Primality test predicate isPrime/1 in Prolog - prolog

I am trying to understand solutions of exercises in order to prepare my logic programming exam and somehow I could not understand the logic of the code below.
Explanations in the question:
n is a prime number n > 1 and 1 < m < n
n/m has a non-zero remainder.
Here is the code:
isPrime(X) :- help(X,X).
help(X,Y) :-
Y > 2,
LOW is Y-1,
Z is X mod LOW,
Z > 0,
help(X,LOW).
help(X,2).
Could someone please explain the code for me.

This code is attempting to determine if X is a prime number, by doing the following:
let Y = X initially
1. Check to see if the number (Y) is greater than 2.
2. Assign a new variable (LOW) one-less than the starting number (Y-1)
3. If X mod LOW is greater than zero, then recurse with LOW as the new Y
Repeat this until X mod LOW is greater than zero and your mod is 1 (Y=2), then if I'm reading this (and remembering the formula) correctly, you should have X as a prime.
If at some point X mod LOW equals zero, then X is a non-prime.
Example: X=6 (non-prime)
Y=6, LOW=5, Z = 6 mod 5 = 1 --> help(6,5)
Y=5, LOW=4, Z = 6 mod 4 = 2 --> help(6,4)
Y=4, LOW=3 Z = 6 mod 3 = 0 --> non prime because it's divisible by 3 in this case
Example: X=5 (prime)
Y=5, LOW=4, Z= 5 mod 4 = 1 --> help(5,4)
Y=4, LOW=3, Z= 5 mod 3 = 2 --> help(5,3)
Y=3, LOW=2 Z= 5 mod 2 = 3 --> help(5,2)
Y=2, --> once you get to this point, X is prime, because LOW=1,
and any number mod 1 is greater than zero, and you can't "X mod 0".
Make sense? It's effectively iterating over numbers less than X to see if it divides equally (mod = 0).

OK. The definition of a prime number :
An integer n is prime if the following holds true:
N is greater than 1, and
N is divisible only by itself and 1.
Since every integer is (A) divisible by itself, and (B) divisible by 1, there is no real need to check that these conditions hold true. The real constraint that must be checked is this:
For a number n to be prime, the following constraints must be satisfied:
n must be greater than 1, and
No m must exist in the domain 1 > m < n such that n is divisible by m
Your help/2 predicate enforces that second constraint, by seeding its second argument with the test value, and decrementing it, looking for an m that divides n.
An easier way might be to write the test in a declarative manner and let Prolog figure it out for you:
is_prime(2). % 2 is prime by definition.
is_prime(N) :- % otherwise, N is prime if,
N > 2 , % - N is greater than 2, and
0 =\= N mod 2 % - and N is odd (no real need to check even numbers, eh?
not_divisible(3,N) % - and N is not divisible any other odd number in the range 3 -- (N-1)
.
not_divisible(N,N) . % if we've counted up to N, we're good.
not_divisible(M,N) :- % otherwise...
M < N , % - if M is less than N, and
0 =:= N mod M % - and N is not divisible by M, then
M1 is M-1 , % - decrement M, and
not_divisible(M1,N) % - recurse down on the newly decremented M
. %

Related

Special Pairs till N

Given a number N (1 <= N <= 10^50), Find number of unique pairs (x,y) such that sum of digits of x + sum of digits of y is prime.
x,y <= N;
Test Case - N=5
output - 6
explanation - pairs are (1,2), (1,4), (2,3), (2,5), (3,4)
Note - (x,y), (y,x) are equivalent.So, if (2,5) is included then (5,2) is not.
This question was asked in a competitive programming contest.I couldn't figure how to do it.Has anyone got some ideas?
Observation 1:
Primes you want to consider are smaller than 1000.
(Because sum of all digits of a number <= 10^50 is <= 50*9 <= 500)
Observation 2:
There exists only one pair (x, x) that gives you a prime number. (What is (1, 1), because 1 + 1 = 2, for any x you get an even number, which must be 2 or is not a prime number)
Let's say you have a wizard friend that told you all the results of function f for a given n, where f(x) = number of numbers smaller than n which sum of digits is equal x.
Now find all primes up to 1000 and for each x from 0 to 500 and for each p - prime calculate f(x) * f(p - x).
Sum of the values you've calculated is equal to 2 * answer - 1. (Because of duplicates and that (1, 1) is the only pair (x, y) that x = y and it gives a prime number). So you only check up to 500*1000 possibilities.
The only thing left is to calculate function f.
You can do it using dynamic programming.
Let g(x, d, e) = number of d-digit numbers which sum of digits is equal x. If e = 1, the number you're considering is equal to first d digits of n, otherwise it's smaller.
x <= 500, d <= 50, e <= 1
You can easily see that you have up to 500*50*2 states.
Let's say you know all the previous values of g and you want to calculate g(x, d, 0).
You take any d - 1 digit number and add a digit y for each 0 <= y <= 9. Since you want to get x, it's previous sum of digits must have been equal to x - y. You also want it smaller than n, so you take g(x - y, d - 1, 0) and if y is smaller than dth digit of n, add also g(x - y, d - 1, 1).
Formula for g(x, d, 1):
You take any d - 1 digit number and add a digit y that y is equal to dth digit of n. Then your result is g(x - y, d - 1, 1).
Number of different options to consider is equal 500*50*2*10, which should be enough.

