I started creating a laravel 5.8 based modular API framework for our company which should be extended using composer packages.
Now I stumbled over the problem to test each package by itself (each package has it's own GIT project of course) if the package needs to have access to the User model given in the base framework (App/Models/User).
There will be various packages naturally depending on the User model such as specific auth modules.
Unfortunately testing also gets more complex because we are using GraphQL (Lighthouse).
So how should this be done? I tried mocking App/Models/User with a User model contained in the tests folder of my package, but this did not work as expected:
$this->userMock = \Mockery::mock('CompanyName\\PackageName\\Tests\\User');
$this->app->instance('App\\Models\\User', $this->userMock);
When, after that, posting a GraphQL request the resolver method throws a Class App\Models\User does not exist error.
I am quiet new to testing with phpunit so maybe I am just missing something here?
Edit:
I just found out that the error message above is displayed because the User model is also referenced within the GraphQL schema file.
So I there is any solution out there it has to somehow "emulate" the not existing User model class for the whole request lifecycle I guess...
Ok I finally solved my problem which was more conceptual wise I guess. As the user model is pretty strongly tied to the (core) package I want to test, I have now moved the model into the package itself and removed it from the base project.
This has the advantage that the "end user developer" doesn't even see and has to cope with the user model which is handles by the package anyway.
Now I can test the package independently and only have to put a line of documentation into the README to tell, that a user has to change the auth.providers.users.modelvalue to let laravel use the appropriate model (e.g. CompanyName\\PackageName\\Models).
If there will be other packages extending the user model, they will have to depend on the core package (which they should either way) and can extend the model class and tell the user to update auth.providers.users.model again. This way it is also quiet transparent to see which user model is used currently.
For the GraphQL / Lighthouse part I have added the following code to the boot method of the package's service provider to make lighthouse know about new models within the package automatically:
$lighthouseModels = config('lighthouse.namespaces.models');
array_push($lighthouseModels, 'CompanyName\\PackageName\\Models');
config([
'lighthouse.namespaces.models' => $lighthouseModels
]);
This can be repeated for every package adding models as well so lighthouse knows about all of them.
I can import WatchKit and WatchConnectivity and use various delegates like WCSessionDelegate, without any problem.
But when I try to import ClockKit or add CLKComplicationDataSource, Xcode throws errors like "no module exists."
To check this, I created a watch app project and examined ComplicationController.swift. It does have import ClockKit in the source.
Why can't we test this API in an Xcode Playground? Doesn't that defeat the purpose of having a Playground?
No you can't, for the following reasons.
The playground is running on an iOS simulator, not a watchOS simulator. What you want to use or test isn't available in iOS.
The ClockKit framework is more of a collection of objects related to a watch face complication. It wouldn't make sense for it to be available in the playground since the playground itself wouldn't have any complications.
You can't really test a complication in the playground, since no interactive complication server is running in the playground that would call your data source methods.
Complications run in the background, and are managed by the complication server. When your complication is active (enabled) on the watch face, the system wakes your extension in the background, instantiates an instance of your data source, then obtains the necessary data it needs for that complication:
You do not instantiate your data source class explicitly. After defining your class, specify the class name in the General tab of the project settings for your WatchKit extension. When the system needs data, it instantiates your class and initializes it by calling its init method. Once initialized, it calls the corresponding protocol methods to gather any needed data.
You could submit a feature request asking Apple to let you interactively test your complication controller in the playground.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 4 years ago.
Improve this question
I want to build an API based application using GO and MongoDB. I'm from Asp.net MVC background. Probably if I make an architecture with MVC web application things to be consider are
Separation of concerns(SoC)
DataModel
BusinessEntities
BusinessServices
Controllers
Dependeny Injection and Unity of Work
Unit Testing
MoQ or nUnit
Integration with UI frameworks
Angularjs or others
RESTful urls that enables SEO
Below architecture could be a solution for my need in MVC based appications
There are resources around the web to build Asp.Net or Java based applications, but I have not find solution to Golang application architecture.
Yes GO is different to C# or Java, but still there are Structs, Interfaces to create reusable code and a generic application architecture.
Consider above points in mind, how we can make a clean and reusable project structure in GO applications and a generic repositories for DB(Mongodb) transactions. Any web resources also a great point to start.
It depends on your own style and rules, in my company, we develop our projects this way:
Configuration is determined by environment variables, so we have a company/envs/project.sh file which has to be evaluated before service (outside the project in the image).
