Using cubiccurve in OpenLayers 2? - curve

I want to use cubiccurve in openlayers 2.13, And I have added the necessary files, But when drawing the line is drawn instead of the curve.
Files are available on the website: http://trac.osgeo.org/openlayers/ticket/1715#no1
Drawing curve is very important for us and I no way I could control my curve.
Can one help me?

<html>
<head>
<script src="http://dev.openlayers.org/OpenLayers.js" type="text/javascript"></script>
<title>Ya Mahdi</title>
<style>
html,body {
height: 99%;
width: 99%;
}
#map {
width: 100%;
height: 100%;
border: 1px solid black;
}
</style>
<script>
mmGetCurvePoints = function(ptsa, tension, isClosed, numOfSegments)
{
if (ptsa.length <= 2)
return ptsa;
tension = typeof tension === 'number' ? tension : 0.5;
isClosed = typeof isClosed === 'boolean' ? isClosed : false;
numOfSegments = typeof numOfSegments === 'number' ? numOfSegments : 16;
var ptsaClone = ptsa.slice(0);
if (isClosed)
ptsaClone.push(ptsa[0], ptsa[1], ptsa[2], ptsa[3]);
var _pts, res = [], /// clone array
x, y, /// our x,y coords
t1x, t2x, t1y, t2y, /// tension vectors
c1, c2, c3, c4, /// cardinal points
st, t, i, /// steps based on num. of segments
pow3, pow2, /// cache powers
pow32, pow23,
p0, p1, p2, p3, /// cache points
pl = ptsaClone.length;
/// clone array so we don't change the original content
_pts = ptsaClone.concat();
_pts.unshift(ptsaClone[1]); /// copy 1. point and insert at beginning
_pts.unshift(ptsaClone[0]);
_pts.push(ptsaClone[pl - 2], ptsaClone[pl - 1]); /// copy last point and append
/// 1. loop goes through point array
/// 2. loop goes through each segment between the two points + one point before and after
for (i = 2; i < pl; i += 2) {
p0 = _pts[i];
p1 = _pts[i + 1];
p2 = _pts[i + 2];
p3 = _pts[i + 3];
/// calc tension vectors
t1x = (p2 - _pts[i - 2]) * tension;
t2x = (_pts[i + 4] - p0) * tension;
t1y = (p3 - _pts[i - 1]) * tension;
t2y = (_pts[i + 5] - p1) * tension;
for (t = 0; t <= numOfSegments; t++) {
/// calc step
st = t / numOfSegments;
pow2 = Math.pow(st, 2);
pow3 = pow2 * st;
pow23 = pow2 * 3;
pow32 = pow3 * 2;
/// calc cardinals
c1 = pow32 - pow23 + 1;
c2 = pow23 - pow32;
c3 = pow3 - 2 * pow2 + st;
c4 = pow3 - pow2;
/// calc x and y cords with common control vectors
x = c1 * p0 + c2 * p2 + c3 * t1x + c4 * t2x;
y = c1 * p1 + c2 * p3 + c3 * t1y + c4 * t2y;
/// store points in array
res.push(x, y);
}
}
if (isClosed)
res = res.slice(0, res.length - 2 * numOfSegments);
return res;
};
var map, control,layer,feature,points;
var xy = [];
var array = [];
function init(){
map = new OpenLayers.Map('map', {
center: [45.476333, 39.4854095],
zoom: 10
});
var wms = new OpenLayers.Layer.WMS( "OpenLayers WMS",
"http://vmap0.tiles.osgeo.org/wms/vmap0?", {layers: 'basic'});
layer = new OpenLayers.Layer.Vector("Simple Geometry");
map.addLayer(wms);
map.addLayer(layer);
function drawEnd(e){
if(xy.length<6) {
xy.push(e.x);
xy.push(e.y);
return;
}
else if(xy.length==6){
feature = new OpenLayers.Feature.Vector(
new OpenLayers.Geometry.LineString(array),{properties: {state: 'a'}}
);
layer.addFeatures(feature);
console.log("add f");
feature="";
layer.refresh({force:true});
xy=[];
}
}
function putPoint(e){
if(xy.length<6) {
return;
}
}
function sketchModified(e, ee, eee){
if(xy.length<6)
return;
try{
layer.removeFeatures(feature);
}catch(err){}
var xytemp = [];
xytemp.push(xy[0]);
xytemp.push(xy[1]);
xytemp.push(xy[2]);
xytemp.push(xy[3]);
xytemp.push(e.x);
xytemp.push(e.y);
points = mmGetCurvePoints(xytemp, 0.5, false, 15);
var i = 0;
while(i<points.length){
array.push(new OpenLayers.Geometry.Point(points[i], points[i+1]));
i++;
i++;
}
feature = new OpenLayers.Feature.Vector(
new OpenLayers.Geometry.LineString(array),{properties: {state: 'a'}}
);
layer.addFeatures([feature]);
array=[];
points=[];
layer.refresh({force:true});
}
function cancel(){
}
var callBackParams = {
"done": drawEnd,
"point": putPoint,
"modify": sketchModified,
"cancel": cancel
};
var drawCrtl = new OpenLayers.Control.DrawFeature(layer, OpenLayers.Handler.Point, {callbacks: callBackParams});
map.addControls([drawCrtl]);
drawCrtl.activate();
}
</script>
</head>
<body onload="init()">
<div id="map" style="width: 400px; height: 400px;"></div>
</body>
</html>

Related

handling objects offscreen for a view frustum

I have a view frustum that works great when looking at stuff from a distance. But for example, when i stand in the middle of a square, my current system struggles to place vertices which are behind me.