Can we find the Bitwise XOR of all sub-arrays of an integer array in O(n) time?

How to find the Bitwise XOR of the value of all sub arrays of array A
A = [1,2]
Output : 0
Explanation :
Sub Arrays :`[1], [2], [1,2]` (XOR of all subarrays = 0)
To answer the question, one has to decide, for each element, whether it appears in an odd or an even number of subarrays. It odd, it will appear in the xor sum, and if even it won't.
The element at position i will be included in (i+1) * (n-i) subarrays. That's because any subarray that includes i starts at index 0, 1, ..., i. And ends at index i, i+1, ..., n-1. Now (i+1) * (n-1) = i(n-1) + i*i + n = (i+1)n (mod 2) since for x^2 = x (mod 2) for any x.
So if n is even, no element appears in an odd number of subarrays. If n is odd, elements at even indices appear in an odd number of subarrays.
So:
def xor_all_subarrays(A):
if len(A) % 2 == 0:
return 0
r = 0
for i in xrange(0, len(A), 2):
r ^= A[i]
return r
If with subarrays you mean powersets, you can use the fact that:
for a list of size n, there are 2n lists and each element occurs in 2n/2; and
the bitwise xor operation is commutative and associative: x ^ y ^ z is equal to z ^ x ^ y.
Now if the list is larger than one element, every element occurs: 2n/2 times which is a power of two. If you xor an element two times, the result is 0: x ^ x = 0 for every x. So since it is a power of two (larger than or equal to two), the xoring of every element a power of two, the result will be 0. In case there is one element, the two subarrays are [] and [x] so in that case the outcome is x. So a fast algorithm is:
def xor_subarrays_powerset(data):
if len(data) == 1:
return data[0]
else:
return 0
In the case these are contiguousness lists based on there index, the story is a bit different:
here element j (zero indexed) will be in:
n
---
\
/ min(j+1,n,i-n+1,n-j)
---
i=1
Indeed if you have a list [1,2,3,4]: there are the following "windows":
1,2,3,4
x
x
x
x
1 1 1 1
x x
x x
x x
1 2 2 1
x x x
x x x
1 2 2 1
x x x x
1 1 1 1
-------
4 6 6 4
and for a list with length 5
1,2,3,4,5
x
x
x
x
x
1 1 1 1 1
x x
x x
x x
x x
1 2 2 2 1
x x x
x x x
x x x
1 2 3 2 1
x x x x
x x x x
1 2 2 2 1
x x x x x
1 1 1 1 1
---------
5 8 9 8 5
So what do we note:
for a list, the first and last element is always counted n times. This is logical since every moving window only passes once through these elements.
the second and one but last element are always counted 2×(n-2)+2 times. Since all windows except the smallest and the largest pass two times;
the third and the two but last elements are always counted 3× (n-4)+2×2+2 times;
the fourth and the three but last elements are always counted 4×(n-6)+3×2+2×2+2; and in general:
the i-th and n-i-th elements (indexed zero, i&leq;n/2) are counted (i+1)×(n-2×i)+.... The ... is not important since these are all multiples of two. Since an element xored with itself is 0, multiples of two do not count.
So now we only need to determine whether the elements contribute even, or odd to the total. We know that if the list has an even length, n is even, and thus all (n-2×i), so that means that no element will contribute and the result is thus 0. In case the list is odd, the first element will contribute odd (because (i+1)×(n-2×i) is odd) and the next element will contribute even, the next element will again contribute odd.
So if the list has an odd length, it means that we only need to xor over the elements positioned at 0, 2, 4,... We can do this with:
from itertools import islice
def xor_subarrays_contiguousness(data):
if len(data)&1:
r = 0
for e in islice(data,0,None,2):
r ^= e
return r
else:
return 0

