Rotating values in a 2D matrix - algorithm

So I was looking at a problem and I just cant figure it out. At least not in any manner I am happy with.
how do you rotate values in a 2D array.
So if the array is
1 2 3
4 5 6
7 8 9
After rotating it should be
4 1 2
7 5 3
8 9 6
The input is from a file where the first value is the number of rows/columns. So it can be a 2 x2 matric, a 3x 3 matrix, a 4x4 matrix, etc.
Can anyone help me out here?

Looping in a circle:
int x=0, y=0;
int prev = matr[0][0];
do{
if (x==0 && y<dim){ // move right on top row
y++;
}
else if(y==dim-1 && x<dim){ // move down
x++;
}
else if(x==dim-1 && y>0){ // move left on bottom row
y--;
}
else{
x--;
}
curr = matr[x][y];
matr[x][y] = prev;
prev = curr;
}while (x==0 && y==0);

This isn't so much as an algorithm as it is a simple solution.
I think the answer to this can be made up of 4 sub methods: MoveTopRow(), MoveBottomRow(), MoveLeftColumn() and MoveRightColumn().
Generally speaking, create a new matrix and fill in the values using these methods. For example:
void MoveTopRow(int dimention)
{
new_matrix[0][0] = old_matrix[1][0];
for (int i = 1 ; i < dimention ; i++)
{
new_matrix[0][i] = old_matrix[0][i-1];
}
}
I think the rest of the methods are self explanatory...

Related

Efficient algorithm to search a element in rectangular Young Tableau [duplicate]