For example the image below demonstrates looking at a tile from a distance vs standing on top of it ...
My proccess for putting things onto screen can be described in 5 steps
cross product the co-ordinates of the object with my camera matrix
cross product the result of 1 with my projection_matrix
normalize the result of 2 by dividing through the 4th dimension of my co-ordinates (my w co-ordinate)
cull results of 3 (its not causing the problem, i tried without culling)
cross product 4 with to_screen_matrix
Basically the problem i have, is this procces is great at putting things on the screen but sometimes an object isnt on the screen... what co-ordinates should be used then?
Below is a drawing of what i think the problem is
below is my screen_projection function
return_screen_projection(dont_cull = false){
var position = cross_product(this.position , player.camera_matrix())
position = cross_product(position , projection.projection_matrix) // does this just convert the position to cameras reference frame.
for (let i = 0; i < position.length; i++) {
position[i] = position[i]/position[3]
}
if (dont_cull == false){
for (let i = 0; i < position.length; i++) {
if (i != 1){
if (this.is_this_object_behind_player()){for (let ii = 0; ii < position.length; ii++) {position[ii] = -9999;} console.log("culling1")}
if (position[i] > 2){for (let ii = 0; ii < position.length; ii++) {position[ii] = -9999;} console.log("culling2")}
if (position[i] < -2){for (let ii = 0; ii < position.length; ii++) {position[ii] = -9999;} console.log("culling3")}
}
} // also all examples say set position = 0 if culling
}
position = cross_product(position , projection.to_screen_matrix)
return [position[0],position[1]]
}
how could i better handle the position of a vertex offscreen, when some vertexes of the object im dealing with are on screen?
################## extra info below
below is a blob of 300 lines of code (sorry , i cant make it more minimal and reproducable with just a copy n paste)
running the below in a web browser will give you an example of the problem (w,a,s,d) to move (you start mired in the middle of an object, you may wish to step back to see better the first time)
<head>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjs/11.3.3/math.js"></script>
<script async src="https://unpkg.com/es-module-shims#1.3.6/dist/es-module-shims.js"></script>
</head>
<body>
<div id="canvas div" style = "position: relative; left: 0px; float:left; top: 0px;" >
<h1> first person below </h1>
<canvas id="mi_canvas" width="300" height="300" style="border-style: solid;"></canvas> <br>
</div>
<script>
var floor_y_pos = 9
canvas = document.getElementById("mi_canvas");
ctx = canvas.getContext("2d");
render_distance = 1000;
fov = math.pi / 2
class Projection{
constructor(){
var NEAR = player.near_plane
var FAR = player.far_plane
var RIGHT = Math.tan(player.h_fov/2)
var LEFT = - RIGHT
var TOP = Math.tan(player.v_fov /2)
var BOTTOM = -TOP
var m00 = 2*NEAR / (RIGHT - LEFT)
var m02 = (RIGHT + LEFT)/(RIGHT - LEFT)
var m11 = 2*NEAR / (TOP - BOTTOM)
var m12 = (TOP + BOTTOM) /(TOP - BOTTOM)
var m22 = (FAR * NEAR) / (FAR - NEAR)
var m23 = -2 * NEAR * FAR / (FAR-NEAR)
this.projection_matrix = [
[-m00,0,m02,0],
[0,m11,0,0],
[m02,m12,-m22,-1],
[0,0,m23,0]
]
var HW=player.H_WIDTH
var HH = player.H_HEIGHT
this.to_screen_matrix = [
[HW,0,0,0],
[0,HH,0,0],
[0,0,1,0],
[HW,HH,0,1]
]
}
}
function multiply(a, b) {
var aNumRows = a.length, aNumCols = a[0].length,
bNumRows = b.length, bNumCols = b[0].length,
m = new Array(aNumRows); // initialize array of rows
for (var r = 0; r < aNumRows; ++r) {
m[r] = new Array(bNumCols); // initialize the current row
for (var c = 0; c < bNumCols; ++c) {
m[r][c] = 0; // initialize the current cell
for (var i = 0; i < aNumCols; ++i) {
m[r][c] += a[r][i] * b[i][c];
}
}
}
return m;
}
function mi_position_matrix_multiplier(A, B)
{
var new_matrix = []
for (var new_num_ind = 0; new_num_ind < A.length; ++new_num_ind)
{
this_num = 0;
for (var a_ind = 0; a_ind < A.length; ++a_ind)
{
this_num += (A[a_ind] * B[a_ind][new_num_ind])
}
new_matrix.push(this_num)
}
return new_matrix;
}
function pythagoras(thing1, thing2)
{
dist = (((thing1[0]-thing2[0])**2)+((thing1[1]-thing2[1])**2))**0.5
return dist
}
class vertex{
constructor(x, y,z , id){
this.id = id
this.position = [x,y,z,1]
this.min_dist = 1.5 // minimum possible distance between player and object
}
is_this_object_behind_player(){
var arrow_length = 0.0001;
var pointing_position = [player.position[0]+(player.forward[0]*arrow_length) , player.position[2]-(player.forward[2]*arrow_length)]
var dist1 = pythagoras([this.position[0],this.position[2]], pointing_position)
var dist2 = pythagoras([this.position[0],this.position[2]], [player.position[0],player.position[2]])
if (dist1 < dist2){
return true;}
else if (dist1 > dist2){
return false;}
else{}
}
return_screen_projection(dont_cull = false){
var position = mi_position_matrix_multiplier(this.position , player.camera_matrix())
position = mi_position_matrix_multiplier(position , projection.projection_matrix) // does this just convert the position to cameras reference frame.