Need help in solving the following efficiently in terms of time complexity

I am trying to solve the problem below for the last two days. I can't think of any solution for it other than brute force. Any kind of hints or references will be appreciated. TIA.
"Given N distinct prime integers i.e p1, p2,..., pN and an interval [L,R]. Calculate the number of integers in this interval that are divisible by at least one of the given primes."
N is very small (1<=N<=10) and L,R are very big (1<=L<=R<=10^10)
First note, it's easier to restrict the problem, and ignore the lower bound (ie: treat L=1). If we can count numbers divisible by the primes <= N for any N, we can also count them on an interval, by subtracting the count of numbers <= L-1 from the count <= R.
Given any number x, the count of numbers <= R divisible by x is floor(R / x).
Now, we can apply the inclusion-exclusion principle to get the result. First, I'll show the results by hand for 3 primes p1, p2 and p3, and then give the general result.
The count of numbers <= R divisible by p1, p2 or p3 is:
R / p1 + R / p2 + R / p3
- R / (p1p2) - R / (p1p3) - R / (p2p3)
+ R / (p1p2p3)
(Here / is assumed to be rounding-down integer division).
The general case is as follows:
sum((-1)^(|S|+1) * R / prod(S) for S a non-empty subset of {p1, p2, .., pN}).
Here S ranges over all subsets of your primes, prod(S) is the product of the primes in the subset, and the initial term varies between -1 and +1 depending on the size of the subset.
For your problem, N<=10, so there's 1023 non-empty subsets which a small number of things to iterate over.
Here's some example Python code:
from itertools import *
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def prod(ns):
r = 1
for n in ns:
r *= n
return r
def divs(primes, N):
r = 0
for S in powerset(primes):
if not S: continue
sign = 1 if len(S) % 2 else -1
r += sign * (N // prod(S))
return r
def divs_in_range(primes, L, R):
return divs(primes, R) - divs(primes, L-1)
Note, that the running time of this code is more-or-less only dependent on the number of primes, and not so much on the magnitudes of L and R.
Assuming n is the interval size and N is const.
For each prime p, there should be roughly (R-L) / p numbers in the interval divisible by the prime.
Finding the first number divisible by p in interval: L' = L + (p - L % p).
Now if L' > R, there is none; otherwise there are 1 + floor((R-L') / p).
Example: 3, [10, 20]:
L' = 10 + 3 - 10 % 3 = 12.
Numbers divisible by 3 in the interval: 1 + floor((20 - 12) / 3) = 3
Note: So far we haven't used the fact that p1..pN are primes.
Remaining problem seems to be: How to avoid counting a number divisible by multiple primes multiple times? Example: Assuming we have 3,5 and [10, 20], we need to avoid counting 15 twice...
Maybe we can just count divisibility by (p1*p2) etc. using the counting algorithm above, and reduce the total accordingly? If N ist const, this should still be const time. Because p1...pN are prime, all their products need to be different (as any number can't have more than one prime factorizations).

Why do we check up to the square root of a number to determine if the number is prime?