I was recently given this interview question and I'm curious what a good solution to it would be.
Say I'm given a 2d array where all the
numbers in the array are in increasing
order from left to right and top to
bottom.
What is the best way to search and
determine if a target number is in the
array?
Now, my first inclination is to utilize a binary search since my data is sorted. I can determine if a number is in a single row in O(log N) time. However, it is the 2 directions that throw me off.
Another solution I thought may work is to start somewhere in the middle. If the middle value is less than my target, then I can be sure it is in the left square portion of the matrix from the middle. I then move diagonally and check again, reducing the size of the square that the target could potentially be in until I have honed in on the target number.
Does anyone have any good ideas on solving this problem?
Example array:
Sorted left to right, top to bottom.
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
Here's a simple approach:
Start at the bottom-left corner.
If the target is less than that value, it must be above us, so move up one.
Otherwise we know that the target can't be in that column, so move right one.
Goto 2.
For an NxM array, this runs in O(N+M). I think it would be difficult to do better. :)
Edit: Lots of good discussion. I was talking about the general case above; clearly, if N or M are small, you could use a binary search approach to do this in something approaching logarithmic time.
Here are some details, for those who are curious:
History
This simple algorithm is called a Saddleback Search. It's been around for a while, and it is optimal when N == M. Some references:
David Gries, The Science of Programming. Springer-Verlag, 1989.
Edsgar Dijkstra, The Saddleback Search. Note EWD-934, 1985.
However, when N < M, intuition suggests that binary search should be able to do better than O(N+M): For example, when N == 1, a pure binary search will run in logarithmic rather than linear time.
Worst-case bound
Richard Bird examined this intuition that binary search could improve the Saddleback algorithm in a 2006 paper:
Richard S. Bird, Improving Saddleback Search: A Lesson in Algorithm Design, in Mathematics of Program Construction, pp. 82--89, volume 4014, 2006.
Using a rather unusual conversational technique, Bird shows us that for N <= M, this problem has a lower bound of Ω(N * log(M/N)). This bound make sense, as it gives us linear performance when N == M and logarithmic performance when N == 1.
Algorithms for rectangular arrays
One approach that uses a row-by-row binary search looks like this:
Start with a rectangular array where N < M. Let's say N is rows and M is columns.
Do a binary search on the middle row for value. If we find it, we're done.
Otherwise we've found an adjacent pair of numbers s and g, where s < value < g.
The rectangle of numbers above and to the left of s is less than value, so we can eliminate it.
The rectangle below and to the right of g is greater than value, so we can eliminate it.
Go to step (2) for each of the two remaining rectangles.
In terms of worst-case complexity, this algorithm does log(M) work to eliminate half the possible solutions, and then recursively calls itself twice on two smaller problems. We do have to repeat a smaller version of that log(M) work for every row, but if the number of rows is small compared to the number of columns, then being able to eliminate all of those columns in logarithmic time starts to become worthwhile.
This gives the algorithm a complexity of T(N,M) = log(M) + 2 * T(M/2, N/2), which Bird shows to be O(N * log(M/N)).
Another approach posted by Craig Gidney describes an algorithm similar the approach above: it examines a row at a time using a step size of M/N. His analysis shows that this results in O(N * log(M/N)) performance as well.
Performance Comparison
Big-O analysis is all well and good, but how well do these approaches work in practice? The chart below examines four algorithms for increasingly "square" arrays:
(The "naive" algorithm simply searches every element of the array. The "recursive" algorithm is described above. The "hybrid" algorithm is an implementation of Gidney's algorithm. For each array size, performance was measured by timing each algorithm over fixed set of 1,000,000 randomly-generated arrays.)
Some notable points:
As expected, the "binary search" algorithms offer the best performance on rectangular arrays and the Saddleback algorithm works the best on square arrays.
The Saddleback algorithm performs worse than the "naive" algorithm for 1-d arrays, presumably because it does multiple comparisons on each item.
The performance hit that the "binary search" algorithms take on square arrays is presumably due to the overhead of running repeated binary searches.
Summary
Clever use of binary search can provide O(N * log(M/N) performance for both rectangular and square arrays. The O(N + M) "saddleback" algorithm is much simpler, but suffers from performance degradation as arrays become increasingly rectangular.
This problem takes Θ(b lg(t)) time, where b = min(w,h) and t=b/max(w,h). I discuss the solution in this blog post.
Lower bound
An adversary can force an algorithm to make Ω(b lg(t)) queries, by restricting itself to the main diagonal:
Legend: white cells are smaller items, gray cells are larger items, yellow cells are smaller-or-equal items and orange cells are larger-or-equal items. The adversary forces the solution to be whichever yellow or orange cell the algorithm queries last.
Notice that there are b independent sorted lists of size t, requiring Ω(b lg(t)) queries to completely eliminate.
Algorithm
(Assume without loss of generality that w >= h)
Compare the target item against the cell t to the left of the top right corner of the valid area
If the cell's item matches, return the current position.
If the cell's item is less than the target item, eliminate the remaining t cells in the row with a binary search. If a matching item is found while doing this, return with its position.
Otherwise the cell's item is more than the target item, eliminating t short columns.
If there's no valid area left, return failure
Goto step 2
Finding an item:
Determining an item doesn't exist:
Legend: white cells are smaller items, gray cells are larger items, and the green cell is an equal item.
Analysis
There are b*t short columns to eliminate. There are b long rows to eliminate. Eliminating a long row costs O(lg(t)) time. Eliminating t short columns costs O(1) time.
In the worst case we'll have to eliminate every column and every row, taking time O(lg(t)*b + b*t*1/t) = O(b lg(t)).
Note that I'm assuming lg clamps to a result above 1 (i.e. lg(x) = log_2(max(2,x))). That's why when w=h, meaning t=1, we get the expected bound of O(b lg(1)) = O(b) = O(w+h).
Code
public static Tuple<int, int> TryFindItemInSortedMatrix<T>(this IReadOnlyList<IReadOnlyList<T>> grid, T item, IComparer<T> comparer = null) {
if (grid == null) throw new ArgumentNullException("grid");
comparer = comparer ?? Comparer<T>.Default;
// check size
var width = grid.Count;
if (width == 0) return null;
var height = grid[0].Count;
if (height < width) {
var result = grid.LazyTranspose().TryFindItemInSortedMatrix(item, comparer);
if (result == null) return null;
return Tuple.Create(result.Item2, result.Item1);
}
// search
var minCol = 0;
var maxRow = height - 1;
var t = height / width;
while (minCol < width && maxRow >= 0) {
// query the item in the minimum column, t above the maximum row
var luckyRow = Math.Max(maxRow - t, 0);
var cmpItemVsLucky = comparer.Compare(item, grid[minCol][luckyRow]);
if (cmpItemVsLucky == 0) return Tuple.Create(minCol, luckyRow);
// did we eliminate t rows from the bottom?
if (cmpItemVsLucky < 0) {
maxRow = luckyRow - 1;
continue;
}
// we eliminated most of the current minimum column
// spend lg(t) time eliminating rest of column
var minRowInCol = luckyRow + 1;
var maxRowInCol = maxRow;
while (minRowInCol <= maxRowInCol) {
var mid = minRowInCol + (maxRowInCol - minRowInCol + 1) / 2;
var cmpItemVsMid = comparer.Compare(item, grid[minCol][mid]);
if (cmpItemVsMid == 0) return Tuple.Create(minCol, mid);
if (cmpItemVsMid > 0) {
minRowInCol = mid + 1;
} else {
maxRowInCol = mid - 1;
maxRow = mid - 1;
}
}
minCol += 1;
}
return null;
}
I would use the divide-and-conquer strategy for this problem, similar to what you suggested, but the details are a bit different.
This will be a recursive search on subranges of the matrix.
At each step, pick an element in the middle of the range. If the value found is what you are seeking, then you're done.
Otherwise, if the value found is less than the value that you are seeking, then you know that it is not in the quadrant above and to the left of your current position. So recursively search the two subranges: everything (exclusively) below the current position, and everything (exclusively) to the right that is at or above the current position.
Otherwise, (the value found is greater than the value that you are seeking) you know that it is not in the quadrant below and to the right of your current position. So recursively search the two subranges: everything (exclusively) to the left of the current position, and everything (exclusively) above the current position that is on the current column or a column to the right.
And ba-da-bing, you found it.
Note that each recursive call only deals with the current subrange only, not (for example) ALL rows above the current position. Just those in the current subrange.
Here's some pseudocode for you:
bool numberSearch(int[][] arr, int value, int minX, int maxX, int minY, int maxY)
if (minX == maxX and minY == maxY and arr[minX,minY] != value)
return false
if (arr[minX,minY] > value) return false; // Early exits if the value can't be in
if (arr[maxX,maxY] < value) return false; // this subrange at all.
int nextX = (minX + maxX) / 2
int nextY = (minY + maxY) / 2
if (arr[nextX,nextY] == value)
{
print nextX,nextY
return true
}
else if (arr[nextX,nextY] < value)
{
if (numberSearch(arr, value, minX, maxX, nextY + 1, maxY))
return true
return numberSearch(arr, value, nextX + 1, maxX, minY, nextY)
}
else
{
if (numberSearch(arr, value, minX, nextX - 1, minY, maxY))
return true
reutrn numberSearch(arr, value, nextX, maxX, minY, nextY)
}
The two main answers give so far seem to be the arguably O(log N) "ZigZag method" and the O(N+M) Binary Search method. I thought I'd do some testing comparing the two methods with some various setups. Here are the details:
The array is N x N square in every test, with N varying from 125 to 8000 (the largest my JVM heap could handle). For each array size, I picked a random place in the array to put a single 2. I then put a 3 everywhere possible (to the right and below of the 2) and then filled the rest of the array with 1. Some of the earlier commenters seemed to think this type of setup would yield worst case run time for both algorithms. For each array size, I picked 100 different random locations for the 2 (search target) and ran the test. I recorded avg run time and worst case run time for each algorithm. Because it was happening too fast to get good ms readings in Java, and because I don't trust Java's nanoTime(), I repeated each test 1000 times just to add a uniform bias factor to all the times. Here are the results:
ZigZag beat binary in every test for both avg and worst case times, however, they are all within an order of magnitude of each other more or less.
Here is the Java code:
public class SearchSortedArray2D {
static boolean findZigZag(int[][] a, int t) {
int i = 0;
int j = a.length - 1;
while (i <= a.length - 1 && j >= 0) {
if (a[i][j] == t) return true;
else if (a[i][j] < t) i++;
else j--;
}
return false;
}
static boolean findBinarySearch(int[][] a, int t) {
return findBinarySearch(a, t, 0, 0, a.length - 1, a.length - 1);
}
static boolean findBinarySearch(int[][] a, int t,
int r1, int c1, int r2, int c2) {
if (r1 > r2 || c1 > c2) return false;
if (r1 == r2 && c1 == c2 && a[r1][c1] != t) return false;
if (a[r1][c1] > t) return false;
if (a[r2][c2] < t) return false;
int rm = (r1 + r2) / 2;
int cm = (c1 + c2) / 2;
if (a[rm][cm] == t) return true;
else if (a[rm][cm] > t) {
boolean b1 = findBinarySearch(a, t, r1, c1, r2, cm - 1);
boolean b2 = findBinarySearch(a, t, r1, cm, rm - 1, c2);
return (b1 || b2);
} else {
boolean b1 = findBinarySearch(a, t, r1, cm + 1, rm, c2);
boolean b2 = findBinarySearch(a, t, rm + 1, c1, r2, c2);
return (b1 || b2);
}
}
static void randomizeArray(int[][] a, int N) {
int ri = (int) (Math.random() * N);
int rj = (int) (Math.random() * N);
a[ri][rj] = 2;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i == ri && j == rj) continue;
else if (i > ri || j > rj) a[i][j] = 3;
else a[i][j] = 1;
}
}
}
public static void main(String[] args) {
int N = 8000;
int[][] a = new int[N][N];
int randoms = 100;
int repeats = 1000;
long start, end, duration;
long zigMin = Integer.MAX_VALUE, zigMax = Integer.MIN_VALUE;
long binMin = Integer.MAX_VALUE, binMax = Integer.MIN_VALUE;
long zigSum = 0, zigAvg;
long binSum = 0, binAvg;
for (int k = 0; k < randoms; k++) {
randomizeArray(a, N);
start = System.currentTimeMillis();
for (int i = 0; i < repeats; i++) findZigZag(a, 2);
end = System.currentTimeMillis();
duration = end - start;
zigSum += duration;
zigMin = Math.min(zigMin, duration);
zigMax = Math.max(zigMax, duration);
start = System.currentTimeMillis();
for (int i = 0; i < repeats; i++) findBinarySearch(a, 2);
end = System.currentTimeMillis();
duration = end - start;
binSum += duration;
binMin = Math.min(binMin, duration);
binMax = Math.max(binMax, duration);
}
zigAvg = zigSum / randoms;
binAvg = binSum / randoms;
System.out.println(findZigZag(a, 2) ?
"Found via zigzag method. " : "ERROR. ");
//System.out.println("min search time: " + zigMin + "ms");
System.out.println("max search time: " + zigMax + "ms");
System.out.println("avg search time: " + zigAvg + "ms");
System.out.println();
System.out.println(findBinarySearch(a, 2) ?
"Found via binary search method. " : "ERROR. ");
//System.out.println("min search time: " + binMin + "ms");
System.out.println("max search time: " + binMax + "ms");