for (let i = 0; i < position.length; i++) {
position[i] = position[i]/position[3]
}
if (dont_cull == false){
for (let i = 0; i < position.length; i++) {
if (i != 1){
if (this.is_this_object_behind_player()){for (let ii = 0; ii < position.length; ii++) {position[ii] = -9999;} console.log("culling1")}
if (position[i] > 2){for (let ii = 0; ii < position.length; ii++) {position[ii] = -9999;} console.log("culling2")}
if (position[i] < -2){for (let ii = 0; ii < position.length; ii++) {position[ii] = -9999;} console.log("culling3")}
}
} // also all examples say set position = 0 if culling
}
position = mi_position_matrix_multiplier(position , projection.to_screen_matrix)
return [position[0],position[1]]
}
}
class player{
constructor(){
this.position =[0,0,0,1.0]
this.forward = [0,0,1,1]
this.up = [0,1,0,1]
this.right =[1,0,0,1]
this.h_fov = 3.1415926535/3
this.v_fov = this.h_fov * (canvas.height / canvas.width)
this.near_plane = 1
this.far_plane = 100
this.moving_speed = 0.2
this.rotation_speed = 0.1
this.H_WIDTH = canvas.width/2
this.H_HEIGHT = canvas.height/2
this.anglePitch = 0
this.angleYaw = 0
}
set_camera_angle(){
var rotate = multiply(rotate_x(this.anglePitch) , rotate_y(this.angleYaw))
this.forward = [0, 0, 1, 1]
this.up = [0, 1, 0, 1]
this.right = [1, 0, 0, 1]
this.forward = mi_position_matrix_multiplier(this.forward , rotate)
this.right = mi_position_matrix_multiplier(this.right , rotate)
this.up = mi_position_matrix_multiplier(this.up , rotate)
}
camera_yaw(angle){
this.angleYaw += angle}
translate_matrix(self){
var x = this.position[0];
var y = this.position[1];
var z = this.position[2];
var w = this.position[3];
return [
[1,0,0,0],
[0,1,0,1],
[0,0,1,0],
[-x,-y,z, 1]
]}
rotate_matrix(){
var rx = this.right[0]
var ry = this.right[1]
var rz = this.right[2]
var w = this.right[3]
var fx = this.forward[0]
var fy = this.forward[1]
var fz = this.forward[2]
var w = this.forward[3]
var ux = this.up[0]
var uy = this.up[1]
var uz = this.up[2]
var w = this.up[3]
return [
[rx,ux,fx,0],
[ry,uy,fy,0],
[rz,uz,fz,0],
[0,0,0,1]
]
}
camera_matrix(){
return multiply(this.translate_matrix(), this.rotate_matrix());
}
move(event)
{
var key_code = parseInt(event.keyCode)
if (key_code == 37 || key_code == 39 || key_code == 83 || key_code == 87 || key_code == 119|| key_code == 115)
{
var dx = Math.cos(this.angleYaw)*this.moving_speed
var dy = Math.sin(this.angleYaw)*this.moving_speed
// console.log("that were moving = dx , dy = "+dx.toString()+" , "+dy.toString())
if ( key_code == 37 || key_code == 87 || key_code == 119) {
this.position[0] += -dy
this.position[2] += dx
}
if (key_code == 39 || key_code == 83 || key_code == 115) {
for (let i = 0; i < this.position.length; i++) {
this.position[0] += dy
this.position[2] += -dx
}
}
}
else {
if ( key_code == 38 || key_code == 65 || key_code == 97) {
this.camera_yaw(-this.rotation_speed)
}
if (key_code == 40 || key_code == 68 || key_code == 100) {
this.camera_yaw(this.rotation_speed)
}
this.set_camera_angle()
}
}
}
function translate(pos){
tx,ty,tz=pos
return np.array([
[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[tx,ty,tz,1]
])}
function rotate_x(angle){
return [
[1,0,0,0],
[0,Math.cos(angle),Math.sin(angle),0],
[0,-Math.sin(angle),Math.cos(angle),0],
[0,0,0,1]
]
}
function rotate_y(a){
return [
[math.cos(a),0, -math.sin(a),0],
[0,1,0,0],
[math.sin(a), 0 , math.cos(a),0],
[0,0,0,1]
]
}
function update_matrix_info_debug(matrix_name, matrix){
if (matrix[0].length > 1)
{
for (let x = 1; x < matrix.length+1; x++) {
for (let y = 1; y < matrix.length+1; y++) {
document.getElementById(matrix_name.toString()+"_"+x.toString()+y.toString()).innerHTML = matrix[x-1][y-1]
}
}
}
else {
for (let x = 1; x < matrix.length+1; x++) {document.getElementById(matrix_name.toString()+"_"+"1"+x.toString()).innerHTML = matrix[x-1]}
}
}
class two_d_surdace {
constructor(verex1,verex2,verex3,verex4 , colour){
this.vertices = [verex1,verex2,verex3,verex4]
this.colour = colour
}