To test whether a number is prime or not, why do we have to test whether it is divisible only up to the square root of that number?
If a number n is not a prime, it can be factored into two factors a and b:
n = a * b
Now a and b can't be both greater than the square root of n, since then the product a * b would be greater than sqrt(n) * sqrt(n) = n. So in any factorization of n, at least one of the factors must be smaller than the square root of n, and if we can't find any factors less than or equal to the square root, n must be a prime.
Let's say m = sqrt(n) then m × m = n. Now if n is not a prime then n can be written as n = a × b, so m × m = a × b. Notice that m is a real number whereas n, a and b are natural numbers.
Now there can be 3 cases:
a > m ⇒ b < m
a = m ⇒ b = m
a < m ⇒ b > m
In all 3 cases, min(a, b) ≤ m. Hence if we search till m, we are bound to find at least one factor of n, which is enough to show that n is not prime.
Because if a factor is greater than the square root of n, the other factor that would multiply with it to equal n is necessarily less than the square root of n.
Suppose n is not a prime number (greater than 1). So there are numbers a and b such that
n = ab (1 < a <= b < n)
By multiplying the relation a<=b by a and b we get:
a^2 <= ab
ab <= b^2
Therefore: (note that n=ab)
a^2 <= n <= b^2
Hence: (Note that a and b are positive)
a <= sqrt(n) <= b
So if a number (greater than 1) is not prime and we test divisibility up to square root of the number, we will find one of the factors.
It's all really just basic uses of Factorization and Square Roots.
It may appear to be abstract, but in reality it simply lies with the fact that a non-prime-number's maximum possible factorial would have to be its square root because:
sqrroot(n) * sqrroot(n) = n.
Given that, if any whole number above 1 and below or up to sqrroot(n) divides evenly into n, then n cannot be a prime number.
Pseudo-code example:
i = 2;
is_prime = true;
while loop (i <= sqrroot(n))
{
if (n % i == 0)
{
is_prime = false;
exit while;
}
++i;
}
Let's suppose that the given integer N is not prime,
Then N can be factorized into two factors a and b , 2 <= a, b < N such that N = a*b.
Clearly, both of them can't be greater than sqrt(N) simultaneously.
Let us assume without loss of generality that a is smaller.
Now, if you could not find any divisor of N belonging in the range [2, sqrt(N)], what does that mean?
This means that N does not have any divisor in [2, a] as a <= sqrt(N).
Therefore, a = 1 and b = n and hence By definition, N is prime.
...
Further reading if you are not satisfied:
Many different combinations of (a, b) may be possible. Let's say they are:
(a1, b1), (a2, b2), (a3, b3), ..... , (ak, bk). Without loss of generality, assume ai < bi, 1<= i <=k.
Now, to be able to show that N is not prime it is sufficient to show that none of ai can be factorized further. And we also know that ai <= sqrt(N) and thus you need to check till sqrt(N) which will cover all ai. And hence you will be able to conclude whether or not N is prime.
...
So to check whether a number N is Prime or not.
We need to only check if N is divisible by numbers<=SQROOT(N). This is because, if we factor N into any 2 factors say X and Y, ie. N=XY.
Each of X and Y cannot be less than SQROOT(N) because then, XY < N
Each of X and Y cannot be greater than SQROOT(N) because then, X*Y > N
Therefore one factor must be less than or equal to SQROOT(N) ( while the other factor is greater than or equal to SQROOT(N) ).
So to check if N is Prime we need only check those numbers <= SQROOT(N).
Let's say we have a number "a", which is not prime [not prime/composite number means - a number which can be divided evenly by numbers other than 1 or itself. For example, 6 can be divided evenly by 2, or by 3, as well as by 1 or 6].
6 = 1 × 6 or 6 = 2 × 3
So now if "a" is not prime then it can be divided by two other numbers and let's say those numbers are "b" and "c". Which means
a=b*c.
Now if "b" or "c" , any of them is greater than square root of "a "than multiplication of "b" & "c" will be greater than "a".
So, "b" or "c" is always <= square root of "a" to prove the equation "a=b*c".
Because of the above reason, when we test if a number is prime or not, we only check until square root of that number.
