Does Spark not support arraylist when writing to elasticsearch? - hadoop

I have the following structure:
mylist = [{"key1":"val1"}, {"key2":"val2"}]
myrdd = value_counts.map(lambda item: ('key', {
'field': somelist
}))
I get the error:
15/02/10 15:54:08 INFO scheduler.TaskSetManager: Lost task 1.0 in stage 2.0 (TID 6) on executor ip-10-80-15-145.ec2.internal: org.apache.spark.SparkException (Data of type java.util.ArrayList cannot be used) [duplicate 1]
rdd.saveAsNewAPIHadoopFile(
path='-',
outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf={
"es.nodes" : "localhost",
"es.port" : "9200",
"es.resource" : "mboyd/mboydtype"
})
What I want the document to end up like when written to ES is:
{
field:[{"key1":"val1"}, {"key2":"val2"}]
}

A bit late to the game, but this is the solution we came up with after running in to this yesterday. Add 'es.input.json': 'true' to your conf, and then run json.dumps() on your data.
Modifying your example, this would look like:
import json
rdd = sc.parallelize([{"key1": ["val1", "val2"]}])
json_rdd = rdd.map(json.dumps)
json_rdd.saveAsNewAPIHadoopFile(
path='-',
outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf={
"es.nodes" : "localhost",
"es.port" : "9200",
"es.resource" : "mboyd/mboydtype",
"es.input.json": "true"
}
)

Just had this problem, and the solution passes by converting all lists to tuples .
Converting to json does same.

I feel there are a few points missing in other answers like you'll have to return a 2-tuple (I don't know why) from your RDD and will also need the Elasticsearch hadoop jar file to make it work. So I'll write the whole process that I had to follow to make it work.
Download the Elasticsearch Hadoop jar file. You can download it from the central maven repository (the latest version should work in most cases - check out their official requirements README for more).
Create a file run.py with the following minimal code snippet for the demonstration.
import json
import pymongo_spark
pymongo_spark.activate()
from pyspark import SparkContext, SparkConf
conf = SparkConf().setAppName('demo').setMaster('local')
sc = SparkContext(conf=conf)
rdd = sc.parallelize([{"key1": ["val1", "val2"]}])
final_rdd = rdd.map(json.dumps).map(lambda x: ('key', x))
final_rdd.saveAsNewAPIHadoopFile(
path='-',
outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf={
"es.nodes" : "<server-ip>",
"es.port" : "9200",
"es.resource" : "index_name/doc_type_name",
"es.input.json": "true"
}
)
Run your Spark job with the following command ./bin/spark-submit --jars /path/to/your/jar/file/elasticsearch-hadoop-5.6.4.jar --driver-class-path /path/to/you/jar/file/elasticsearch-hadoop-5.6.4.jar --master yarn /path/to/your/run/file/run.py
HTH!

Related

How to load Impala table directly to Spark using JDBC?