System.out.println("avg search time: " + binAvg + "ms");
}
}
This is a short proof of the lower bound on the problem.
You cannot do it better than linear time (in terms of array dimensions, not the number of elements). In the array below, each of the elements marked as * can be either 5 or 6 (independently of other ones). So if your target value is 6 (or 5) the algorithm needs to examine all of them.
1 2 3 4 *
2 3 4 * 7
3 4 * 7 8
4 * 7 8 9
* 7 8 9 10
Of course this expands to bigger arrays as well. This means that this answer is optimal.
Update: As pointed out by Jeffrey L Whitledge, it is only optimal as the asymptotic lower bound on running time vs input data size (treated as a single variable). Running time treated as two-variable function on both array dimensions can be improved.
I think Here is the answer and it works for any kind of sorted matrix
bool findNum(int arr[][ARR_MAX],int xmin, int xmax, int ymin,int ymax,int key)
{
if (xmin > xmax || ymin > ymax || xmax < xmin || ymax < ymin) return false;
if ((xmin == xmax) && (ymin == ymax) && (arr[xmin][ymin] != key)) return false;
if (arr[xmin][ymin] > key || arr[xmax][ymax] < key) return false;
if (arr[xmin][ymin] == key || arr[xmax][ymax] == key) return true;
int xnew = (xmin + xmax)/2;
int ynew = (ymin + ymax)/2;
if (arr[xnew][ynew] == key) return true;
if (arr[xnew][ynew] < key)
{
if (findNum(arr,xnew+1,xmax,ymin,ymax,key))
return true;
return (findNum(arr,xmin,xmax,ynew+1,ymax,key));
} else {
if (findNum(arr,xmin,xnew-1,ymin,ymax,key))
return true;
return (findNum(arr,xmin,xmax,ymin,ynew-1,key));
}
}
Interesting question. Consider this idea - create one boundary where all the numbers are greater than your target and another where all the numbers are less than your target. If anything is left in between the two, that's your target.
If I'm looking for 3 in your example, I read across the first row until I hit 4, then look for the smallest adjacent number (including diagonals) greater than 3:
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
Now I do the same for those numbers less than 3:
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
Now I ask, is anything inside the two boundaries? If yes, it must be 3. If no, then there is no 3. Sort of indirect since I don't actually find the number, I just deduce that it must be there. This has the added bonus of counting ALL the 3's.
I tried this on some examples and it seems to work OK.
Binary search through the diagonal of the array is the best option.
We can find out whether the element is less than or equal to the elements in the diagonal.
I've been asking this question in interviews for the better part of a decade and I think there's only been one person who has been able to come up with an optimal algorithm.
My solution has always been:
Binary search the middle diagonal, which is the diagonal running down and right, containing the item at (rows.count/2, columns.count/2).
If the target number is found, return true.
Otherwise, two numbers (u and v) will have been found such that u is smaller than the target, v is larger than the target, and v is one right and one down from u.
Recursively search the sub-matrix to the right of u and top of v and the one to the bottom of u and left of v.
I believe this is a strict improvement over the algorithm given by Nate here, since searching the diagonal often allows a reduction of over half the search space (if the matrix is close to square), whereas searching a row or column always results in an elimination of exactly half.
Here's the code in (probably not terribly Swifty) Swift:
import Cocoa
class Solution {
func searchMatrix(_ matrix: [[Int]], _ target: Int) -> Bool {
if (matrix.isEmpty || matrix[0].isEmpty) {
return false
}
return _searchMatrix(matrix, 0..<matrix.count, 0..<matrix[0].count, target)
}
func _searchMatrix(_ matrix: [[Int]], _ rows: Range<Int>, _ columns: Range<Int>, _ target: Int) -> Bool {
if (rows.count == 0 || columns.count == 0) {
return false
}
if (rows.count == 1) {
return _binarySearch(matrix, rows.lowerBound, columns, target, true)
}
if (columns.count == 1) {
return _binarySearch(matrix, columns.lowerBound, rows, target, false)
}
var lowerInflection = (-1, -1)
var upperInflection = (Int.max, Int.max)
var currentRows = rows
var currentColumns = columns
while (currentRows.count > 0 && currentColumns.count > 0 && upperInflection.0 > lowerInflection.0+1) {
let rowMidpoint = (currentRows.upperBound + currentRows.lowerBound) / 2
let columnMidpoint = (currentColumns.upperBound + currentColumns.lowerBound) / 2
let value = matrix[rowMidpoint][columnMidpoint]
if (value == target) {
return true
}
if (value > target) {
upperInflection = (rowMidpoint, columnMidpoint)
currentRows = currentRows.lowerBound..<rowMidpoint
currentColumns = currentColumns.lowerBound..<columnMidpoint
} else {
lowerInflection = (rowMidpoint, columnMidpoint)
currentRows = rowMidpoint+1..<currentRows.upperBound
currentColumns = columnMidpoint+1..<currentColumns.upperBound
}
}
if (lowerInflection.0 == -1) {
lowerInflection = (upperInflection.0-1, upperInflection.1-1)
} else if (upperInflection.0 == Int.max) {
upperInflection = (lowerInflection.0+1, lowerInflection.1+1)
}
return _searchMatrix(matrix, rows.lowerBound..<lowerInflection.0+1, upperInflection.1..<columns.upperBound, target) || _searchMatrix(matrix, upperInflection.0..<rows.upperBound, columns.lowerBound..<lowerInflection.1+1, target)
}
func _binarySearch(_ matrix: [[Int]], _ rowOrColumn: Int, _ range: Range<Int>, _ target: Int, _ searchRow : Bool) -> Bool {
if (range.isEmpty) {
return false
}
let midpoint = (range.upperBound + range.lowerBound) / 2
let value = (searchRow ? matrix[rowOrColumn][midpoint] : matrix[midpoint][rowOrColumn])
if (value == target) {
return true
}
if (value > target) {
return _binarySearch(matrix, rowOrColumn, range.lowerBound..<midpoint, target, searchRow)
} else {
return _binarySearch(matrix, rowOrColumn, midpoint+1..<range.upperBound, target, searchRow)
}
}
}
A. Do a binary search on those lines where the target number might be on.
B. Make it a graph : Look for the number by taking always the smallest unvisited neighbour node and backtracking when a too big number is found
Binary search would be the best approach, imo. Starting at 1/2 x, 1/2 y will cut it in half. IE a 5x5 square would be something like x == 2 / y == 3 . I rounded one value down and one value up to better zone in on the direction of the targeted value.
For clarity the next iteration would give you something like x == 1 / y == 2 OR x == 3 / y == 5
Well, to begin with, let us assume we are using a square.
1 2 3
2 3 4
3 4 5
1. Searching a square
I would use a binary search on the diagonal. The goal is the locate the smaller number that is not strictly lower than the target number.
Say I am looking for 4 for example, then I would end up locating 5 at (2,2).
Then, I am assured that if 4 is in the table, it is at a position either (x,2) or (2,x) with x in [0,2]. Well, that's just 2 binary searches.
The complexity is not daunting: O(log(N)) (3 binary searches on ranges of length N)
2. Searching a rectangle, naive approach
Of course, it gets a bit more complicated when N and M differ (with a rectangle), consider this degenerate case:
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17
And let's say I am looking for 9... The diagonal approach is still good, but the definition of diagonal changes. Here my diagonal is [1, (5 or 6), 17]. Let's say I picked up [1,5,17], then I know that if 9 is in the table it is either in the subpart:
5 6 7 8
6 7 8 9
10 11 12 13 14 15 16
This gives us 2 rectangles:
5 6 7 8 10 11 12 13 14 15 16
6 7 8 9
So we can recurse! probably beginning by the one with less elements (though in this case it kills us).
I should point that if one of the dimensions is less than 3, we cannot apply the diagonal methods and must use a binary search. Here it would mean:
Apply binary search on 10 11 12 13 14 15 16, not found
Apply binary search on 5 6 7 8, not found
Apply binary search on 6 7 8 9, not found
It's tricky because to get good performance you might want to differentiate between several cases, depending on the general shape....
3. Searching a rectangle, brutal approach
It would be much easier if we dealt with a square... so let's just square things up.
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17
17 . . . . . . 17
. .
. .
. .
17 . . . . . . 17
We now have a square.
Of course, we will probably NOT actually create those rows, we could simply emulate them.
def get(x,y):
if x < N and y < M: return table[x][y]
else: return table[N-1][M-1] # the max
so it behaves like a square without occupying more memory (at the cost of speed, probably, depending on cache... oh well :p)
EDIT:
I misunderstood the question. As the comments point out this only works in the more restricted case.
In a language like C that stores data in row-major order, simply treat it as a 1D array of size n * m and use a binary search.
I have a recursive Divide & Conquer Solution.
Basic Idea for one step is: We know that the Left-Upper(LU) is smallest and the right-bottom(RB) is the largest no., so the given No(N) must: N>=LU and N<=RB
IF N==LU and N==RB::::Element Found and Abort returning the position/Index
If N>=LU and N<=RB = FALSE, No is not there and abort.
If N>=LU and N<=RB = TRUE, Divide the 2D array in 4 equal parts of 2D array each in logical manner..
And then apply the same algo step to all four sub-array.
My Algo is Correct I have implemented on my friends PC.
Complexity: each 4 comparisons can b used to deduce the total no of elements to one-fourth at its worst case..
So My complexity comes to be 1 + 4 x lg(n) + 4
But really expected this to be working on O(n)
I think something is wrong somewhere in my calculation of Complexity, please correct if so..
The optimal solution is to start at the top-left corner, that has minimal value. Move diagonally downwards to the right until you hit an element whose value >= value of the given element. If the element's value is equal to that of the given element, return found as true.
Otherwise, from here we can proceed in two ways.
Strategy 1:
Move up in the column and search for the given element until we reach the end. If found, return found as true
Move left in the row and search for the given element until we reach the end. If found, return found as true
return found as false
Strategy 2:
Let i denote the row index and j denote the column index of the diagonal element we have stopped at. (Here, we have i = j, BTW). Let k = 1.
Repeat the below steps until i-k >= 0
Search if a[i-k][j] is equal to the given element. if yes, return found as true.
Search if a[i][j-k] is equal to the given element. if yes, return found as true.
Increment k
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
public boolean searchSortedMatrix(int arr[][] , int key , int minX , int maxX , int minY , int maxY){
// base case for recursion
if(minX > maxX || minY > maxY)
return false ;
// early fails
// array not properly intialized
if(arr==null || arr.length==0)
return false ;
// arr[0][0]> key return false
if(arr[minX][minY]>key)
return false ;
// arr[maxX][maxY]<key return false
if(arr[maxX][maxY]<key)
return false ;
//int temp1 = minX ;
//int temp2 = minY ;
int midX = (minX+maxX)/2 ;
//if(temp1==midX){midX+=1 ;}
int midY = (minY+maxY)/2 ;
//if(temp2==midY){midY+=1 ;}
// arr[midX][midY] = key ? then value found
if(arr[midX][midY] == key)
return true ;
// alas ! i have to keep looking
// arr[midX][midY] < key ? search right quad and bottom matrix ;
if(arr[midX][midY] < key){
if( searchSortedMatrix(arr ,key , minX,maxX , midY+1 , maxY))
return true ;
// search bottom half of matrix
if( searchSortedMatrix(arr ,key , midX+1,maxX , minY , maxY))
return true ;
}
// arr[midX][midY] > key ? search left quad matrix ;
else {
return(searchSortedMatrix(arr , key , minX,midX-1,minY,midY-1));
}
return false ;
}
I suggest, store all characters in a 2D list. then find index of required element if it exists in list.
If not present print appropriate message else print row and column as:
row = (index/total_columns) and column = (index%total_columns -1)
This will incur only the binary search time in a list.
Please suggest any corrections. :)
If O(M log(N)) solution is ok for an MxN array -
template <size_t n>
struct MN * get(int a[][n], int k, int M, int N){
struct MN *result = new MN;
result->m = -1;
result->n = -1;
/* Do a binary search on each row since rows (and columns too) are sorted. */
for(int i = 0; i < M; i++){
int lo = 0; int hi = N - 1;
while(lo <= hi){
int mid = lo + (hi-lo)/2;
if(k < a[i][mid]) hi = mid - 1;
else if (k > a[i][mid]) lo = mid + 1;
else{
result->m = i;
result->n = mid;
return result;
}
}
}
return result;
}
Working C++ demo.
Please do let me know if this wouldn't work or if there is a bug it it.
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null)
return false;
int i=0;
int j=0;
int m = matrix.length;
int n = matrix[0].length;
boolean found = false;
while(i<m && !found){
while(j<n && !found){
if(matrix[i][j] == target)
found = true;
if(matrix[i][j] < target)
j++;
else
break;
}
i++;
j=0;
}
return found;
}}
129 / 129 test cases passed.
Status: Accepted
Runtime: 39 ms
Memory Usage: 55 MB
Given a square matrix as follows:
[ a b c ]
[ d e f ]
[ i j k ]
We know that a < c, d < f, i < k. What we don't know is whether d < c or d > c, etc. We have guarantees only in 1-dimension.
Looking at the end elements (c,f,k), we can do a sort of filter: is N < c ? search() : next(). Thus, we have n iterations over the rows, with each row taking either O( log( n ) ) for binary search or O( 1 ) if filtered out.
Let me given an EXAMPLE where N = j,
1) Check row 1. j < c? (no, go next)
2) Check row 2. j < f? (yes, bin search gets nothing)
3) Check row 3. j < k? (yes, bin search finds it)
Try again with N = q,
1) Check row 1. q < c? (no, go next)
2) Check row 2. q < f? (no, go next)
3) Check row 3. q < k? (no, go next)
There is probably a better solution out there but this is easy to explain.. :)
As this is an interview question, it would seem to lead towards a discussion of Parallel programming and Map-reduce algorithms.
See http://code.google.com/intl/de/edu/parallel/mapreduce-tutorial.html