draw_all_faces(){
var each_point = []
for (let i = 0; i < this.vertices.length; i++) {
each_point.push(this.vertices[i].return_screen_projection(true))
}
ctx.fillStyle = this.colour;
var moved_to_first_yet = false
for (let vertex = 0; vertex < this.vertices.length; vertex++)
{
if (moved_to_first_yet == false)
{
moved_to_first_yet = true
ctx.moveTo( each_point[vertex][0],each_point[vertex][1]);
}
else{ctx.lineTo( each_point[vertex][0],each_point[vertex][1]);}
}
ctx.closePath();
ctx.fill();
}
}
function if_off_screen(x, y)
{
if (x> canvas.width || x < 0){ return true;}
if (y > canvas.height || y < 0){ return true;}
return false;
}
function if_most_of_these_numbers_are_off_screen(numbers){
var threshold = 1; //Math.floor(numbers.length*0.49)
var counter = 0
for (let i = 0; i < numbers.length; i++) { if (if_off_screen(numbers[i][0], numbers[i][1])){ counter +=1} else{} }
if (counter >= threshold){return true}
return false;
}
player = new player();
projection = new Projection()
floor = new two_d_surdace(new vertex(50,floor_y_pos,50) , new vertex(-50,floor_y_pos,50) , new vertex(-50,floor_y_pos,-50) , new vertex(50,floor_y_pos,-50) , '#F90' )
$(document).on("keypress", function (event) {
player.move(event)
ctx.beginPath();
ctx.clearRect(0, 0, canvas.width, canvas.height);
floor.draw_all_faces()
});
</script>
</body>

How to convert an closed path SVG to a 0-1 array

Lets say there is a svg with a closed filled rectangle in the middle and around that there's a white space of 2 points .
<path d="M2 2 H 3 V 3 H 2 Z" fill="transparent" stroke="black"/>
So I want to represent this a 2-d matrix where all the white space are represented as 0 and black spaces (covered area) is represented as 1. so for this example it should be-
[
[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1]
]
It's a simple path , but I'm trying to find a way where it would work for complex paths including bezier curve. Actually I'm trying to convert an SVG world map to 0-1 matrix so that I can run some AI algorithms on it .
Implemented #Robert Longson suggestion. 1) Draw the svg in canvas 2) Get ImageData as CanvasContext Array 3) Iterate on that array and form your matrix. 4) Array returned by getImageData is a flat array and consecutive 4 array index correspond to one point of canvas and they are r, g, b and alpha (rgba) of the color of that point.
Here's a working react component .
import React, { Component } from 'react';
export default class IndexPage extends Component {
constructor(properties) {
super(properties);
this.canvasWidth = 1052;
this.canvasHeight = 580;
}
componentDidMount() {
const mapCanvas = this.refs.canvas;
const ctx = mapCanvas.getContext('2d');
const img = new Image();
img.onload = function() {
ctx.drawImage(img, 0, 0);
this.arrayFromSvg();
}.bind(this);
img.src = 'World.svg';
}
render() {
return ( < div >
< div styles={{
width: this.canvasWidth,
height: this.canvasHeight
}
} >
< canvas width = {
this.canvasWidth
}
height = {
this.canvasHeight
}
ref = "canvas" >
< /canvas> < /div >
< /div>
);
}
arrayFromSvg() {
const mapCanvas = this.refs.canvas;
const ctx = mapCanvas.getContext('2d');
const canvasWidth = mapCanvas.width;
const canvasHeight = mapCanvas.height;
const imageData = ctx.getImageData(0, 0, canvasWidth, canvasHeight).data;
const imageToMat = [];
for (let row = 0, count = -1; row < canvasWidth; row++) {
imageToMat[row] = [];
// imageToMat[row][col] = 'rgba(' + imageData[++count] + ', ' + imageData[++count] + ', ' + imageData[++count] + ', ' + imageData[++count] + ')';
for (let col = 0; col < canvasHeight; col++) {
if (imageData[++count] + imageData[++count] + imageData[++count] + imageData[++count] > 0) {
imageToMat[row][col] = 1;
} else {
imageToMat[row][col] = 0;
}
}
}
console.log(imageToMat);
}
}

Is there any solution to Firefox 37's poor Canvas rendering performance

I've deliberately provided the version number in the question as this is the kind of question that will go out of date at some point.