Given any number n, then one way to find its factors is to get its square root p:
sqrt(n) = p
Of course, if we multiply p by itself, then we get back n:
p*p = n
It can be re-written as:
a*b = n
Where p = a = b. If a increases, then b decreases to maintain a*b = n. Therefore, p is the upper limit.
Update: I am re-reading this answer again today and it became clearer to me more. The value p does not necessarily mean an integer because if it is, then n would not be a prime. So, p could be a real number (ie, with fractions). And instead of going through the whole range of n, now we only need to go through the whole range of p. The other p is a mirror copy so in effect we halve the range. And then, now I am seeing that we can actually continue re-doing the square root and doing it to p to further half the range.
Let n be non-prime. Therefore, it has at least two integer factors greater than 1. Let f be the smallest of n's such factors. Suppose f > sqrt n. Then n/f is an integer ≤ sqrt n, thus smaller than f. Therefore, f cannot be n's smallest factor. Reductio ad absurdum; n's smallest factor must be ≤ sqrt n.
Any composite number is a product of primes.
Let say n = p1 * p2, where p2 > p1 and they are primes.
If n % p1 === 0 then n is a composite number.
If n % p2 === 0 then guess what n % p1 === 0 as well!
So there is no way that if n % p2 === 0 but n % p1 !== 0 at the same time.
In other words if a composite number n can be divided evenly by
p2,p3...pi (its greater factor) it must be divided by its lowest factor p1 too.
It turns out that the lowest factor p1 <= Math.square(n) is always true.
Yes, as it was properly explained above, it's enough to iterate up to Math.floor of a number's square root to check its primality (because sqrt covers all possible cases of division; and Math.floor, because any integer above sqrt will already be beyond its range).
Here is a runnable JavaScript code snippet that represents a simple implementation of this approach – and its "runtime-friendliness" is good enough for handling pretty big numbers (I tried checking both prime and not prime numbers up to 10**12, i.e. 1 trillion, compared results with the online database of prime numbers and encountered no errors or lags even on my cheap phone):
function isPrime(num) {
if (num % 2 === 0 || num < 3 || !Number.isSafeInteger(num)) {
return num === 2;
} else {
const sqrt = Math.floor(Math.sqrt(num));
for (let i = 3; i <= sqrt; i += 2) {
if (num % i === 0) return false;
}
return true;
}
}
<label for="inp">Enter a number and click "Check!":</label><br>
<input type="number" id="inp"></input>
<button onclick="alert(isPrime(+document.getElementById('inp').value) ? 'Prime' : 'Not prime')" type="button">Check!</button>
To test the primality of a number, n, one would expect a loop such as following in the first place :
bool isPrime = true;
for(int i = 2; i < n; i++){
if(n%i == 0){
isPrime = false;
break;
}
}
What the above loop does is this : for a given 1 < i < n, it checks if n/i is an integer (leaves remainder 0). If there exists an i for which n/i is an integer, then we can be sure that n is not a prime number, at which point the loop terminates. If for no i, n/i is an integer, then n is prime.
As with every algorithm, we ask : Can we do better ?
Let us see what is going on in the above loop.
The sequence of i goes : i = 2, 3, 4, ... , n-1
And the sequence of integer-checks goes : j = n/i, which is n/2, n/3, n/4, ... , n/(n-1)
If for some i = a, n/a is an integer, then n/a = k (integer)
or n = ak, clearly n > k > 1 (if k = 1, then a = n, but i never reaches n; and if k = n, then a = 1, but i starts form 2)
Also, n/k = a, and as stated above, a is a value of i so n > a > 1.
So, a and k are both integers between 1 and n (exclusive). Since, i reaches every integer in that range, at some iteration i = a, and at some other iteration i = k. If the primality test of n fails for min(a,k), it will also fail for max(a,k). So we need to check only one of these two cases, unless min(a,k) = max(a,k) (where two checks reduce to one) i.e., a = k , at which point a*a = n, which implies a = sqrt(n).
In other words, if the primality test of n were to fail for some i >= sqrt(n) (i.e., max(a,k)), then it would also fail for some i <= n (i.e., min(a,k)). So, it would suffice if we run the test for i = 2 to sqrt(n).