I am trying to write a spark job with Python that would open a jdbc connection with Impala and load a VIEW directly from Impala into a Dataframe. This question is pretty close but in scala: Calling JDBC to impala/hive from within a spark job and creating a table
How do I do this? There are plenty of examples for other datasources such as MySQL, PostgreSQL, etc. but I haven't seen one for Impala + Python + Kerberos. An example would be of great help. Thank you!
Tried this with information from the web but it didn't work.
SPARK Notebook
#!/bin/bash
export PYSPARK_PYTHON=/home/anave/anaconda2/bin/python
export HADOOP_CONF_DIR=/etc/hive/conf
export PYSPARK_DRIVER_PYTHON=/home/anave/anaconda2/bin/ipython
export PYSPARK_DRIVER_PYTHON_OPTS='notebook --ip=* --no-browser'
# use Java8
export JAVA_HOME=/usr/java/latest
export PATH=$JAVA_HOME/bin:$PATH
# JDBC Drivers for Impala
export CLASSPATH=/home/anave/impala_jdbc_2.5.30.1049/Cloudera_ImpalaJDBC41_2.5.30/*.jar:$CLASSPATH
export JDBC_PATH=/home/anave/impala_jdbc_2.5.30.1049/Cloudera_ImpalaJDBC41_2.5.30
# --jars $SRCDIR/spark-csv-assembly-1.4.0-SNAPSHOT.jar \
# --conf spark.sql.parquet.binaryAsString=true \
# --conf spark.sql.hive.convertMetastoreParquet=false
pyspark --master yarn-client \
--driver-memory 4G \
--executor-memory 2G \
# --num-executors 10 \
--jars /home/anave/spark-csv_2.11-1.4.0.jar $JDBC_PATH/*.jar
--driver-class-path $JDBC_PATH/*.jar
Python Code
properties = {
"driver": "com.cloudera.impala.jdbc41.Driver",
"AuthMech": "1",
# "KrbRealm": "EXAMPLE.COM",
# "KrbHostFQDN": "impala.example.com",
"KrbServiceName": "impala"
}
# imp_env is the hostname of the db, works with other impala queries ran inside python
url = "jdbc:impala:imp_env;auth=noSasl"
db_df = sqlContext.read.jdbc(url=url, table='summary', properties=properties)
I received this error msg (Full Error Log):
Py4JJavaError: An error occurred while calling o42.jdbc.
: java.lang.ClassNotFoundException: com.cloudera.impala.jdbc41.Driver
You can use
--jars $(echo /dir/of/jars/*.jar | tr ' ' ',')
instead of
--jars /home/anave/spark-csv_2.11-1.4.0.jar $JDBC_PATH/*.jar
or for another approach please see my answer
1st approach is to use spark-submit on below impala_jdbc_connection.py script like spark-submit --driver-class-path /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/jars/ImpalaJDBC41.jar --jars /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/jars/ImpalaJDBC41.jar --class com.cloudera.impala.jdbc41.Driver impala_jdbc_connection.py
impala_jdbc_connection.py
properties = {
"drivers": "com.cloudera.impala.jdbc41.Driver"
}
#initalize the spark session
spark = (
SparkSession.builder
.config("spark.jars.packages", "jar-packages-list")
.config("spark.sql.warehouse.dir","hdfs://dwh-hdp-node01.dev.ergo.liferunoffinsuranceplatform.com:8020/user/hive/warehouse")
.enableHiveSupport()
.getOrCreate()
)
db_df = spark.read.jdbc(url= 'jdbc:impala://host_ip_address:21050/database_name', table ='table_name', properties = properties)
db_df.show()
2nd approach is not a direct import from impala to spark but rather a conversion of results to spark dataframe
pip install impyla Source: https://github.com/cloudera/impyla
Connect to impala and fetch results from impala database and convert result to spark dataframe
from impala.dbapi import connect
conn = connect(host = 'IP_ADDRESS_OF_HOST', port=21050)
cursor = conn.cursor()
cursor.execute('select * from database.table')
res= cursor.fetchall() # convert res to spark dataframe
for data in res:
print(data)
Did this in Azure Databricks notebook after setting up the jar in the cluster libraries. Generally followed previous post except that d is upper case for Driver config. Worked great.
properties = {
"Driver": "com.cloudera.impala.jdbc41.Driver"
}
db_df = spark.read.jdbc(url= 'jdbc:impala://hostname.domain.net:21050/dbname;AuthMech=3;UID=xxxx;PWD=xxxx', table ='product', properties = properties)
db_df.show()
This works for me:
spark-shell --driver-class-path ImpalaJDBC41.jar --jars ImpalaJDBC41.jar
val jdbcURL = s"jdbc:impala://192.168.56.101:21050;AuthMech=0"
val connectionProperties = new java.util.Properties()
val hbaseDF = sqlContext.read.jdbc(jdbcURL, "impala_table", connectionProperties)

Loading elasticsearch index data to pyspark rdd : error

I am trying to load elasticsearch index data to pyspark rdd using following code,
Version: elasticsearch: 2.3.4
spark: 2.0
elasticsearch-hadoop (jar): 2.3.4
running pyspark:
bin\pyspark --master local[2] --jars jars\elasticsearch-hadoop-2.3.4.jar
Getting index data:
es_read_conf = {"es.resource" : "index/type"}
es_rdd = sc.newAPIHadoopRDD(
inputFormatClass="org.elasticsearch.hadoop.mr.EsInputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf= es_read_conf)
Code is running but returning empty rdd with following msg,
16/08/30 20:42:20 WARN EsInputFormat: Cannot determine task id...
Am i missing anything here?