Here is a simple animation that will run perfectly smoothly in Chrome and Safari, but will be very jerky in Firefox:
function lerp(a,b,λ) {
return a + λ*(b-a);
}
function random(a,b) {
return lerp( a, b, Math.random() );
}
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
$(document).ready( function()
{
var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
var balls = new Array(12);
for( var i=0; i<balls.length; i++ )
{
while(true)
{
var density = Math.sqrt( random(1,100) );
var r = random(5, 30);
var x = random( r+1, canvas.width-1 -(r+1) ),
y = random( r+1, canvas.height-1 -(r+1) );
var overlap = false;
for( var j=0; j<i; j++ )
{
var _x = balls[j].x - x,
_y = balls[j].y - y,
d2 = _x*_x + _y*_y,
_r = balls[j].r + r;
if( d2 < _r*_r )
overlap = true;
}
if( overlap )
continue;
balls[i] = {
color : d3.hsl( lerp(0,240,density/10), random(.3,.7), random(.3,.7) ).toString(),
x : x,
y : y,
vx : random(0, 0.2),
vy : random(0, 0.2),
r : r,
advance: function(t) {
this.x += t * this.vx;
this.y += t * this.vy;
}
};
break;
}
};
window.requestAnimationFrame(vsync);
var t_last;
function vsync(t)
{
if( t_last )
render( t - t_last );
t_last = t;
window.requestAnimationFrame(vsync);
}
function render(t_frame)
{
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
ctx.fillStyle="gray";
ctx.fillRect(0,0, canvas.width, canvas.height);
function advance_all(t) {
balls.forEach( function(b) {
b.advance(t);
});
}
var t_remaining = t_frame;
while(true) {
var hit = get_next_collision( balls, canvas.width, canvas.height );
if( t_remaining < hit.t )
break;
advance_all( hit.t );
t_remaining -= hit.t;
collide_wall( balls[hit.i], hit.wall );
balls[hit.i].advance(.001);
};
advance_all( t_remaining );
// draw balls
balls.forEach( function(ball) {
ctx.beginPath();
ctx.arc(ball.x, ball.y, ball.r, 0, Math.PI*2, true);
ctx.closePath();
ctx.fillStyle = ball.color;
ctx.fill();
});
}
});
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
function get_next_collision(balls,W,H)
{
var winner;
// ball-wall
balls.forEach( function(ball,i)
{
var t = [];
t['L'] = (ball.r - ball.x) / ball.vx; // s.x + t v.x = r
t['T'] = (ball.r - ball.y) / ball.vy;
t['R'] = (W-1-ball.r - ball.x) / ball.vx; // s.x + t v.x = (W-1)-r
t['B'] = (H-1-ball.r - ball.y) / ball.vy;
// get index of smallest positive t
var LR = t['L'] >= 0 ? 'L' : 'R',
TB = t['T'] >= 0 ? 'T' : 'B',
wall = t[LR] < t[TB] ? LR : TB;
if( ! winner || ( t[wall] <= winner.t ) )
winner = {
t : t[wall],
i : i,
wall: wall
};
});
return winner;
}
function collide_wall( A, wall )
{
if( wall == 'L' || wall == 'R' )
A.vx *= -1;
else
A.vy *= -1;
}
html, body {
width: 100%;
height: 100%;
margin: 0px;
}
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/mathjs/1.5.1/math.min.js"></script>
<script src="http://d3js.org/d3.v3.min.js"></script>
<canvas id="myCanvas">
<!-- Insert fallback content here -->
</canvas>
Why is Firefox performing significantly worse than its competitors?
If I take the number of balls to 500 Chrome is still smooth, Firefox is seriously choppy.
If I take the number of balls down to 1 Firefox is still burring it.
Another experiment I did was applying a fixed velocity increment each frame, so that the smoothness of the animation accurately reflects the evenness of the render callback. This showed Firefox to be all over the place. Chrome on the other hand was smooth.
If there is sufficient interest, I can provide a snippet for that also and maybe tidy up the first one so that it offers a slider to modify the ball count.
As far as I can see, (1) Firefox definitely isn't giving us a genuine VSYNC callback, I suspect it is just using a timer, (2) even correcting for that by manually calculating elapsed time for each frame, it burrs the animation, maybe suggesting that it sometimes the callback fires in time to catch the VSYNC and sometimes it misses the boat, (3) there is an additional compositing hit that is disproportionate compared with Chrome.
Is there anything to be done about this?
EDIT: I found this question from four years ago! Poor performance of html5 canvas under firefox -- please don't mark this question as the duplicate unless it is certain that the answer to that question is still the only relevant answer four years later. I've deliberately included the version number in the question, as the question pertains specifically to the current version.

Why Is My Genetic Algorithm Terrible (Why Doesn't It Converge)?

I wrote a quick experiment with a genetic algorithm. It simply takes a grid of squares and tries to mutate their color to make them all yellow. It fails miserably and I can't seem to figure out why. I've included a link to JSFiddle that demonstrates working code, as well as a copy of the code in its entirety.
http://jsfiddle.net/mankyd/X6x9L/
<!DOCTYPE html>
<html lang="en">
<head>
</head>
<body>
<div class="container">
<h1>The randomly flashing squares <i>should</i> be turning yellow</h1>
<div class="row">
<canvas id="input_canvas" width="100" height="100"></canvas>
<canvas id="output_canvas" width="100" height="100"></canvas>
</div>
<div class="row">
<span id="generation"></span>
<span id="best_fitness"></span>
<span id="avg_fitness"></span>
</div>
</div>
</body>
</html>
Note that the below javascript relies on jquery in a few places.