Different ways to get balls from a box

You have a box with of balls ,We pull all balls from the box
But we can pull one at a time or three at a time
And the order of extraction matters.
The question is how many different ways are there to pull the balls out?
So if the:
Box contains 1 ball there is only 1 way.
Box contains 2 ball there is only 1 way.
Box contains 3 ball there is 2 way (pull 1 by one or three at once)
Box Contains 4 balls there are 3 ways:
1111
13
31
And the given was that for 7 balls there at 9 different ways to extract the balls from the box
So the question is given the amount of balls in the box,
The solution I came up with was recursive:
Int calculate(int balls){
If(balls=0) return 0;
If(balls=1) return 1;
If(balls=2) return 1;
If(balls=3) return 2;
If(balls=4) return 3;
return calculate(balls-1) + calculate(balls-3);
}
Is this correct?
Is there a way without using recursion?
Thank you
Your solution is correct. However, there are ways to improve the performance of the algorithm using a technique called dynamic programming. In this case, you can memoize the results, which means storing all the intermediate results in a lookup table after calculating each of them once using recursion. This allows a solution that normally requires exponential time to complete in linear time. Here's an example implementation of that in JavaScript:
function calculate (balls, map = []) {
if (balls in map) {
return map[balls]
}
switch (balls) {
case 0:
return 0
case 1:
return 1
case 2:
return 1
case 3:
return 2
default:
return map[balls] = calculate(balls - 1, map) + calculate(balls - 3, map)
}
}
console.time('dynamic')
console.log(calculate(50))
console.timeEnd('dynamic')
Compare that to the naive algorithm:
function calculate (balls) {
switch (balls) {
case 0:
return 0
case 1:
return 1
case 2:
return 1
case 3:
return 2
default:
return calculate(balls - 1) + calculate(balls - 3)
}
}
console.time('naive')
console.log(calculate(50))
console.timeEnd('naive')
You don't need memoization (at least not for all values) or solving the recursion to write a non-recursive program for this - or similar cases.
Something like the following will do:
function calculate (balls) {
if (balls=0) return 0; /* Or remove this line */
if (balls<3) return 1;
resMinus3=1; /* The result for i-3 */
resMinus2=1; /* For i-2 */
resMinus1=1; /* And for i-1 */
for(i=3;;++i) {
newRes=resMinus1+resMinus3; /* The recursion formula */
if (i>=balls) return newRes;
resMinus3=resMinus2; /* Shifting results */
resMinus2=resMinus1;
resMinus1=newRes;
}
}
The reason is that to compute the value for balls you only need values for balls-1 and balls-3, so you only need to keep track of three previous results to update the new one. Alternatively you could write this as a matrix update:
[resMinus1;resMinus2;resMinus3] <-[0,1,0;0,0,1;1,0,1]*[resMinus1;resMinus2;resMinus3]
From a link in the comments, you can find this equation:
a(n) = Sum_{i=0..floor(n/3)} binomial(n-2*i, i)
function binom(n, k) {
var coeff = 1;
for (var i = n-k+1; i <= n; i++) coeff *= i;
for (var i = 1; i <= k; i++) coeff /= i;
return coeff;
}
function calculate (balls) {
sum = 0;
for (i = 0; i <= Math.floor(balls/3); i++){
sum += binom(balls - 2*i, i);
}
return sum;
}
console.time('someMathGenius')
console.log(calculate(50))
console.timeEnd('someMathGenius')
For N balls, you can pull between 0 and floor(n/3) triples.
For N balls where you pull k triples, you also pull N-3k singles.
Now the problem is reduced to counting the distinct ways you can order k things of one type, and N-3k things of another type. This is choose(k + N-3k, k) = choose(N-2k,k).
Final answer is the sum from k=0 to floor(N/3) of choose(N-2k,k).
N=0: choose(0,0) = 1 so there is 1 way of choosing nothing.
N=1: choose(1,0) = 1
N=2: choose(2,0) = 1
N=3: choose(3,0) + choose(1,1) = 1+1 = 2
N=4: choose(4,0) + choose(2,1) = 1+2 = 3
...
N=7: choose(7,0) + choose(5,1) + choose(3,2) = 1 + 5 + 3 = 9

How to get minimum number of moves to solve `game of fifteen`?

