DRAM and its effects on real world performance - performance

After learning a little on how computer programs run I had some thoughts concerning the cpu and RAM. After watching a few youtube videos (linus tech tips and others) they all seem to show that increasing a RAM speed (frequency) does not really have much of a performance improvement in real world applications and games on a general desktop computer. My first question is why is this? Is it because of the high hit rates (95% and above) of the cpu's cache on most modern cpus? Which in turn would lead to less and less need for the cpu to reach out to ram? Also, in which situations would faster RAM frequency be beneficial?

NOTE: this is a very broad question, and the answers can vary very differently depending on the architecture/OS running the system. I am answering from a best-judgement standpoint on how these things generally work
Why is there not a larger performance difference between different RAM clock speeds?
I would imagine that the clock speed of the RAM of the computer matters less than the clock speed of the CPU cache. Because:
the CPU gets its instructions from the cache, not straight from RAM
with the larger cache sizes of modern CPU's, it is less necessary to need to go out to RAM as often.
When the cache needs to go out to RAM, it uses an asynchronous processor (DMA) to grab more information, allowing the CPU to switch to a different process entirely.
Besides that, the clock speed of the motherboard's various pipelines (DMA) could be creating a chokepoint where it is slowing the transfer rate of the information overall.
which situations would faster RAM frequency be beneficial?
I would say that overall, any one of the core pieces of hardware involved with memory and its use and transfer (CPU, CPU Cache, The Various memory pipelines, the various memory transfer devices (DMA, etc.), the RAM itself) can cause a chokepoint where faster RAM might or might not affect the overall performance. It is really a by-case issue.

Related

Discrete GPU to reduce memory contention & improve CPU performance

I have long suspected the shared RAM of integrated GPUs causes memory contention and significantly slows the performance of the CPU. Especially in the context of compiler and IDE performance.
Have you done any experiments or noticed a difference when adding or removing a discrete graphics card?
Are you aware of any studies on this subject? (I could not find any)
For video there's 2 uses of memory - reading the frame buffer's contents and sending it to the monitor every frame; and whatever the GPU happens to be doing.
For the GPU there's no way to guess.
For reading the frame buffer; for a video mode like 1920x1600 with 32 bits per pixel you're looking at 12.288 MB per frame, so at 60 frames per second that's 0.737 GB/s. A single RAM module is typically capable of "tens of GB per second" (e.g. DDR4-3200 is 25.6 GB/s according to wikipedia). From this you can assume reading from the framebuffer consumes less than 10% of one RAM module's bandwidth. Of course for most systems there's multiple RAM modules and multiple memory channels; so it's likely to be significantly less than 10% of available RAM bandwidth.
Also note that CPUs typically use caches for most memory accesses and only need RAM bandwidth for "cache miss" (e.g. you could have 8 CPUs pounding caches and still have almost all of the usable RAM bandwidth wasted/being used for nothing); so devices of all types (e.g. disk controllers, network cards, USB controllers, sound cards, discrete and integrated video) using RAM bandwidth won't necessarily effect CPU performance.
There are also other (potentially more significant) factors for performance too. For example, for modern integrated video, GPU is in the same package as the CPUs, so when the GPU is going berserk heating up the package the CPUs may need to slow down to avoid melting everything. Discrete video cards don't have this problem (they have the "spend several hundred extra $$ to be deafened by excessive fan noise while you're sitting in a puddle of your own perspiration" problem instead ;) ).
Mostly; everything involved (which hardware, which software, which other devices) is too variable for a concrete measurement of one specific case to be meaningful; so I wouldn't expect to find any studies.

Memory performance vs Utilization

Question: How is memory (RAM) performance (read/write speeds, etc.) affected by total utilization.
Background:
I am curious if there is a performance impact for reading/writing to system memory based on the overall utilization of that memory
If performance degrades at higher utilization, what is the relationship between utilization and performance? Is this linear? Or at some point is there a significant drop in performance?
If there is a drop in performance with higher utilization, is there a point at which it becomes faster to use swap on an SSD on a SATA bus? Where does this point occur?
Outcome:
All else being equal, I'm curious if there should be a specific target for memory utilization to get the best performance from a machine as on the one hand, having more stuff in system memory should make things faster than having to read from disk, but at some point surely, the overall memory performance is materially affected by some overhead from high memory utilization right?
This sounds a bit like a superuser.com question, not stackoverflow.
Time to allocate new memory might increase slightly as the system approaches 100% full.
If you don't have any swap space, Linux will pick a processes using a lot of RAM and kill it pre-emptively when the system is approaching OOM. (google oom-killer.)
Access time to already allocated memory is not at all influenced by the fraction of total memory in use. A program that uses 1GB of memory with some specific access pattern will show the same performance on a machine with 2G vs. a machine with 16GB of RAM.
Virtual->physical mappings are defined by page tables, which by themselves could give slower performance for lookups when more memory is allocated to a process. (each process has its own page table). Again, this is not %-full dependent, simply size. However, these lookups need to be cached by the CPU hardware TLB.
See Ulrich Drepper's What Every Programmer Should Know About Memory for more background on this stuff.