// A bit of code that draws several squares in a canvas
// and then attempts to use a genetic algorithm to slowly
// make those squares all yellow.
// Knobs that can be tweaked
var mutation_rate = 0.1; // how often should we mutate something
var crossover_rate = 0.6; // how often should we crossover two parents
var fitness_influence = 1; // affects the fitness's influence over mutation
var elitism = 1; // how many of the parent's generation to carry over
var num_offspring = 20; // how many spawn's per generation
var use_rank_selection = true; // false == roulette_selection
// Global variables for easy tracking
var children = []; // current generation
var best_spawn = null; // keeps track of our best so far
var best_fitness = null; // keeps track of our best so far
var generation = 0; // global generation counter
var clear_color = 'rgb(0,0,0)';
// used for output
var $gen_span = $('#generation');
var $best_fit = $('#best_fitness');
var $avg_fit = $('#avg_fitness');
var $input_canvas = $('#input_canvas');
var input_ctx = $input_canvas[0].getContext('2d');
var $output_canvas = $('#output_canvas');
var output_ctx = $output_canvas[0].getContext('2d');
// A spawn represents a genome - a collection of colored
// squares.
var Spawn = function(nodes) {
var _fitness = null; // a cache of our fitness
this.nodes = nodes; // the squares that make up our image
this.fitness = function() {
// fitness is simply a function of how close to yellow we are.
// This is defined through euclidian distance. Smaller fitnesses
// are better.
if (_fitness === null) {
_fitness = 0;
for (var i = 0; i < nodes.length; i++) {
_fitness += Math.pow(-nodes[i].color[0], 2) +
Math.pow(255 - nodes[i].color[1], 2) +
Math.pow(255 - nodes[i].color[2], 2);
}
_fitness /= 255*255*3*nodes.length; // divide by the worst possible distance
}
return _fitness;
};
this.mutate = function() {
// reset our cached fitness to unknown
_fitness = null;
var health = this.fitness() * fitness_influence;
var width = $output_canvas[0].width;
var height = $output_canvas[0].height;
for (var i = 0; i < nodes.length; i++) {
// Sometimes (most times) we don't mutate
if (Math.random() > mutation_rate) {
continue;
}
// Mutate the colors.
for (var j = 0; j < 3; j++) {
// colors can move by up to 32 in either direction
nodes[i].color[j] += 64 * (.5 - Math.random()) * health;
// make sure that our colors stay between 0 and 255
nodes[i].color[j] = Math.max(0, Math.min(255, nodes[i].color[j]));
}
}
};
this.draw = function(ctx) {
// This draw function is a little overly generic in that it supports
// arbitrary polygons.
ctx.save();
ctx.fillStyle = clear_color;
ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);
for (var i = 0; i < nodes.length; i++) {
ctx.fillStyle = 'rgba(' + Math.floor(nodes[i].color[0]) + ',' + Math.floor(nodes[i].color[1]) + ',' + Math.floor(nodes[i].color[2]) + ',' + nodes[i].color[3] + ')';
ctx.beginPath();
ctx.moveTo(nodes[i].points[0][0], nodes[i].points[0][1]);
for (var j = 1; j < nodes[i].points.length; j++) {
ctx.lineTo(nodes[i].points[j][0], nodes[i].points[j][1]);
}
ctx.fill();
ctx.closePath();
}
ctx.restore();
};
};
Spawn.from_parents = function(parents) {
// Given two parents, mix them together to get another spawn
var nodes = [];
for (var i = 0; i < parents[0].nodes.length; i++) {
if (Math.random() > 0.5) {
nodes.push($.extend({}, parents[0].nodes[i]));
}
else {
nodes.push($.extend({}, parents[1].nodes[i]));
}
}
var s = new Spawn(nodes);
s.mutate();
return s;
};
Spawn.random = function(width, height) {
// Return a complete random spawn.