finding a^b^c^... mod m

I would like to calculate:
abcd... mod m
Do you know any efficient way since this number is too big but a , b , c , ... and m fit in a simple 32-bit int.
Any Ideas?
Caveat: This question is different from finding ab mod m.
Also please note that abc is not the same as (ab)c. The later is equal to abc. Exponentiation is right-associative.
abc mod m = abc mod n mod m, where n = φ(m) Euler's totient function.
If m is prime, then n = m-1.
Edit: as Nabb pointed out, this only holds if a is coprime to m. So you would have to check this first.
The answer does not contain full formal mathematical proof of correctness. I assumed that it is unnecessary here. Besides, it would be very illegible on SO, (no MathJax for example).
I will use (just a little bit) specific prime factorization algorithm. It's not best option, but enough.
tl;dr
We want calculate a^x mod m. We will use function modpow(a,x,m). Described below.
If x is small enough (not exponential form or exists p^x | m) just calculate it and return
Split into primes and calculate p^x mod m separately for each prime, using modpow function
Calculate c' = gcd(p^x,m) and t' = totient(m/c')
Calculate w = modpow(x.base, x.exponent, t') + t'
Save pow(p, w - log_p c', m) * c' in A table
Multiple all elements from A and return modulo m
Here pow should look like python's pow.
Main problem:
Because current best answer is about only special case gcd(a,m) = 1, and OP did not consider this assumption in question, I decided to write this answer. I will also use Euler's totient theorem. Quoting wikipedia:
Euler's totient theorem:
If n and a are coprime positive integers, then
where φ(n) is Euler's totient function.
The assumption numbers are co-primeis very important, as Nabb shows in comment. So, firstly we need to ensure that the numbers are co-prime. (For greater clarity assume x = b^(c^...).) Because , where we can factorize a, and separately calculate q1 = (p1^alpha)^x mod m,q2 = (p2^beta)^x mod m... and then calculate answer in easy way (q1 * q2 * q3 * ... mod m). Number has at most o(log a) prime factors, so we will be force to perform at most o(log a) calculations.
In fact we doesn't have to split to every prime factor of a (if not all occur in m with other exponents) and we can combine with same exponent, but it is not noteworthy by now.
Now take a look at (p^z)^x mod m problem, where p is prime. Notice some important observation:
If a,b are positive integers smaller than m and c is some positive integer and , then true is sentence .
Using the above observation, we can receive solution for actual problem. We can easily calculate gcd((p^z)^x, m). If x*z are big, it is number how many times we can divide m by p. Let m' = m /gcd((p^z)^x, m). (Notice (p^z)^x = p^(z*x).) Let c = gcd(p^(zx),m). Now we can easily (look below) calculate w = p^(zx - c) mod m' using Euler's theorem, because this numbers are co-prime! And after, using above observation, we can receive p^(zx) mod m. From above assumption wc mod m'c = p^(zx) mod m, so the answer for now is p^(zx) mod m = wc and w,c are easy to calculate.
Therefore we can easily calculate a^x mod m.
Calculate a^x mod m using Euler's theorem
Now assume a,m are co-prime. If we want calculate a^x mod m, we can calculate t = totient(m) and notice a^x mod m = a^(x mod t) mod m. It can be helpful, if x is big and we know only specific expression of x, like for example x = 7^200.
Look at example x = b^c. we can calculate t = totient(m) and x' = b^c mod t using exponentiation by squaring algorithm in Θ(log c) time. And after (using same algorithm) a^x' mod m, which is equal to solution.
If x = b^(c^(d^...) we will solve it recursively. Firstly calculate t1 = totient(m), after t2 = totient(t1) and so on. For example take x=b^(c^d). If t1=totient(m), a^x mod m = a^(b^(c^d) mod t1), and we are able to say b^(c^d) mod t1 = b^(c^d mod t2) mod t1, where t2 = totient(t1). everything we are calculating using exponentiation by squaring algorithm.
Note: If some totient isn't co-prime to exponent, it is necessary to use same trick, as in main problem (in fact, we should forget that it's exponent and recursively solve problem, like in main problem). In above example, if t2 isn't relatively prime with c, we have to use this trick.
Calculate φ(n)
Notice simple facts:
if gcd(a,b)=1, then φ(ab) = φ(a)*φ(b)
if p is prime φ(p^k)=(p-1)*p^(k-1)