Writing Parquet file in standalone mode works..multiple worker mode fails

In Spark, version 1.6.1 (code is in Scala 2.10), I am trying to write a data frame to a Parquet file:
import sc.implicits._
val triples = file.map(p => _parse(p, " ", true)).toDF()
triples.write.mode(SaveMode.Overwrite).parquet("hdfs://some.external.ip.address:9000/tmp/table.parquet")
When I do it in development mode, everything works fine. It also works fine if I setup a master and one worker in standalone mode in a docker environment (separate docker containers) on the same machine. It fails when I try to execute it on a cluster (1 master, 5 workers). If I set it up local on the master it also works.
When I try to execute it, I get following stacktrace:
{
"duration": "18.716 secs",
"classPath": "LDFSparkLoaderJobTest2",
"startTime": "2016-07-18T11:41:03.299Z",
"context": "sql-context",
"result": {
"errorClass": "org.apache.spark.SparkException",
"cause": "Job aborted due to stage failure: Task 1 in stage 0.0 failed 4 times, most recent failure: Lost task 1.3 in stage 0.0 (TID 6, curry-n3): java.lang.NullPointerException
at org.apache.parquet.hadoop.InternalParquetRecordWriter.flushRowGroupToStore(InternalParquetRecordWriter.java:147)
at org.apache.parquet.hadoop.InternalParquetRecordWriter.close(InternalParquetRecordWriter.java:113)
at org.apache.parquet.hadoop.ParquetRecordWriter.close(ParquetRecordWriter.java:112)
at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.close(ParquetRelation.scala:101)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.abortTask$1(WriterContainer.scala:294)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:271)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)\n\tat java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)\n\nDriver stacktrace:",
"stack":[
"org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)",
"org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)",
"org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)",
"scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)",
"scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)",
"org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)",
"org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)",
"org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)",
"scala.Option.foreach(Option.scala:236)",
"org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)",
"org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)",
"org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)",
"org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)",
"org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)",
"org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)",
"org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)",
"org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)",
"org.apache.spark.SparkContext.runJob(SparkContext.scala:1922)",
"org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150)",
"org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)",
"org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)",
"org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)",
"org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)",
"org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)",
"org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)",
"org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)",
"org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)",
"org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)",
"org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)",
"org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)",
"org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)",
"org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)",
"org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)",
"org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)",
"org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)",
"org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:334)",
"LDFSparkLoaderJobTest2$.readFile(SparkLoaderJob.scala:55)",
"LDFSparkLoaderJobTest2$.runJob(SparkLoaderJob.scala:48)",
"LDFSparkLoaderJobTest2$.runJob(SparkLoaderJob.scala:18)",
"spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.scala:268)",
"scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)",
"scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)",
"java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)",
"java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)",
"java.lang.Thread.run(Thread.java:745)"
],
"causingClass": "org.apache.spark.SparkException",
"message": "Job aborted."
},
"status": "ERROR",
"jobId": "54ad3056-3aaa-415f-8352-ca8c57e02fe9"
}
Notes:
The job is submitted via the Spark Jobserver.
The file that needs to be converted to a Parquet file is 15.1 MB in size.
Question:
Is there something I am doing wrong (I followed the docs)
Or is there another way I can create the Parquet file, so all my workers have access to it?
In your stand alone setup only one worker is working with ParquetRecordWriter. so it worked fine.
In case of real test i.e. cluster (1 master, 5 workers). with ParquetRecordWriter it will fail since you are concurrently writing with multiple workers...
pls try below.
import sc.implicits._
val triples = file.map(p => _parse(p, " ", true)).toDF()
triples.write.mode(SaveMode.Append).parquet("hdfs://some.external.ip.address:9000/tmp/table.parquet")
pls. see SaveMode.Append "append" When saving a DataFrame to a data source, if data/table already exists, contents of the DataFrame are expected to be appended to existing data.
I had not exactly the same, but similar issues writing dataframes to parquet files in cluster mode. Those problems disappeared when deleteing the file, just before writing, using this convenience function 'write(..)' :
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.Path
..
def main(arg: Array[String]) {
..
val fs = FileSystem.get(sc.hadoopConfiguration)
..
def write(df:DataFrame, fn:String ) = {
val op1=s"hdfs:///user/you/$fn"
fs.delete(new Path(op1))
df.write.parquet(op1)
}
Give it a go, tell me if it works for you...