var nodes = [];
for (var i = 0; i < width * height; i += 10) {
var n = {
color: [Math.random() * 256, Math.random() * 256, Math.random() * 256, 1],
points: [
[i % width, Math.floor(i / width) * 10],
[(i % width) + 10, Math.floor(i / width) * 10],
[(i % width) + 10, Math.floor(i / width + 1) * 10],
[i % width, Math.floor(i / width + 1) * 10],
]
};
nodes.push(n);
}
return new Spawn(nodes);
};
var select_parents = function(gene_pool) {
if (use_rank_selection) {
return rank_selection(gene_pool);
}
return roulette_selection(gene_pool);
};
var roulette_selection = function(gene_pool) {
var mother = null;
var father = null;
gene_pool = gene_pool.slice(0);
var sum_fitness = 0;
var i = 0;
for (i = 0; i < gene_pool.length; i++) {
sum_fitness += gene_pool[i].fitness();
}
var choose = Math.floor(Math.random() * sum_fitness);
for (i = 0; i < gene_pool.length; i++) {
if (choose <= gene_pool[i].fitness()) {
mother = gene_pool[i];
break;
}
choose -= gene_pool[i].fitness();
}
// now remove the mother and repeat for the father
sum_fitness -= mother.fitness();
gene_pool.splice(i, 1);
choose = Math.floor(Math.random() * sum_fitness);
for (i = 0; i < gene_pool.length; i++) {
if (choose <= gene_pool[i].fitness()) {
father = gene_pool[i];
break;
}
choose -= gene_pool[i].fitness();
}
return [mother, father];
};
var rank_selection = function(gene_pool) {
gene_pool = gene_pool.slice(0);
gene_pool.sort(function(a, b) {
return b.fitness() - a.fitness();
});
var choose_one = function() {
var sum_fitness = (gene_pool.length + 1) * (gene_pool.length / 2);
var choose = Math.floor(Math.random() * sum_fitness);
for (var i = 0; i < gene_pool.length; i++) {
// figure out the sume of the records up to this point. if we exceed
// our chosen spot, we've found our spawn.
if ((i + 1) * (i / 2) >= choose) {
return gene_pool.splice(i, 1)[0];
}
}
return gene_pool.pop(); // last element, if for some reason we get here
};
var mother = choose_one();
var father = choose_one();
return [mother, father];
};
var start = function() {
// Initialize our first generation
var width = $output_canvas[0].width;
var height = $output_canvas[0].height;
generation = 0;
children = [];
for (var j = 0; j < num_offspring; j++) {
children.push(Spawn.random(width, height));
}
// sort by fitness so that our best comes first
children.sort(function(a, b) {
return a.fitness() - b.fitness();
});
best_spawn = children[0];
best_fitness = best_spawn.fitness();
best_spawn.draw(output_ctx);
};
var generate = function(spawn_pool) {
// generate a new set of offspring
var offspring = [];
for (var i = 0; i < num_offspring; i++) {
var parents = select_parents(spawn_pool);
// odds of crossover decrease as we get closer
if (Math.random() * best_fitness < crossover_rate) {
var s = Spawn.from_parents(parents);
}
else {
// quick hack to copy our mother, with possible mutation
var s = Spawn.from_parents([parents[0], parents[0]]);
}
offspring.push(s);
}
// select a number of best from the parent pool (elitism)
for (var i = 0; i < elitism; i++) {
offspring.push(spawn_pool[i]);
}
// sort our offspring by fitness (this includes the parents from elitism). Fittest first.
offspring.sort(function(a, b) {
return a.fitness() - b.fitness();
});
// pick off the number that we want
offspring = offspring.slice(0, num_offspring);
best_spawn = offspring[0];
best_fitness = best_spawn.fitness();
best_spawn.draw(output_ctx);
generation++;
return offspring;
};
var average_fitness = function(generation) {
debugger;
var a = 0;
for (var i = 0; i < generation.length; i++) {
a += generation[i].fitness();
}
return a / generation.length;
};
//Draw yellow and then initialize our first generation
input_ctx.fillStyle = 'yellow';
input_ctx.fillRect(0, 0, input_ctx.canvas.width, input_ctx.canvas.height);
start();
// Our loop function. Use setTimeout to prevent things from freezing
var gen = function() {
children = generate(children);
$gen_span.text('Generation: ' + generation);
$best_fit.text('Best Fitness: ' + best_fitness);
$avg_fit.text('Avg. Fitness: ' + average_fitness(children));
if (generation % 100 === 0) {
console.log('Generation', generation);
console.log('Fitness', best_fitness);
}
setTimeout(gen, 1);
};
gen();​
I've commented the code to try to make parsing it easy. The basic idea is quite simple:
Select 1 or 2 parents from the current generation
Mix those one or two parents together
Mutate the result slightly and add it to the next generation
Select the best few parents (1 in the example) and add them to the next generation
Sort and slice off N results and use them for the next generation (potentially a mix of parents and offspring)
Rinse and repeat
The output never gets anywhere near yellow. It quickly falls into a steady state of a sort that looks awful. Where have I gone wrong?
Solved it. It was in the "from_parents" method:
if (Math.random() > 0.5) {
nodes.push($.extend({}, parents[0].nodes[i]));
}
else {
nodes.push($.extend({}, parents[1].nodes[i]));
}
The $.extend() was doing a shallow copy. The obvious solution was to either put true as the first argument which causes a deep copy. This, however, is incredibly slow performance-wise. The better solution was to remove the $.extend() from that chunk of code entirely and instead to move it up to the mutate() method, where I call $.extend() only if a node is actually about to be changed. In other words, it becomes a copy-on-write.
Also, the color I put in the fitness function was wrong :P

latitude & longitude as coordinates adequate for point in polygon algorithm

Given a database of long/lat coordinates representing targets and a series of lat/long representing the bounding coordinates of polygons representing "zones". Using a simple ray casting algorithm is it safe to treat the lat/long as cartesian coordinates for determining if the target is within the zone?
Provided the edges are short, it should work well enough. It won't be "correct" though.