I was reading about this and thought to form an algorithm to find the minimum number of moves to solve this.
Constraints I made: An N X N matrix having one empty slot ,say 0, would be plotted having numbers 0 to n-1.
Now we have to recreate this matrix and form the matrix having numbers in increasing order from left to right beginning from the top row and have the last element 0 i.e. (N X Nth)element.
For example,
Input :
8 4 0
7 2 5
1 3 6
Output:
1 2 3
4 5 6
7 8 0
Now the problem is how to do this in minimum number of steps possible.
As in game(link provided) you can either move left, right, up or bottom and shift the 0(empty slot) to corresponding position to make the final matrix.
The output to printed for this algorithm is number of steps say M and then Tile(number) moved in the direction say, 1 for swapping with upper adjacent element, 2 for lower adjacent element, 3 for left adjacent element and 4 for right adjacent element.
Like, for
2 <--- order of N X N matrix
3 1
0 2
Answer should be: 3 4 1 2 where 3 is M and 4 1 2 are steps to tile movement.
So I have to minimise the complexity for this algorithm and want to find minimum number of moves. Please suggest me the most efficient approach to solve this algorithm.
Edit:
What I coded in c++, Please see the algorithm rather than pointing out other issues in code .
#include <bits/stdc++.h>
using namespace std;
int inDex=0,shift[100000],N,initial[500][500],final[500][500];
struct Node
{
Node* parent;
int mat[500][500];
int x, y;
int cost;
int level;
};
Node* newNode(int mat[500][500], int x, int y, int newX,
int newY, int level, Node* parent)
{
Node* node = new Node;
node->parent = parent;
memcpy(node->mat, mat, sizeof node->mat);
swap(node->mat[x][y], node->mat[newX][newY]);
node->cost = INT_MAX;
node->level = level;
node->x = newX;
node->y = newY;
return node;
}
int row[] = { 1, 0, -1, 0 };
int col[] = { 0, -1, 0, 1 };
int calculateCost(int initial[500][500], int final[500][500])
{
int count = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (initial[i][j] && initial[i][j] != final[i][j])
count++;
return count;
}
int isSafe(int x, int y)
{
return (x >= 0 && x < N && y >= 0 && y < N);
}
struct comp
{
bool operator()(const Node* lhs, const Node* rhs) const
{
return (lhs->cost + lhs->level) > (rhs->cost + rhs->level);
}
};
void solve(int initial[500][500], int x, int y,
int final[500][500])
{
priority_queue<Node*, std::vector<Node*>, comp> pq;
Node* root = newNode(initial, x, y, x, y, 0, NULL);
Node* prev = newNode(initial,x,y,x,y,0,NULL);
root->cost = calculateCost(initial, final);
pq.push(root);
while (!pq.empty())
{
Node* min = pq.top();
if(min->x > prev->x)
{
shift[inDex] = 4;
inDex++;
}
else if(min->x < prev->x)
{
shift[inDex] = 3;
inDex++;
}
else if(min->y > prev->y)
{
shift[inDex] = 2;
inDex++;
}
else if(min->y < prev->y)
{
shift[inDex] = 1;
inDex++;
}
prev = pq.top();
pq.pop();
if (min->cost == 0)
{
cout << min->level << endl;
return;
}
for (int i = 0; i < 4; i++)
{
if (isSafe(min->x + row[i], min->y + col[i]))
{
Node* child = newNode(min->mat, min->x,
min->y, min->x + row[i],
min->y + col[i],
min->level + 1, min);
child->cost = calculateCost(child->mat, final);
pq.push(child);
}
}
}
}
int main()
{
cin >> N;
int i,j,k=1;
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
cin >> initial[j][i];
}
}
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
final[j][i] = k;
k++;
}
}
final[N-1][N-1] = 0;
int x = 0, y = 1,a[100][100];
solve(initial, x, y, final);
for(i=0;i<inDex;i++)
{
cout << shift[i] << endl;
}
return 0;
}
In this above code I am checking for each child node which has the minimum cost(how many numbers are misplaced from the final matrix numbers).
I want to make this algorithm further efficient and reduce it's time complexity. Any suggestions would be appreciable.
While this sounds a lot like a homework problem, I'll lend a bit of help.
For significantly small problems, like your 2x2 or 3x3, you can just brute force it. Basically, you do every possible combination with every possible move, track how many turns each took, and then print out the smallest.
To improve on this, maintain a list of solved solutions, and then any time you make a possible move, if that moves already done, stop trying that one since it can't possible be the smallest.
Example, say I'm in this state (flattening your matrix to a string for ease of display):
5736291084
6753291084
5736291084
Notice that we're back to a state we've seen before. That means it can't possible be the smallest move, because the smallest would be done without returning to a previous state.
You'll want to create a tree doing this, so you'd have something like:
134
529
870
/ \
/ \
/ \
/ \
134 134
529 520
807 879
/ | \ / | \
/ | X / X \
134 134 134 134 134 130
509 529 529 502 529 524
827 087 870 879 870 879
And so on. Notice I marked some with X because they were duplicates, and thus we wouldn't want to pursue them any further since we know they can't be the smallest.
You'd just keep repeating this until you've tried all possible solutions (i.e., all non-stopped leaves reach a solution), then you just see which was the shortest. You could also do it in parallel so you stop once any one has found a solution, saving you time.
This brute force approach won't be effective against large matrices. To solve those, you're looking at some serious software engineering. One approach you could take with it would be to break it into smaller matrices and solve that way, but that may not be the best path.
This is a tricky problem to solve at larger values, and is up there with some of the trickier NP problems out there.
Start from solution, determine ranks of permuation
The reverse of above would be how you can pre-generate a list of all possible values.
Start with the solution. That has a rank of permutation of 0 (as in, zero moves):
012
345
678
Then, make all possible moves from there. All of those moves have rank of permutation of 1, as in, one move to solve.
012
0 345
678
/ \
/ \
/ \
102 312
1 345 045
678 678
Repeat that as above. Each new level all has the same rank of permutation. Generate all possible moves (in this case, until all of your branches are killed off as duplicates).
You can then store all of them into an object. Flattening the matrix would make this easy (using JavaScript syntax just for example):
{
'012345678': 0,
'102345678': 1,
'312045678': 1,
'142305678': 2,
// and so on
}
Then, to solve your question "minimum number of moves", just find the entry that is the same as your starting point. The rank of permutation is the answer.
This would be a good solution if you are in a scenario where you can pre-generate the entire solution. It would take time to generate, but lookups would be lightning fast (this is similar to "rainbow tables" for cracking hashes).
If you must solve on the fly (without pre-generation), then the first solution, start with the answer and work your way move-by-move until you find a solution would be better.
While the maximum complexity is O(n!), there are only O(n^2) possible solutions. Chopping off duplicates from the tree as you go, your complexity will be somewhere in between those two, probably in the neighborhood of O(n^3) ~ O(2^n)
You can use BFS.
Each state is one vertex, and there is an edge between two vertices if they can transfer to each other.
For example
8 4 0
7 2 5
1 3 6
and
8 0 4
7 2 5
1 3 6
are connected.
Usually, you may want to use some numbers to represent your current state. For small grid, you can just follow the sequence of the number. For example,
8 4 0
7 2 5
1 3 6
is just 840725136.
If the grid is large, you may consider using the rank of the permutation of the numbers as your representation of the state. For example,
0 1 2
3 4 5
6 7 8
should be 0, as it is the first in permutation.
And
0 1 2
3 4 5
6 7 8
(which is represented by 0)
and
1 0 2
3 4 5
6 7 8
(which is represented by some other number X)
are connected is the same as 0 and X are connected in the graph.
The complexity of the algo should be O(n!) as there are at most n! vertices/permutations.

Improve the solution to monkey grid puzzle

I was trying to solve the following problem:
There is a monkey which can walk around on a planar grid. The monkey
can move one space at a time left, right, up or down. That is, from
(x, y) the monkey can go to (x+1, y), (x-1, y), (x, y+1), and (x,
y-1). Points where the sum of the digits of the absolute value of the
x coordinate plus the sum of the digits of the absolute value of the y
coordinate are lesser than or equal to 19 are accessible to the
monkey. For example, the point (59, 79) is inaccessible because 5 + 9
+ 7 + 9 = 30, which is greater than 19. Another example: the point (-5, -7) is accessible because abs(-5) + abs(-7) = 5 + 7 = 12, which
is less than 19. How many points can the monkey access if it starts at
(0, 0), including (0, 0) itself?
I came up with the following brute force solution (pseudo code):
/*
legitPoints = {}; // all the allowed points that monkey can goto
list.push( Point(0,0) ); // start exploring from origin
while(!list.empty()){
Point p = list.pop_front(); // remove point
// if p has been seen before; ignore p => continue;
// else mark it and proceed further
if(legit(p){
// since we are only exploring points in one quadrant,
// we don't need to check for -x direction and -y direction
// hence explore the following: this is like Breadth First Search
list.push(Point(p.x+1, p.y)); // explore x+1, y
list.push(Point(p.x, p.y+1)); // explore x, y+1
legitPoints.insert(p); // during insertion, ignore duplicates
// (although no duplicates should come through after above check)
// count properly using multipliers
// Origin => count once x = 0 && y == 0 => mul : 1
// X axis => count twice x = 0 && y != 0 => mul : 2
// Y axis => count twice x != 0 && y = 0 => mul : 2
// All others => mul : 4
}
return legitPoints.count();
}
*/
This is a very brute force solution. One of the optimizations I used was to one scan one quadrant instead of looking at four. Another one was to ignore the points that we've already seen before.
However, looking at the final points, I was trying to find a pattern, perhaps a mathematical solution or a different approach that would be better than what I came up.
Any thoughts ?
PS: If you want, I can post the data somewhere. It is interesting to look at it with any one of the axis sorted.
First quadrant visual:
Here's what the whole grid looks like as an image:
The black squares are inaccessible, white accessible, gray accessible and reachable by movement from the center. There's a 600x600 bounding box of black because the digits of 299 add to 20, so we only have to consider that.
This exercise is basically a "flood fill", with a shape which is just about the worst case possible for a flood fill. You can do the symmetry speedup if you like, though that's not really where the meat of the issue is--my solution runs in 160 ms without it (under 50ms with it).
The big speed wins are (1) do a line-filling flood so you don't have to put every point on the stack, and (2) manage your own stack instead of doing recursion. I built my stack as two dynamically-allocated vectors of ints (for x and y), and they grow to about 16k, so building whole stack frames that deep would definitely be a huge loss.
Without looking for the ideal solution I had something similar. For each point the monkey is, I added the next 4 possibilities to a list and did the same for the next four recursively only if they had not been visited. This can be also done with multiprocessing to speed up the process.
Here is my solution, more like a BFS:
int DigitSum(int num)
{
int sum = 0;
num = (num >= 0) ? num : -num;
while(num) {
sum += num % 10;
num /= 10;
}
return sum;
}
struct Point {
int x,y;
Point(): x(0), y(0) {}
Point(int x1, int y1): x(x1), y(y1) {}
friend bool operator<(const Point& p1, const Point& p2)
{
if (p1.x < p2.x) {
return true;
} else if (p1.x == p2.x) {
return (p1.y < p2.y);
} else {
return false;
}
}
};
void neighbor(vector<Point>& n, const Point& p)
{
if (n.size() < 4) n.resize(4);
n[0] = Point(p.x-1, p.y);
n[1] = Point(p.x+1, p.y);
n[2] = Point(p.x, p.y-1);
n[3] = Point(p.x, p.y+1);
}
int numMoves(const Point& start)
{
map<Point, bool> m;
queue<Point> q;
int count = 0;
vector<Point> neigh;
q.push(start);
m[start] = true;
while (! q.empty()) {
Point c = q.front();
neighbor(neigh, c);
for (auto p: neigh) {
if ((!m[p]) && (DigitSum(p.x) + DigitSum(p.y) <= 19)) {
count++;
m[p] = true;
q.push(p);
}
}
q.pop();
}
return count;
}
I'm not sure how different this may be from brainydexter's idea... roaming the one quadrant, I instituted a single array hash (index = 299 * y + x) and built the result with another array, each index storing only the points that expand from its previous index, for example:
first iteration, result = [[(0,0)]]
second iteration, result = [[(0,0)],[(0,1),(1,0)]]
...
On an old IBM Thinkpad in JavaScript, the speed seemed to vary from 35-120 milliseconds (fiddle here).

How do I search for a number in a 2d array sorted left to right and top to bottom?