We add a zscripts folder that contains all extra scripts, like adding users or publishing a post. Intended to be used only for debug proposes.
Data models (entities) are in a package called project/models.
All controllers and views (HTML templates) are categorized into "apps" or "modules". We use the REST path as main group delimiter, so path /dogs goes to package project/apps/dogs and /cats to project/apps/cats.
Managers are in their separated package at project's root project/manager.
Static files (.css, .png, .js, etc.) are located at project/static/[app/]. Sometimes is required to have the optional [app/] folder, but it only happens when two apps have dashboards or conflicting file names. Most of cases you won't need to use [app/] for static resources.
Managers
We call a manager, a package that contains pure functions which helps apps to perform its task, for example, databases, cache, S3 storage, etc. We initialize each manager calling package.Startup() before we start to listen, and finalize calling package.Finalize() when program is interrupted.
An example of a manager could be project/cache/cache.go:
type Config struct {
RedisURL string `envconfig:"redis_url"`
}
var config Config
var client *redis.Client
func Startup(c Config) error {
config = c
client, err := redis.Dial(c.RedisURL)
return err
}
func Set(k,v string) error {
return client.Set(k, v)
}
in main.go (or your_thing_test.go):
var spec cache.Config
envconfig.Process("project", &spec)
cache.Startup(spec)
And in a app (or module):
func SetCacheHandler(_ http.ResponseWriter, _ *http.Request){
cache.Set("this", "rocks")
}
Modules
A module is a container of views and controllers that are isolated from other modules, using our configuration I would recommend to not create dependencies between modules. Modules are also called apps.
Each module configures its routes using a router, sub-router or what your framework provides, for example (file project/apps/dogs/configure.go):
func Configure(e *echo.Echo) {
e.Get("/dogs", List)
}
Then, all handlers live in project/apps/dogs/handlers.go:
// List outputs a dog list of all stored specimen.
func List(c *echo.Context) error {
// Note the use of models.Xyz
var res := make([]models.Dog, 0) // A little trick to not return nil.
err := store.FindAll("dogs", nil, &res) // Call manager to find all dogs.
// handle error ...
return c.JSON(200, res) // Output the dogs.
}
Finally you configure the app in main (or in a test):
e := echo.New()
dogs.Configure(e)
// more apps
e.Run(":8080")
Note: for views, you can add them to project/apps/<name>/views folder and configure them the using the same function.
Other
Sometimes we also add a project/constants and a project/utils package.
Here is what it looks like:
Note that in above sample, templates are separated from apps, thats because its a placeholder, directory is empty.
Hope it was useful. Greetings from México :D.
I've also struggled about how to structure my Go web APIs in the past and don't know any web resources that tell you exactly how to write a Go web API.
What I did was just check out other projects on Github and try out how they structured their code, for example, the Docker repo has very idomatic Go code on it's API.
Also, Beego is a RESTful framework that generates the project structure for you in a MVC way and according to their docs, it can also be used for APIs.
I've been building a web APIs in golang for a little while now.
You'll have to do some research but I can give you some starting points:
Building Web Apps with Go -- ebook
github.com/julienschmidt/httprouter -- for routing addresses
github.com/unrolled/render/ -- for rendering various forms of responses(JSON, HTML, etc..)
github.com/dgrijalva/jwt-go -- JSON Web Tokens
www.gorillatoolkit.org/pkg/sessions -- Session Management
And for reference on how some things work together in the end:
Go Web API Repo -- personal project
1. Separation of concerns (SoC)
I haven't worked with SoC directly, but I have my own pattern. You can adapt to whatever pattern (MVC, your own, etc.).
In my code, I separate my code into different packages:
myprojectname (package main) — Holds the very basic setup and configuration/project consts
* handlers (package handlers) — Holds the code that does the raw HTTP work
* models (package models) — Holds the models
* apis (NOT a package)
- redis (package redis) — Holds the code that wraps a `sync.Pool`
- twilio (package twilio) — Example of layer to deal with external API
Notes:
In each package other than main, I have a Setup() function (with relevant arguments) that is called by the main package.
For the packages under the apis folder, they are often just to initialize external Go libraries. You also can directly import existing libraries into the handlers/models without an apis package.
I setup my mux as an exported global in the handlers package like this...
Router := mux.NewRouter()
...and then create a file for each URL (different methods with the same URL are in the same file). In each file, I use Go's init() function, which is ran after global variables are initialized (so it's safe to use the router) but before main() is ran (so it's safe for main to assume everything has been setup). The great thing about init() is that you can have as many of those methods as you want in a single package, so they automatically get ran when the package is imported.
