
Instead of defining your own delegate types for the same thing (delegate explosion), use the ones provided by the framework. Anyone reading your code instantly grasps what you are trying to accomplish.. minimizes the time to 'what is this piece of code actually doing?'
So as soon as I see a
Action = some method that just does something and returns no output
Comparison = some method that compares two objects of the same type and returns an int to indicate order
Converter = transforms Obj A into equivalent Obj B
EventHandler = response/handler to an event raised by some object given some input in the form of an event argument
Func = some method that takes some parameters, computes something and returns a result
Predicate = evaluate input object against some criteria and return pass/fail status as bool
I don't have to dig deeper than that unless it is my immediate area of concern. So if you feel the delegate you need fits one of these needs, use them before rolling your own.
Disclaimer: Personally I like this move by the language designers.
Counter-argument : Sometimes defining your delegate may help communicate intent better. e.g. System.Threading.ThreadStart over System.Action. So it’s a judgment call in the end.
The Func family of delegates (and their return-type-less cousins, Action) are not any greater than anything else you'd find in the .NET framework. They're just there for re-use so you don't have to redefine them. They have type parameters to keep things generic. E.g., a Func<T0,bool> is the same as a System.Predicate<T> delegate. They were originally designed for LINQ.
You should be able to just use the built-in Func delegate for any value-returning method that accepts up to 4 arguments instead of defining your own delegate for such a purpose unless you want the name to reflect your intention, which is cool.
Cases where you would absolutely need to define your delegate types include methods that accept more than 4 arguments, methods with out, ref, or params parameters, or recursive method signatures (e.g., delegate Foo Foo(Foo f)).
In addition to Marxidad's correct answer:
It's worth being aware of Func's related family, the Action delegates. Again, these are types overloaded by the number of type parameters, but declared to return void.
If you want to use Func/Action in a .NET 2.0 project but with a simple route to upgrading later on, you can cut and paste the declarations from my version comparison page. If you declare them in the System namespace then you'll be able to upgrade just by removing the declarations later - but then you won't be able to (easily) build the same code in .NET 3.5 without removing the declarations.
Decoupling dependencies and unholy tie-ups is one singular thing that makes it great. Everything else one can debate and claim to be doable in some home-grown way.
I've been refactoring slightly more complex system with an old and heavy lib and got blocked on not being able to break compile time dependency - because of the named delegate lurking on "the other side". All assembly loading and reflection didn't help - compiler would refuse to just cast a delegate() {...} to object and whatever you do to pacify it would fail on the other side.
Delegate type comparison which is structural at compile time turns nominal after that (loading, invoking). That may seem OK while you are thinking in terms of "my darling lib is going to be used forever and by everyone" but it doesn't scale to even slightly more complex systems. Fun<> templates bring a degree of structural equivalence back into the world of nominal typing . That's the aspect you can't achieve by rolling out your own.
Example - converting:
class Session (
public delegate string CleanBody(); // tying you up and you don't see it :-)
public static void Execute(string name, string q, CleanBody body) ...
to:
public static void Execute(string name, string q, Func<string> body)
Allows completely independent code to do reflection invocation like:
Type type = Type.GetType("Bla.Session, FooSessionDll", true);
MethodInfo methodInfo = type.GetMethod("Execute");
Func<string> d = delegate() { .....} // see Ma - no tie-ups :-)
Object [] params = { "foo", "bar", d};
methodInfo.Invoke("Trial Execution :-)", params);
Existing code doesn't notice the difference, new code doesn't get dependence - peace on Earth :-)
One thing I like about delegates is that they let me declare methods within methods like so, this is handy when you want to reuse a piece of code but you only need it within that method. Since the purpose here is to limit the scope as much as possible Func<> comes in handy.
For example:
string FormatName(string pFirstName, string pLastName) {
Func<string, string> MakeFirstUpper = (pText) => {
return pText.Substring(0,1).ToUpper() + pText.Substring(1);
};
return MakeFirstUpper(pFirstName) + " " + MakeFirstUpper(pLastName);
}
It's even easier and more handy when you can use inference, which you can if you create a helper function like so:
Func<T, TReturn> Lambda<T, TReturn>(Func<T, TReturn> pFunc) {
return pFunc;
}
Now I can rewrite my function without the Func<>:
string FormatName(string pFirstName, string pLastName) {
var MakeFirstUpper = Lambda((string pText) => {
return pText.Substring(0,1).ToUpper() + pText.Substring(1);
});
return MakeFirstUpper(pFirstName) + " " + MakeFirstUpper(pLastName);
}
Here's the code to test the method:
Console.WriteLine(FormatName("luis", "perez"));
Though it is an old thread I had to add that func<> and action<> also help us use covariance and contra variance.
http://msdn.microsoft.com/en-us/library/dd465122.aspx

Resources