Therefore we can factorize n (ak. n = p1^k1 * p2^k2 * ...) and separately calculate φ(p1^k1),φ(p2^k2),... using fact 2. Then combine this using fact 1. φ(n)=φ(p1^k1)*φ(p2^k2)*...
It is worth remembering that, if we will calculate totient repeatedly, we may want to use Sieve of Eratosthenes and save prime numbers in table. It will reduce the constant.
python example: (it is correct, for the same reason as this factorization algorithm)
def totient(n) : # n - unsigned int
result = 1
p = 2 #prime numbers - 'iterator'
while p**2 <= n :
if(n%p == 0) : # * (p-1)
result *= (p-1)
n /= p
while(n%p == 0) : # * p^(k-1)
result *= p
n /= p
p += 1
if n != 1 :
result *= (n-1)
return result # in O(sqrt(n))
Case: abc mod m
Cause it's in fact doing the same thing many times, I believe this case will show you how to solve this generally.
Firstly, we have to split a into prime powers. Best representation will be pair <number,
exponent>.
c++11 example:
std::vector<std::tuple<unsigned, unsigned>> split(unsigned n) {
std::vector<std::tuple<unsigned, unsigned>> result;
for(unsigned p = 2; p*p <= n; ++p) {
unsigned current = 0;
while(n % p == 0) {
current += 1;
n /= p;
}
if(current != 0)
result.emplace_back(p, current);
}
if(n != 1)
result.emplace_back(n, 1);
return result;
}
After split, we have to calculate (p^z)^(b^c) mod m=p^(z*(b^c)) mod m for every pair. Firstly we should check, if p^(z*(b^c)) | m. If, yes the answer is just (p^z)^(b^c), but it's possible only in case in which z,b,c are very small. I believe I don't have to show code example to it.
And finally if p^(z*b^c) > m we have to calculate the answer. Firstly, we have to calculate c' = gcd(m, p^(z*b^c)). After we are able to calculate t = totient(m'). and (z*b^c - c' mod t). It's easy way to get an answer.
function modpow(p, z, b, c, m : integers) # (p^z)^(b^c) mod m
c' = 0
m' = m
while m' % p == 0 :
c' += 1
m' /= p
# now m' = m / gcd((p^z)^(b^c), m)
t = totient(m')
exponent = z*(b^c)-c' mod t
return p^c' * (p^exponent mod m')
And below Python working example:
def modpow(p, z, b, c, m) : # (p^z)^(b^c) mod m
cp = 0
while m % p == 0 :
cp += 1
m /= p # m = m' now
t = totient(m)
exponent = ((pow(b,c,t)*z)%t + t - (cp%t))%t
# exponent = z*(b^c)-cp mod t
return pow(p, cp)*pow(p, exponent, m)
Using this function, we can easily calculate (p^z)^(b^c) mod m, after we just have to multiple all results (mod m), we can also calculate everything on an ongoing basis. Example below. (I hope I didn't make mistake, writing.) Only assumption, b,c are big enough (b^c > log(m) ak. each p^(z*b^k) doesn't divide m), it's simple check and I don't see point to make clutter by it.
def solve(a,b,c,m) : # split and solve
result = 1
p = 2 # primes
while p**2 <= a :
z = 0
while a % p == 0 :
# calculate z
a /= p
z += 1
if z != 0 :
result *= modpow(p,z,b,c,m)
result %= m
p += 1
if a != 1 : # Possible last prime
result *= modpow(a, 1, b, c, m)
return result % m
Looks, like it works.
DEMO and it's correct!
Since for any relationship a=x^y, the relationship is invariant with respect to the numeric base you are using (base 2, base 6, base 16, etc).
Since the mod N operation is equivalent to extracting the least significant digit (LSD) in base N
Since the LSD of the result A in base N can only be affected by the LSD of X in base N, and not digits in higher places. (e.g. 34*56 = 30*50+30*6+50*4+4*5 = 10*(3+50+3*6+5*4)+4*6)
Therefore, from LSD(A)=LSD(X^Y) we can deduce
LSD(A)=LSD(LSD(X)^Y)
Therefore
A mod N = ((X mod N) ^ Y) mod N
and
(X ^ Y) mod N = ((X mod N) ^ Y) mod N)
Therefore you can do the mod before each power step, which keeps your result in the range of integers.
This assumes a is not negative, and for any x^y, a^y < MAXINT
This answer answers the wrong question. (alex)
Modular Exponentiation is a correct way to solve this problem, here's a little bit of hint:
To find abcd % m
You have to start with calculating
a % m, then ab % m, then abc % m and then abcd % m ... (you get the idea)
To find ab % m, you basically need two ideas: [Let B=floor(b/2)]
ab = (aB)2 if b is even OR ab = (aB)2*a if b is odd.
(X*Y)%m = ((X%m) * (Y%m)) % m
(% = mod)
Therefore,
if b is even
ab % m = (aB % m)2 % m
or if b is odd
ab % m = (((aB % m)2) * (a % m)) % m
So if you knew the value of aB, you can calculate this value.
To find aB, apply similar approach, dividing B until you reach 1.
e.g. To calculate 1613 % 11:
1613 % 11 = (16 % 11)13 % 11 = 513 % 11