I was recently given this interview question and I'm curious what a good solution to it would be.
Say I'm given a 2d array where all the
numbers in the array are in increasing
order from left to right and top to
bottom.
What is the best way to search and
determine if a target number is in the
array?
Now, my first inclination is to utilize a binary search since my data is sorted. I can determine if a number is in a single row in O(log N) time. However, it is the 2 directions that throw me off.
Another solution I thought may work is to start somewhere in the middle. If the middle value is less than my target, then I can be sure it is in the left square portion of the matrix from the middle. I then move diagonally and check again, reducing the size of the square that the target could potentially be in until I have honed in on the target number.
Does anyone have any good ideas on solving this problem?
Example array:
Sorted left to right, top to bottom.
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
Here's a simple approach:
Start at the bottom-left corner.
If the target is less than that value, it must be above us, so move up one.
Otherwise we know that the target can't be in that column, so move right one.
Goto 2.
For an NxM array, this runs in O(N+M). I think it would be difficult to do better. :)
Edit: Lots of good discussion. I was talking about the general case above; clearly, if N or M are small, you could use a binary search approach to do this in something approaching logarithmic time.
Here are some details, for those who are curious:
History
This simple algorithm is called a Saddleback Search. It's been around for a while, and it is optimal when N == M. Some references:
David Gries, The Science of Programming. Springer-Verlag, 1989.
Edsgar Dijkstra, The Saddleback Search. Note EWD-934, 1985.
However, when N < M, intuition suggests that binary search should be able to do better than O(N+M): For example, when N == 1, a pure binary search will run in logarithmic rather than linear time.
Worst-case bound
Richard Bird examined this intuition that binary search could improve the Saddleback algorithm in a 2006 paper:
Richard S. Bird, Improving Saddleback Search: A Lesson in Algorithm Design, in Mathematics of Program Construction, pp. 82--89, volume 4014, 2006.
Using a rather unusual conversational technique, Bird shows us that for N <= M, this problem has a lower bound of Ω(N * log(M/N)). This bound make sense, as it gives us linear performance when N == M and logarithmic performance when N == 1.
Algorithms for rectangular arrays
One approach that uses a row-by-row binary search looks like this:
Start with a rectangular array where N < M. Let's say N is rows and M is columns.
Do a binary search on the middle row for value. If we find it, we're done.
Otherwise we've found an adjacent pair of numbers s and g, where s < value < g.
The rectangle of numbers above and to the left of s is less than value, so we can eliminate it.
The rectangle below and to the right of g is greater than value, so we can eliminate it.
Go to step (2) for each of the two remaining rectangles.
In terms of worst-case complexity, this algorithm does log(M) work to eliminate half the possible solutions, and then recursively calls itself twice on two smaller problems. We do have to repeat a smaller version of that log(M) work for every row, but if the number of rows is small compared to the number of columns, then being able to eliminate all of those columns in logarithmic time starts to become worthwhile.
This gives the algorithm a complexity of T(N,M) = log(M) + 2 * T(M/2, N/2), which Bird shows to be O(N * log(M/N)).
Another approach posted by Craig Gidney describes an algorithm similar the approach above: it examines a row at a time using a step size of M/N. His analysis shows that this results in O(N * log(M/N)) performance as well.
Performance Comparison
Big-O analysis is all well and good, but how well do these approaches work in practice? The chart below examines four algorithms for increasingly "square" arrays:
(The "naive" algorithm simply searches every element of the array. The "recursive" algorithm is described above. The "hybrid" algorithm is an implementation of Gidney's algorithm. For each array size, performance was measured by timing each algorithm over fixed set of 1,000,000 randomly-generated arrays.)
Some notable points:
As expected, the "binary search" algorithms offer the best performance on rectangular arrays and the Saddleback algorithm works the best on square arrays.
The Saddleback algorithm performs worse than the "naive" algorithm for 1-d arrays, presumably because it does multiple comparisons on each item.
The performance hit that the "binary search" algorithms take on square arrays is presumably due to the overhead of running repeated binary searches.
Summary
Clever use of binary search can provide O(N * log(M/N) performance for both rectangular and square arrays. The O(N + M) "saddleback" algorithm is much simpler, but suffers from performance degradation as arrays become increasingly rectangular.
This problem takes Θ(b lg(t)) time, where b = min(w,h) and t=b/max(w,h). I discuss the solution in this blog post.
Lower bound
An adversary can force an algorithm to make Ω(b lg(t)) queries, by restricting itself to the main diagonal:
Legend: white cells are smaller items, gray cells are larger items, yellow cells are smaller-or-equal items and orange cells are larger-or-equal items. The adversary forces the solution to be whichever yellow or orange cell the algorithm queries last.
Notice that there are b independent sorted lists of size t, requiring Ω(b lg(t)) queries to completely eliminate.
Algorithm
(Assume without loss of generality that w >= h)
Compare the target item against the cell t to the left of the top right corner of the valid area
If the cell's item matches, return the current position.
If the cell's item is less than the target item, eliminate the remaining t cells in the row with a binary search. If a matching item is found while doing this, return with its position.
Otherwise the cell's item is more than the target item, eliminating t short columns.
If there's no valid area left, return failure
Goto step 2
Finding an item:
Determining an item doesn't exist:
Legend: white cells are smaller items, gray cells are larger items, and the green cell is an equal item.
Analysis
There are b*t short columns to eliminate. There are b long rows to eliminate. Eliminating a long row costs O(lg(t)) time. Eliminating t short columns costs O(1) time.
In the worst case we'll have to eliminate every column and every row, taking time O(lg(t)*b + b*t*1/t) = O(b lg(t)).
Note that I'm assuming lg clamps to a result above 1 (i.e. lg(x) = log_2(max(2,x))). That's why when w=h, meaning t=1, we get the expected bound of O(b lg(1)) = O(b) = O(w+h).
Code
public static Tuple<int, int> TryFindItemInSortedMatrix<T>(this IReadOnlyList<IReadOnlyList<T>> grid, T item, IComparer<T> comparer = null) {
if (grid == null) throw new ArgumentNullException("grid");
comparer = comparer ?? Comparer<T>.Default;
// check size
var width = grid.Count;
if (width == 0) return null;
var height = grid[0].Count;
if (height < width) {
var result = grid.LazyTranspose().TryFindItemInSortedMatrix(item, comparer);
if (result == null) return null;
return Tuple.Create(result.Item2, result.Item1);
}
// search
var minCol = 0;
var maxRow = height - 1;
var t = height / width;
while (minCol < width && maxRow >= 0) {
// query the item in the minimum column, t above the maximum row
var luckyRow = Math.Max(maxRow - t, 0);
var cmpItemVsLucky = comparer.Compare(item, grid[minCol][luckyRow]);
if (cmpItemVsLucky == 0) return Tuple.Create(minCol, luckyRow);
// did we eliminate t rows from the bottom?
if (cmpItemVsLucky < 0) {
maxRow = luckyRow - 1;
continue;
}
// we eliminated most of the current minimum column
// spend lg(t) time eliminating rest of column
var minRowInCol = luckyRow + 1;
var maxRowInCol = maxRow;
while (minRowInCol <= maxRowInCol) {
var mid = minRowInCol + (maxRowInCol - minRowInCol + 1) / 2;
var cmpItemVsMid = comparer.Compare(item, grid[minCol][mid]);
if (cmpItemVsMid == 0) return Tuple.Create(minCol, mid);
if (cmpItemVsMid > 0) {
minRowInCol = mid + 1;
} else {
maxRowInCol = mid - 1;
maxRow = mid - 1;
}
}
minCol += 1;
}
return null;
}
I would use the divide-and-conquer strategy for this problem, similar to what you suggested, but the details are a bit different.
This will be a recursive search on subranges of the matrix.
At each step, pick an element in the middle of the range. If the value found is what you are seeking, then you're done.
Otherwise, if the value found is less than the value that you are seeking, then you know that it is not in the quadrant above and to the left of your current position. So recursively search the two subranges: everything (exclusively) below the current position, and everything (exclusively) to the right that is at or above the current position.
Otherwise, (the value found is greater than the value that you are seeking) you know that it is not in the quadrant below and to the right of your current position. So recursively search the two subranges: everything (exclusively) to the left of the current position, and everything (exclusively) above the current position that is on the current column or a column to the right.
And ba-da-bing, you found it.