Spark streaming + json4s-jackson dependency problems

I am unable to use json4s-Jackson 3.2.11 within my spark 1.4.1 Streaming application.
Thinking that it was the existing dependency within the spark-core project that is causing the problem as explained here -> Is it possible to use json4s 3.2.11 with Spark 1.3.0? I have built Spark from source with an adjusted core/pom.xml. I have changed the reference from json4s-jackson_2.10:3.2.10 to 3.2.11, as the 2.10 version does not support extracting to implicit types.
I have replaced the source jars that are referenced in my intellij IDEA project with the rebuilt jars, however I am still getting the same errors as before. I fear that Spark must still be referencing json4s 3.2.10 somehow?
here is my simple test:
object StreamingPredictor {
implicit val formats = DefaultFormats
case class event(Key: String,
sensorId: String,
sessionId: String,
deviceId: String,
playerId: String,
impressionId: String,
time: String,
eventName: String,
eventProperties: Map[String, Any],
dl: Array[List[(String, Any)]],
$post: Boolean,
$sync: Boolean)
def parser(json: String): String = {
val parsedJson = parse(json)
val foo = parsedJson.extract[event]
foo.eventName
}
def main(args: Array[String]) {
val zkQuorum = "localhost:2181"
val group = "myGroup"
val topic = Map("test" -> 1)
val sparkContext = new SparkContext("local[4]","KafkaConsumer")
val ssc = new StreamingContext(sparkContext, Seconds(1))
val json = KafkaUtils.createStream(ssc, zkQuorum, group, topic)
val eventName = json.map(_._2).map(parser)
eventName.print()
ssc.start()
}
}
The error I get when referencing json4s 3.2.11 in my application pom.xml file:
java.lang.NoSuchMethodError: org.json4s.jackson.JsonMethods$.render(Lorg/json4s/JsonAST$JValue;)Lorg/json4s/JsonAST$JValue;
at org.apache.spark.scheduler.EventLoggingListener$$anonfun$logEvent$1.apply(EventLoggingListener.scala:143)
at org.apache.spark.scheduler.EventLoggingListener$$anonfun$logEvent$1.apply(EventLoggingListener.scala:143)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:143)
at org.apache.spark.scheduler.EventLoggingListener.onBlockManagerAdded(EventLoggingListener.scala:174)
at org.apache.spark.scheduler.SparkListenerBus$class.onPostEvent(SparkListenerBus.scala:46)
at org.apache.spark.scheduler.LiveListenerBus.onPostEvent(LiveListenerBus.scala:31)
at org.apache.spark.scheduler.LiveListenerBus.onPostEvent(LiveListenerBus.scala:31)
at org.apache.spark.util.ListenerBus$class.postToAll(ListenerBus.scala:56)
at org.apache.spark.util.AsynchronousListenerBus.postToAll(AsynchronousListenerBus.scala:37)
at org.apache.spark.util.AsynchronousListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(AsynchronousListenerBus.scala:79)
at org.apache.spark.util.Utils$.tryOrStopSparkContext(Utils.scala:1215)
at org.apache.spark.util.AsynchronousListenerBus$$anon$1.run(AsynchronousListenerBus.scala:63)
And the error I get when i use json4s-jackson_2.10:3.2.10 in my application pom.xml file:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 1, localhost): org.json4s.package$MappingException: No usable value for eventProperties
No information known about type
at org.json4s.reflect.package$.fail(package.scala:96)
at org.json4s.Extraction$ClassInstanceBuilder.org$json4s$Extraction$ClassInstanceBuilder$$buildCtorArg(Extraction.scala:443)
at org.json4s.Extraction$ClassInstanceBuilder$$anonfun$14.apply(Extraction.scala:463)
at org.json4s.Extraction$ClassInstanceBuilder$$anonfun$14.apply(Extraction.scala:463)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.json4s.Extraction$ClassInstanceBuilder.org$json4s$Extraction$ClassInstanceBuilder$$instantiate(Extraction.scala:451)
at org.json4s.Extraction$ClassInstanceBuilder$$anonfun$result$6.apply(Extraction.scala:491)
at org.json4s.Extraction$ClassInstanceBuilder$$anonfun$result$6.apply(Extraction.scala:488)