= (56 % 11) * (56 % 11) * (5 % 11) <---- (I)
To find 56 % 11:
56 % 11 = ((53 % 11) * (53 % 11)) % 11 <----(II)
To find 53%11:
53 % 11 = ((51 % 11) * (51 % 11) * (5 % 11)) % 11
= (((5 * 5) % 11) * 5) % 11 = ((25 % 11) * 5) % 11 = (3 * 5) % 11 = 15 % 11 = 4
Plugging this value to (II) gives
56 % 11 = (((4 * 4) % 11) * 5) % 11 = ((16 % 11) * 5) % 11 = (5 * 5) % 11 = 25 % 11 = 3
Plugging this value to (I) gives
513 % 11 = ((3 % 11) * (3 % 11) * 5) % 11 = ((9 % 11) * 5) % 11 = 45 % 11 = 4
This way 513 % 11 = 4
With this you can calculate anything of form a513 % 11 and so on...
Look at the behavior of A^X mod M as X increases. It must eventually go into a cycle. Suppose the cycle has length P and starts after N steps. Then X >= N implies A^X = A^(X+P) = A^(X%P + (-N)%P + N) (mod M). Therefore we can compute A^B^C by computing y=B^C, z = y < N ? y : y%P + (-N)%P + N, return A^z (mod m).
Notice that we can recursively apply this strategy up the power tree, because the derived equation either has an exponent < M or an exponent involving a smaller exponent tower with a smaller dividend.
The only question is if you can efficiently compute N and P given A and M. Notice that overestimating N is fine. We can just set N to M and things will work out. P is a bit harder. If A and M are different primes, then P=M-1. If A has all of M's prime factors, then we get stuck at 0 and P=1. I'll leave it as an exercise to figure that out, because I don't know how.
///Returns equivalent to list.reverse().aggregate(1, acc,item => item^acc) % M
func PowerTowerMod(Link<int> list, int M, int upperB = M)
requires M > 0, upperB >= M
var X = list.Item
if list.Next == null: return X
var P = GetPeriodSomehow(base: X, mod: M)
var e = PowerTowerMod(list.Next, P, M)
if e^X < upperB then return e^X //todo: rewrite e^X < upperB so it doesn't blowup for large x
return ModPow(X, M + (e-M) % P, M)
Tacet's answer is good, but there are substantial simplifications possible.
The powers of x, mod m, are preperiodic. If x is relatively prime to m, the powers of x are periodic, but even without that assumption, the part before the period is not long, at most the maximum of the exponents in the prime factorization of m, which is at most log_2 m. The length of the period divides phi(m), and in fact lambda(m), where lambda is Carmichael's function, the maximum multiplicative order mod m. This can be significantly smaller than phi(m). Lambda(m) can be computed quickly from the prime factorization of m, just as phi(m) can. Lambda(m) is the GCD of lambda(p_i^e_i) over all prime powers p_i^e_i in the prime factorization of m, and for odd prime powers, lambda(p_i^e_i) = phi(p_i^e^i). lambda(2)=1, lamnda(4)=2, lambda(2^n)=2^(n-2) for larger powers of 2.
Define modPos(a,n) to be the representative of the congruence class of a in {0,1,..,n-1}. For nonnegative a, this is just a%n. For a negative, for some reason a%n is defined to be negative, so modPos(a,n) is (a%n)+n.
Define modMin(a,n,min) to be the least positive integer congruent to a mod n that is at least min. For a positive, you can compute this as min+modPos(a-min,n).
If b^c^... is smaller than log_2 m (and we can check whether this inequality holds by recursively taking logarithms), then we can simply compute a^b^c^... Otherwise, a^b^c^... mod m = a^modMin(b^c^..., lambda(m), [log_2 m])) mod m = a^modMin(b^c^... mod lambda(m), lambda(m),[log_2 m]).
For example, suppose we want to compute 2^3^4^5 mod 100. Note that 3^4^5 only has 489 digits, so this is doable by other methods, but it's big enough that you don't want to compute it directly. However, by the methods I gave here, you can compute 2^3^4^5 mod 100 by hand.
Since 3^4^5 > log_2 100,
2^3^4^5 mod 100
= 2^modMin(3^4^5,lambda(100),6) mod 100
= 2^modMin(3^4^5 mod lambda(100), lambda(100),6) mod 100
= 2^modMin(3^4^5 mod 20, 20,6) mod 100.
Let's compute 3^4^5 mod 20. Since 4^5 > log_2 20,
3^4^5 mod 20
= 3^modMin(4^5,lambda(20),4) mod 20
= 3^modMin(4^5 mod lambda(20),lambda(20),4) mod 20
= 3^modMin(4^5 mod 4, 4, 4) mod 20
= 3^modMin(0,4,4) mod 20
= 3^4 mod 20
= 81 mod 20
= 1
We can plug this into the previous calculation:
2^3^4^5 mod 100
= 2^modMin(3^4^5 mod 20, 20,6) mod 100
= 2^modMin(1,20,6) mod 100
= 2^21 mod 100
= 2097152 mod 100
= 52.
Note that 2^(3^4^5 mod 20) mod 100 = 2^1 mod 100 = 2, which is not correct. You can't reduce down to the preperiodic part of the powers of the base.

Resources