Imagine a triangle with two points a and b on the equator and one just short of the north pole. Evidently, (almost) all points with a longitude between a and b above the equator are in the triangle. But if we try treating the lats/longs as cartesian coordinates, we get something quite different...
Edit: You'll need to be careful with zones which cross longitude = max/min, and even more careful with the ones that also contain a pole
You can try this
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
<title></title>
<script type="text/javascript" src="https://maps.googleapis.com/maps/api/js?key=AIzaSyBfaExFhABnh7I3-vTHJjA4TWqtYnMccKE&sensor=false"></script>
<script type="text/javascript" src="http://www.the-di-lab.com/polygon/jquery-1.4.2.min.js"></script>
<script type="text/javascript">
var map;
var boundaryPolygon;
function initialize() {
google.maps.Polygon.prototype.Contains = function (point) {
// ray casting alogrithm http://rosettacode.org/wiki/Ray-casting_algorithm
var crossings = 0,
path = this.getPath();
// for each edge
for (var i = 0; i < path.getLength(); i++) {
var a = path.getAt(i),
j = i + 1;
if (j >= path.getLength()) {
j = 0;
}
var b = path.getAt(j);
if (rayCrossesSegment(point, a, b)) {
crossings++;
}
}
// odd number of crossings?
return (crossings % 2 == 1);
function rayCrossesSegment(point, a, b) {
var px = point.lng(),
py = point.lat(),
ax = a.lng(),
ay = a.lat(),
bx = b.lng(),
by = b.lat();
if (ay > by) {
ax = b.lng();
ay = b.lat();
bx = a.lng();
by = a.lat();
}
if (py == ay || py == by) py += 0.00000001;
if ((py > by || py < ay) || (px > Math.max(ax, bx))) return false;
if (px < Math.min(ax, bx)) return true;
var red = (ax != bx) ? ((by - ay) / (bx - ax)) : Infinity;
var blue = (ax != px) ? ((py - ay) / (px - ax)) : Infinity;
return (blue >= red);
}
};
var mapProp = {
center: new google.maps.LatLng(37.684, -122.591),
zoom: 10,
mapTypeId: google.maps.MapTypeId.ROADMAP
};
map = new google.maps.Map(document.getElementById("googleMap"), mapProp);
google.maps.event.addListener(map, 'click', function (event) {
if (boundaryPolygon!=null && boundaryPolygon.Contains(event.latLng)) {
alert(event.latLng + " is inside the polygon");
} else {
alert(event.latLng + " is outside the polygon");
}
});
}
function btnCheckPointExistence_onclick() {
var latitude = document.getElementById('txtLattitude').value;
var longitude = document.getElementById('txtLongitude').value;
//alert(latitude); alert(longitude)
var myPoint = new google.maps.LatLng(latitude, longitude);
if (boundaryPolygon == null) {
alert("No Polygon");
}
else {
if (boundaryPolygon.Contains(myPoint)) {
alert(myPoint + "is inside the polygon.");
} else {
alert(myPoint + "is outside the polygon.");
}
}
}
function drawPolygon() {
initialize();
var boundary = '77.702866 28.987153, 77.699776 28.978594 ,77.735996 28.974164 ,77.719946 28.99346 ,77.713423 28.994361 ,77.711706 28.990382 ';
var boundarydata = new Array();
var latlongs = boundary.split(",");
for (var i = 0; i < latlongs.length; i++) {
latlong = latlongs[i].trim().split(" ");
boundarydata[i] = new google.maps.LatLng(latlong[1], latlong[0]);
}
boundaryPolygon = new google.maps.Polygon({
path: boundarydata,
strokeColor: "#0000FF",
strokeOpacity: 0.8,
strokeWeight: 2,
fillColor: 'Red',
fillOpacity: 0.4
});
google.maps.event.addListener(boundaryPolygon, 'click', function (event) {
if (boundaryPolygon.Contains(event.latLng)) {
alert(event.latLng + "is inside the polygon.");
} else {
alert(event.latLng + "is outside the polygon.");
}
});
map.setZoom(14);
map.setCenter(boundarydata[0]);
boundaryPolygon.setMap(map);
}
</script>
</head>
<body onload="initialize();drawPolygon();">
<form id="form1" runat="server">
<input type="text" value="28.982005022927137" name="txtLattitude" id="txtLattitude" placeholder="Enter Latitude">
<input type="text" value="77.72157669067383" name="txtLongitude" id="txtLongitude" placeholder="Enter Langitude">
<input type="button" value="Submit" name="submit" id="submit-text" value="submit" onclick="btnCheckPointExistence_onclick();">
<h3>Check If Point Exist in a Polygon</h3>
<span id="spnMsg" style="font-family: Arial; text-align: center; font-size: 14px; color: red;">this is message</span>
<br />
<br />
<div id="googleMap" style="width: auto; height: 500px;">
</div>
</form>
</body>
</html>
You can view Demo here
No, it's not safe to do that. You'll get anomalies around the poles and also at the 0 longitude areas.
Take a look at the NASA world wind code. they have representations for polygons on the surface of the globe although you have to be careful -- some of the representations will represent these anomalies, others will not.
http://worldwind.arc.nasa.gov/java/

Resources