Note that each recursive call only deals with the current subrange only, not (for example) ALL rows above the current position. Just those in the current subrange.
Here's some pseudocode for you:
bool numberSearch(int[][] arr, int value, int minX, int maxX, int minY, int maxY)
if (minX == maxX and minY == maxY and arr[minX,minY] != value)
return false
if (arr[minX,minY] > value) return false; // Early exits if the value can't be in
if (arr[maxX,maxY] < value) return false; // this subrange at all.
int nextX = (minX + maxX) / 2
int nextY = (minY + maxY) / 2
if (arr[nextX,nextY] == value)
{
print nextX,nextY
return true
}
else if (arr[nextX,nextY] < value)
{
if (numberSearch(arr, value, minX, maxX, nextY + 1, maxY))
return true
return numberSearch(arr, value, nextX + 1, maxX, minY, nextY)
}
else
{
if (numberSearch(arr, value, minX, nextX - 1, minY, maxY))
return true
reutrn numberSearch(arr, value, nextX, maxX, minY, nextY)
}
The two main answers give so far seem to be the arguably O(log N) "ZigZag method" and the O(N+M) Binary Search method. I thought I'd do some testing comparing the two methods with some various setups. Here are the details:
The array is N x N square in every test, with N varying from 125 to 8000 (the largest my JVM heap could handle). For each array size, I picked a random place in the array to put a single 2. I then put a 3 everywhere possible (to the right and below of the 2) and then filled the rest of the array with 1. Some of the earlier commenters seemed to think this type of setup would yield worst case run time for both algorithms. For each array size, I picked 100 different random locations for the 2 (search target) and ran the test. I recorded avg run time and worst case run time for each algorithm. Because it was happening too fast to get good ms readings in Java, and because I don't trust Java's nanoTime(), I repeated each test 1000 times just to add a uniform bias factor to all the times. Here are the results:
ZigZag beat binary in every test for both avg and worst case times, however, they are all within an order of magnitude of each other more or less.
Here is the Java code:
public class SearchSortedArray2D {
static boolean findZigZag(int[][] a, int t) {
int i = 0;
int j = a.length - 1;
while (i <= a.length - 1 && j >= 0) {
if (a[i][j] == t) return true;
else if (a[i][j] < t) i++;
else j--;
}
return false;
}
static boolean findBinarySearch(int[][] a, int t) {
return findBinarySearch(a, t, 0, 0, a.length - 1, a.length - 1);
}
static boolean findBinarySearch(int[][] a, int t,
int r1, int c1, int r2, int c2) {
if (r1 > r2 || c1 > c2) return false;
if (r1 == r2 && c1 == c2 && a[r1][c1] != t) return false;
if (a[r1][c1] > t) return false;
if (a[r2][c2] < t) return false;
int rm = (r1 + r2) / 2;
int cm = (c1 + c2) / 2;
if (a[rm][cm] == t) return true;
else if (a[rm][cm] > t) {
boolean b1 = findBinarySearch(a, t, r1, c1, r2, cm - 1);
boolean b2 = findBinarySearch(a, t, r1, cm, rm - 1, c2);
return (b1 || b2);
} else {
boolean b1 = findBinarySearch(a, t, r1, cm + 1, rm, c2);
boolean b2 = findBinarySearch(a, t, rm + 1, c1, r2, c2);
return (b1 || b2);
}
}
static void randomizeArray(int[][] a, int N) {
int ri = (int) (Math.random() * N);
int rj = (int) (Math.random() * N);
a[ri][rj] = 2;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i == ri && j == rj) continue;
else if (i > ri || j > rj) a[i][j] = 3;
else a[i][j] = 1;
}
}
}
public static void main(String[] args) {
int N = 8000;
int[][] a = new int[N][N];
int randoms = 100;
int repeats = 1000;
long start, end, duration;
long zigMin = Integer.MAX_VALUE, zigMax = Integer.MIN_VALUE;
long binMin = Integer.MAX_VALUE, binMax = Integer.MIN_VALUE;
long zigSum = 0, zigAvg;
long binSum = 0, binAvg;
for (int k = 0; k < randoms; k++) {
randomizeArray(a, N);
start = System.currentTimeMillis();
for (int i = 0; i < repeats; i++) findZigZag(a, 2);
end = System.currentTimeMillis();
duration = end - start;
zigSum += duration;
zigMin = Math.min(zigMin, duration);
zigMax = Math.max(zigMax, duration);
start = System.currentTimeMillis();
for (int i = 0; i < repeats; i++) findBinarySearch(a, 2);
end = System.currentTimeMillis();
duration = end - start;
binSum += duration;
binMin = Math.min(binMin, duration);
binMax = Math.max(binMax, duration);
}
zigAvg = zigSum / randoms;
binAvg = binSum / randoms;
System.out.println(findZigZag(a, 2) ?
"Found via zigzag method. " : "ERROR. ");
//System.out.println("min search time: " + zigMin + "ms");
System.out.println("max search time: " + zigMax + "ms");
System.out.println("avg search time: " + zigAvg + "ms");
System.out.println();
System.out.println(findBinarySearch(a, 2) ?
"Found via binary search method. " : "ERROR. ");
//System.out.println("min search time: " + binMin + "ms");
System.out.println("max search time: " + binMax + "ms");
System.out.println("avg search time: " + binAvg + "ms");
}
}
This is a short proof of the lower bound on the problem.
You cannot do it better than linear time (in terms of array dimensions, not the number of elements). In the array below, each of the elements marked as * can be either 5 or 6 (independently of other ones). So if your target value is 6 (or 5) the algorithm needs to examine all of them.
1 2 3 4 *
2 3 4 * 7
3 4 * 7 8
4 * 7 8 9
* 7 8 9 10
Of course this expands to bigger arrays as well. This means that this answer is optimal.
Update: As pointed out by Jeffrey L Whitledge, it is only optimal as the asymptotic lower bound on running time vs input data size (treated as a single variable). Running time treated as two-variable function on both array dimensions can be improved.
I think Here is the answer and it works for any kind of sorted matrix
bool findNum(int arr[][ARR_MAX],int xmin, int xmax, int ymin,int ymax,int key)
{
if (xmin > xmax || ymin > ymax || xmax < xmin || ymax < ymin) return false;
if ((xmin == xmax) && (ymin == ymax) && (arr[xmin][ymin] != key)) return false;
if (arr[xmin][ymin] > key || arr[xmax][ymax] < key) return false;
if (arr[xmin][ymin] == key || arr[xmax][ymax] == key) return true;
int xnew = (xmin + xmax)/2;
int ynew = (ymin + ymax)/2;
if (arr[xnew][ynew] == key) return true;
if (arr[xnew][ynew] < key)
{
if (findNum(arr,xnew+1,xmax,ymin,ymax,key))
return true;
return (findNum(arr,xmin,xmax,ynew+1,ymax,key));
} else {
if (findNum(arr,xmin,xnew-1,ymin,ymax,key))
return true;
return (findNum(arr,xmin,xmax,ymin,ynew-1,key));
}
}
Interesting question. Consider this idea - create one boundary where all the numbers are greater than your target and another where all the numbers are less than your target. If anything is left in between the two, that's your target.
If I'm looking for 3 in your example, I read across the first row until I hit 4, then look for the smallest adjacent number (including diagonals) greater than 3:
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
Now I do the same for those numbers less than 3:
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
Now I ask, is anything inside the two boundaries? If yes, it must be 3. If no, then there is no 3. Sort of indirect since I don't actually find the number, I just deduce that it must be there. This has the added bonus of counting ALL the 3's.
I tried this on some examples and it seems to work OK.
Binary search through the diagonal of the array is the best option.
We can find out whether the element is less than or equal to the elements in the diagonal.
I've been asking this question in interviews for the better part of a decade and I think there's only been one person who has been able to come up with an optimal algorithm.
My solution has always been:
Binary search the middle diagonal, which is the diagonal running down and right, containing the item at (rows.count/2, columns.count/2).
If the target number is found, return true.
Otherwise, two numbers (u and v) will have been found such that u is smaller than the target, v is larger than the target, and v is one right and one down from u.
Recursively search the sub-matrix to the right of u and top of v and the one to the bottom of u and left of v.
I believe this is a strict improvement over the algorithm given by Nate here, since searching the diagonal often allows a reduction of over half the search space (if the matrix is close to square), whereas searching a row or column always results in an elimination of exactly half.
Here's the code in (probably not terribly Swifty) Swift:
import Cocoa
class Solution {
func searchMatrix(_ matrix: [[Int]], _ target: Int) -> Bool {
if (matrix.isEmpty || matrix[0].isEmpty) {
return false
}
return _searchMatrix(matrix, 0..<matrix.count, 0..<matrix[0].count, target)
}
func _searchMatrix(_ matrix: [[Int]], _ rows: Range<Int>, _ columns: Range<Int>, _ target: Int) -> Bool {
if (rows.count == 0 || columns.count == 0) {
return false
}
if (rows.count == 1) {
return _binarySearch(matrix, rows.lowerBound, columns, target, true)
}
if (columns.count == 1) {
return _binarySearch(matrix, columns.lowerBound, rows, target, false)
}
var lowerInflection = (-1, -1)
var upperInflection = (Int.max, Int.max)
var currentRows = rows
var currentColumns = columns
while (currentRows.count > 0 && currentColumns.count > 0 && upperInflection.0 > lowerInflection.0+1) {
let rowMidpoint = (currentRows.upperBound + currentRows.lowerBound) / 2
let columnMidpoint = (currentColumns.upperBound + currentColumns.lowerBound) / 2
let value = matrix[rowMidpoint][columnMidpoint]
if (value == target) {
return true
}
if (value > target) {
upperInflection = (rowMidpoint, columnMidpoint)
currentRows = currentRows.lowerBound..<rowMidpoint