at org.json4s.Extraction$.org$json4s$Extraction$$customOrElse(Extraction.scala:500)
at org.json4s.Extraction$ClassInstanceBuilder.result(Extraction.scala:488)
at org.json4s.Extraction$.extract(Extraction.scala:332)
at org.json4s.Extraction$.extract(Extraction.scala:42)
at org.json4s.ExtractableJsonAstNode.extract(ExtractableJsonAstNode.scala:21)
at com.pca.triggar.Streaming.StreamingPredictor$.parser(StreamingPredictor.scala:38)
at com.pca.triggar.Streaming.StreamingPredictor$$anonfun$2.apply(StreamingPredictor.scala:57)
at com.pca.triggar.Streaming.StreamingPredictor$$anonfun$2.apply(StreamingPredictor.scala:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1276)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$28.apply(RDD.scala:1276)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1767)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1767)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.json4s.package$MappingException: No information known about type
at org.json4s.Extraction$ClassInstanceBuilder.org$json4s$Extraction$ClassInstanceBuilder$$instantiate(Extraction.scala:465)
at org.json4s.Extraction$ClassInstanceBuilder$$anonfun$result$6.apply(Extraction.scala:491)
at org.json4s.Extraction$ClassInstanceBuilder$$anonfun$result$6.apply(Extraction.scala:488)
at org.json4s.Extraction$.org$json4s$Extraction$$customOrElse(Extraction.scala:500)
at org.json4s.Extraction$ClassInstanceBuilder.result(Extraction.scala:488)
at org.json4s.Extraction$.extract(Extraction.scala:332)
at org.json4s.Extraction$$anonfun$extract$5.apply(Extraction.scala:316)
at org.json4s.Extraction$$anonfun$extract$5.apply(Extraction.scala:316)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.immutable.List.foreach(List.scala:318)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.json4s.Extraction$.extract(Extraction.scala:316)
at org.json4s.Extraction$ClassInstanceBuilder.org$json4s$Extraction$ClassInstanceBuilder$$buildCtorArg(Extraction.scala:431)
... 42 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
Ok, I found the problem. As posted else where, you need to compile against jason4s 3.2.10. Apparently, doing so generates a binary which would then work with Spark (version 1.5 in my case. Same in some earlier versions as well). It has to do with the default parameter in the render() method which shows up in 3.2.11.
I had the same issue with emr 4.3.0 and spark 1.6
solved it with installing json4s in the bootstrap action by :
down load the json4s jar and put it in s3
create the following shell script and put it in s3
#!/bin/bash
set -e
wget -S -T 10 -t 5 https://s3.amazonaws.com/your-bucketname/json4s-native_2.10-3.2.4.jar
mkdir -p /home/hadoop/lib
mv json4s-native_2.10-3.2.4.jar /home/hadoop/lib/
add it as a bootstrap step in the emr launch steps

Error in Apache Spark called input path does not exist

Are there any algorithms in Apache Spark to find out the frequent patterns in a text file. I tried following example but always end up with this error:
org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:
/D:/spark-1.3.1-bin-hadoop2.6/bin/data/mllib/sample_fpgrowth.txt
Can anyone help me solve this problem?
import org.apache.spark.mllib.fpm.FPGrowth
val transactions = sc.textFile("...").map(_.split(" ")).cache()
val model = new FPGrowth()
model.setMinSupport(0.5)
model.setNumPartitions(10)
model.run(transactions)
model.freqItemsets.collect().foreach {
itemset => println(itemset.items.mkString("[", ",", "]") + ", " + itemset.freq)
}
try this
file://D:/spark-1.3.1-bin-hadoop2.6/bin/data/mllib/sample_fpgrowth.txt
or
D:/spark-1.3.1-bin-hadoop2.6/bin/data/mllib/sample_fpgrowth.txt
if not work, replace / with //
I assume you are running spark on windows.
Use file path like
D:\spark-1.3.1-bin-hadoop2.6\bin\data\mllib\sample_fpgrowth.txt
NOTE : Escape "\" if necessary .

Resources