Performance related to ram speed

My question is: why overclocking the RAMs does not bring a significant performance increasing?
If I speed up their frequency and/or their latency, I will not get big advantages.
I can't understand it, considering that the CPU should be able to read and write faster as well as processing data.
Or maybe the bottleneck is getting smaller because of faster CPUs?
Please give me as much information as you can.
Regards.
I think this is because of two reasons:
Keep in mind that not all operations that the CPU does are writing or reading from RAM. While it waits for RAM, it can be computing other things. I don't know what the average RAM-based-operations versus register-based operations ratio.
CPU's have ultra fast memory, called L1-, L2-, L3-Cache. These memory units are very very fast, but keep only a few megabytes of data.

Estimating how processor frequency affects I/O performance

I am doing research about dedicated I/O software that would run on consumer hardware. Essentially it boils down to saving huge data streams for later processing. Right now I am looking for a model to estimate performance factors on x86.
Take for example the new Macbook Pro:
high-speed Thunderbolt I/O (input/output) technology delivers
an amazing 10 gigabits per second of transfer speeds in both
directions
1.25 GB/s sounds nice but most processors of the day are clocked around 2 Ghz. Multiple cores make little difference as long as only one can be assigned per network channel.
So even if the software acts as a miniature operating system and limits itself to network/disk operations, the amount of data flowing to storage can't be greater than P / (2 * N)[1] chunks per second. Although this hints the rough performance limit, I feel it's far from adequate.
What other considerations should one take estimating I/O performance in regards to processor frequency and other hardware specifics? For simplicity's sake, assume here that storage performs instantly under all circumstances.
[1] P - processor frequency; N - algorithm overhead
The hardware limiting factors are probably the I/O bus performance, say PCIe, and more recently, the FSB clock-rates, since memory controllers are moving from northbridge to the CPUs themselves.
Then, of course, you have to figure out what sort of processing you need to do on the input, and how much work it is to produce the output. These, at least for conventional software running on a CPU, are dependent on the processor clock, but not only. Writing your code to take advantage of the hardware facilities like caches, instruction-level parallelism, etc. is still a black art but can give you an order of magnitude performance boost.
Basically what I'm ranting about is that not all software is created equal, and you probably want to take that into account.
Likely, harddisk controllers will decide the harddisk I/O performance, graphics cards will decide maximum resolution and refresh I/O performance, and so on. Don't really understand the question, the CPU is becoming less and less involved in these kinds of things (well, has been for the last 10 years).
I doubt the question will even have bearing on CPUs with integrated GPUs, since the buffer to be output to screen is in external memory sharing a bus with (again) a controller on the motherboard.
It's all buffered, so I can only see CPUs affecting file performance if you somehow force the hardware buffer size to something insanely puny. Edit: and I'm pretty sure Apple will prevent you from doing such things. ;)
For Thunderbolt specifically, it's more about what the minimum CPU model is, that supports the kinds of bus speeds required by the Thunderbolt chip set version that is in the machine in question.
Thunderbolt is a raw data traffic system and performance specs are potential maximums, hence all the asterisks in the Apple specs. I believe it will indeed alleviate bottlenecks and in general give lag-free intelligent data shuffling doing many things simultaneously.
The CPU will idle-wait a shorter time for needed data, but the processing speed of the data is the same. When playing or creating a movie, codec processing time will be the same, but you will still feel a boost/lack of lag because the data is there when it needs it. For the I/O, the bottleneck will become the read/write speed of your harddisk instead, and the CPU bottleneck (for file copy operations, likely at least some code in Finder) will stay the same.
In other words, only CPU-intensive tasks such as for example movie encoding will benefit significantly from a faster CPU, while the benefits of Thunderbolt vs. a mix of interfaces will boost machines with both slow and fast CPUs.

CPU Utilization and threads

We have a transaction intensive process at one customer site running on a quad core server with four processors. The process is designed to take advantage of every core available. So in this installation, we take an input queue, divide it by 16th's and allocate each fraction of the queue to a core. It works well and keeps up with the transaction volume on the box.
Looking at the CPU utilization on the box, it never seems to go above 33%. Now we have a new customer with at least double the volume of the existing customer. Some of us are arguing that since CPU usage is way below maximum utilization, that we should go with the same configuration.
Others claim that there is no direct correlation between cpu utilization and transaction processing speed and since the logic of the underlying software module is based on the number of available cores, that it makes sense to obtain a box with proportionately more cores available for the new client to accommodate the increased traffic volume.
Does anyone have a sense as to who is right in this instance?
Thank you,
To determine the optimum configuration for your new customer, understanding the reason for low CPU usage is paramount.
Very likely, the reason is one of the following:
Your process is limited by memory bandwidth. In this case, faster RAM will help if supported by the motherboard. If possible, a redesign to limit the amount of data accessed during processing will improve performance. Adding more CPU cores will, on its own, do nothing to improve performance.
Your process is limited by disk I/O. Using faster disk connections (SATA etc.) and/or upgrading to a SSD might help, but more CPU power will not.
Your process is limited by synchronization contention. In this case, adding more threads for more cores might even be counter productive. Redesigning your algorithm might help in this case.
Having said this, I have also seen situations where processes that are definitely CPU bound fail to achieve 100% CPU usage on modern processors (Core i7 etc.) because in certain turbo boost relevant cases, task manager will show less than 100%.
As 9000 said, you need to find out what your bottlenecks are when under load. Perfmon might provide enough data to find out.
Another afterthought: You could limit your process on the existing machine to part of the cores (but still at least 30% so that theoretically, CPU doesn't become a bottleneck due to this limitation) and check if overall throughput degrades. If it does not, adding more cores will not improve performance.

Categories

Resources