currentColumns = currentColumns.lowerBound..<columnMidpoint
} else {
lowerInflection = (rowMidpoint, columnMidpoint)
currentRows = rowMidpoint+1..<currentRows.upperBound
currentColumns = columnMidpoint+1..<currentColumns.upperBound
}
}
if (lowerInflection.0 == -1) {
lowerInflection = (upperInflection.0-1, upperInflection.1-1)
} else if (upperInflection.0 == Int.max) {
upperInflection = (lowerInflection.0+1, lowerInflection.1+1)
}
return _searchMatrix(matrix, rows.lowerBound..<lowerInflection.0+1, upperInflection.1..<columns.upperBound, target) || _searchMatrix(matrix, upperInflection.0..<rows.upperBound, columns.lowerBound..<lowerInflection.1+1, target)
}
func _binarySearch(_ matrix: [[Int]], _ rowOrColumn: Int, _ range: Range<Int>, _ target: Int, _ searchRow : Bool) -> Bool {
if (range.isEmpty) {
return false
}
let midpoint = (range.upperBound + range.lowerBound) / 2
let value = (searchRow ? matrix[rowOrColumn][midpoint] : matrix[midpoint][rowOrColumn])
if (value == target) {
return true
}
if (value > target) {
return _binarySearch(matrix, rowOrColumn, range.lowerBound..<midpoint, target, searchRow)
} else {
return _binarySearch(matrix, rowOrColumn, midpoint+1..<range.upperBound, target, searchRow)
}
}
}
A. Do a binary search on those lines where the target number might be on.
B. Make it a graph : Look for the number by taking always the smallest unvisited neighbour node and backtracking when a too big number is found
Binary search would be the best approach, imo. Starting at 1/2 x, 1/2 y will cut it in half. IE a 5x5 square would be something like x == 2 / y == 3 . I rounded one value down and one value up to better zone in on the direction of the targeted value.
For clarity the next iteration would give you something like x == 1 / y == 2 OR x == 3 / y == 5
Well, to begin with, let us assume we are using a square.
1 2 3
2 3 4
3 4 5
1. Searching a square
I would use a binary search on the diagonal. The goal is the locate the smaller number that is not strictly lower than the target number.
Say I am looking for 4 for example, then I would end up locating 5 at (2,2).
Then, I am assured that if 4 is in the table, it is at a position either (x,2) or (2,x) with x in [0,2]. Well, that's just 2 binary searches.
The complexity is not daunting: O(log(N)) (3 binary searches on ranges of length N)
2. Searching a rectangle, naive approach
Of course, it gets a bit more complicated when N and M differ (with a rectangle), consider this degenerate case:
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17
And let's say I am looking for 9... The diagonal approach is still good, but the definition of diagonal changes. Here my diagonal is [1, (5 or 6), 17]. Let's say I picked up [1,5,17], then I know that if 9 is in the table it is either in the subpart:
5 6 7 8
6 7 8 9
10 11 12 13 14 15 16
This gives us 2 rectangles:
5 6 7 8 10 11 12 13 14 15 16
6 7 8 9
So we can recurse! probably beginning by the one with less elements (though in this case it kills us).
I should point that if one of the dimensions is less than 3, we cannot apply the diagonal methods and must use a binary search. Here it would mean:
Apply binary search on 10 11 12 13 14 15 16, not found
Apply binary search on 5 6 7 8, not found
Apply binary search on 6 7 8 9, not found
It's tricky because to get good performance you might want to differentiate between several cases, depending on the general shape....
3. Searching a rectangle, brutal approach
It would be much easier if we dealt with a square... so let's just square things up.
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17
17 . . . . . . 17
. .
. .
. .
17 . . . . . . 17
We now have a square.
Of course, we will probably NOT actually create those rows, we could simply emulate them.
def get(x,y):
if x < N and y < M: return table[x][y]
else: return table[N-1][M-1] # the max
so it behaves like a square without occupying more memory (at the cost of speed, probably, depending on cache... oh well :p)
EDIT:
I misunderstood the question. As the comments point out this only works in the more restricted case.
In a language like C that stores data in row-major order, simply treat it as a 1D array of size n * m and use a binary search.
I have a recursive Divide & Conquer Solution.
Basic Idea for one step is: We know that the Left-Upper(LU) is smallest and the right-bottom(RB) is the largest no., so the given No(N) must: N>=LU and N<=RB
IF N==LU and N==RB::::Element Found and Abort returning the position/Index
If N>=LU and N<=RB = FALSE, No is not there and abort.
If N>=LU and N<=RB = TRUE, Divide the 2D array in 4 equal parts of 2D array each in logical manner..
And then apply the same algo step to all four sub-array.
My Algo is Correct I have implemented on my friends PC.
Complexity: each 4 comparisons can b used to deduce the total no of elements to one-fourth at its worst case..
So My complexity comes to be 1 + 4 x lg(n) + 4
But really expected this to be working on O(n)
I think something is wrong somewhere in my calculation of Complexity, please correct if so..
The optimal solution is to start at the top-left corner, that has minimal value. Move diagonally downwards to the right until you hit an element whose value >= value of the given element. If the element's value is equal to that of the given element, return found as true.
Otherwise, from here we can proceed in two ways.
Strategy 1:
Move up in the column and search for the given element until we reach the end. If found, return found as true
Move left in the row and search for the given element until we reach the end. If found, return found as true
return found as false
Strategy 2:
Let i denote the row index and j denote the column index of the diagonal element we have stopped at. (Here, we have i = j, BTW). Let k = 1.
Repeat the below steps until i-k >= 0
Search if a[i-k][j] is equal to the given element. if yes, return found as true.
Search if a[i][j-k] is equal to the given element. if yes, return found as true.
Increment k
1 2 4 5 6
2 3 5 7 8
4 6 8 9 10
5 8 9 10 11
public boolean searchSortedMatrix(int arr[][] , int key , int minX , int maxX , int minY , int maxY){
// base case for recursion
if(minX > maxX || minY > maxY)
return false ;
// early fails
// array not properly intialized
if(arr==null || arr.length==0)
return false ;
// arr[0][0]> key return false
if(arr[minX][minY]>key)
return false ;
// arr[maxX][maxY]<key return false
if(arr[maxX][maxY]<key)
return false ;
//int temp1 = minX ;
//int temp2 = minY ;
int midX = (minX+maxX)/2 ;
//if(temp1==midX){midX+=1 ;}
int midY = (minY+maxY)/2 ;
//if(temp2==midY){midY+=1 ;}
// arr[midX][midY] = key ? then value found
if(arr[midX][midY] == key)
return true ;
// alas ! i have to keep looking
// arr[midX][midY] < key ? search right quad and bottom matrix ;
if(arr[midX][midY] < key){
if( searchSortedMatrix(arr ,key , minX,maxX , midY+1 , maxY))
return true ;
// search bottom half of matrix
if( searchSortedMatrix(arr ,key , midX+1,maxX , minY , maxY))
return true ;
}
// arr[midX][midY] > key ? search left quad matrix ;
else {
return(searchSortedMatrix(arr , key , minX,midX-1,minY,midY-1));
}
return false ;
}
I suggest, store all characters in a 2D list. then find index of required element if it exists in list.
If not present print appropriate message else print row and column as:
row = (index/total_columns) and column = (index%total_columns -1)
This will incur only the binary search time in a list.
Please suggest any corrections. :)
If O(M log(N)) solution is ok for an MxN array -
template <size_t n>
struct MN * get(int a[][n], int k, int M, int N){
struct MN *result = new MN;
result->m = -1;
result->n = -1;
/* Do a binary search on each row since rows (and columns too) are sorted. */
for(int i = 0; i < M; i++){
int lo = 0; int hi = N - 1;
while(lo <= hi){
int mid = lo + (hi-lo)/2;
if(k < a[i][mid]) hi = mid - 1;
else if (k > a[i][mid]) lo = mid + 1;
else{
result->m = i;
result->n = mid;
return result;
}
}
}
return result;
}
Working C++ demo.
Please do let me know if this wouldn't work or if there is a bug it it.
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null)
return false;
int i=0;
int j=0;
int m = matrix.length;
int n = matrix[0].length;
boolean found = false;
while(i<m && !found){
while(j<n && !found){
if(matrix[i][j] == target)
found = true;
if(matrix[i][j] < target)
j++;
else
break;
}
i++;
j=0;
}
return found;
}}
129 / 129 test cases passed.
Status: Accepted
Runtime: 39 ms
Memory Usage: 55 MB
Given a square matrix as follows:
[ a b c ]
[ d e f ]
[ i j k ]
We know that a < c, d < f, i < k. What we don't know is whether d < c or d > c, etc. We have guarantees only in 1-dimension.
Looking at the end elements (c,f,k), we can do a sort of filter: is N < c ? search() : next(). Thus, we have n iterations over the rows, with each row taking either O( log( n ) ) for binary search or O( 1 ) if filtered out.
Let me given an EXAMPLE where N = j,
1) Check row 1. j < c? (no, go next)
2) Check row 2. j < f? (yes, bin search gets nothing)
3) Check row 3. j < k? (yes, bin search finds it)
Try again with N = q,
1) Check row 1. q < c? (no, go next)
2) Check row 2. q < f? (no, go next)
3) Check row 3. q < k? (no, go next)
There is probably a better solution out there but this is easy to explain.. :)
As this is an interview question, it would seem to lead towards a discussion of Parallel programming and Map-reduce algorithms.
See http://code.google.com/intl/de/edu/parallel/mapreduce-tutorial.html

Resources