Main then imports myprojectname/handlers and then serves the handlers.Router in main.
2. Dependency Injection and Unity of Work
I haven't worked with Unity of Work, so I have no idea of possible Go implementations.
For DI, I build an interface that both the real object and the mock objects will implement.
In the package, I add this to the root:
var DatabaseController DatabaseControllerInterface = DefaultController
Then, the first line of each test I can change DatabaseController to whatever that test needs. When not testing, the unit tests should not be ran, and it defaults to DefaultController.
3. Unit Testing
Go provides a built in testing with the go test package command. You can use go test --cover to also emit a coverage percent. You can even have coverage displayed in your browser, highlighting the parts that are/aren't covered.
I use the testify/assert package to help me with testing where the standard library falls short:
// something_test.go
//
// The _test signifies it should only be compiled into a test
// Name the file whatever you want, but if it's testing code
// in a single file, I like to do filename_test.go.
package main
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestMath(t *testing.T) {
assert.Equal(t, 3+1, 4)
}
4. Integration with UI frameworks
I haven't seen any for Angular. Although I haven't used it, Go has a good template engine built into the standard lib.
5. RESTful URLs that enables SEO
Again, I can't help you here. It's up to you: send proper status codes (don't send a 200 with a 404 page as you'll get docked for duplicate pages), don't duplicate pages (pay attention to google.com/something vs google.com/something/; hopefully your framework will not mess this up), don't try to trick the search engine, and so on.
To my mind Go webapp project folder on production server can looks like on your picture just much simpler. Nothing special in assets structure - Static, Templates, Content, Styles, Img, JSlibs, DBscripts etc. usual folders. Nothing special in WebAPI - as usual you design which URI will respond required functionality and route requests to handlers accordingly. Some specifics - many gophers don't believe in MVC architecture, it's up to you surely. And you deploy one staticaly linked executable without dependencies. In your development environment you structure yours and imported/vendored sorce files in $GOPATH as in stdlib done but deploy only one executable in production environment, sure with static assets needed. You can see how to orginize Go source packages just in stdlib. Having just one executable what would you structure on production?
I'm currently following the Laravel Package documentation, which uses the workbench tool to create a standard package tree consisting of controller, config, views, etc. folders. Basically, most folders you would get in a standard Laravel app tree.
However, I had a couple of questions:
Why is the models folder absent here? (though the same goes for tests and commands)
Should I just create the folder myself and add it to the composer.json autoload classmap?
What classes should live inside src/<Namespace>/<PackageName>? I have noticed that a ServiceProvider is automatically created here, but I can imagine most other files just existing in the standard package directories.
Wockbench represents just a tool for creating other tools, that is triggered through CLI. Workbench is very abstract concept.
Model folder is absent simply because you don't need model in every new package. For example, if you are creating middleware package or you own filter package.
Every new class can be added to package dependent on its purpose and responsibility. It can be done in more then one way.
Classes that are general enough to go into every package are:
Package Service Provider
Facade
Basic Class
But it is not a black box. Consider for example request class - it is bound very early in the application life cycle, so no provider is needed.
I have a small web application written in Go. It is created a base for a larger system and I would like it to be extendable where components can be added/removed without needing this base to be modified in any way.
The structure is currently:
App
Modules
Core
... Core Files Here ...
app.go
main.go
app.go will contain a routing method which should take a web request and based on the request path know which module is responsible for handling the request. Each module/component having its on controller.
Each component will have its own package name so i think this is going to be impossible since go forces an explicit import.
For example i may add a new module/component called say blog such as:
App
Modules
Core
... Core Files Here ...
controller.go
Blog
... Blog Files Here ...
controller.go
app.go
main.go
There are several ways to achieve your goal. Since Go does not support dynamically loaded libraries at the moment, you need to probably recompile your application whenever you add/remove any components. The simplest way therefore would be a yourapp/core package with the following:
an Application type with an ServeHTTP method that acts as your main application
a Component interface that all your components have to implement. Your might want include a BaseUrl() string and a ServeHTTP method there.
a Register method to your Application type, that can be used to add new components to your app.
Your components can then be implemented in separate packages (e.g. yourapp/blog) and they will probably depend on your yourapp/core package.
The only thing that still needs to be "user-editable" is the main.go file, which might look like this:
func main() {
app := core.NewApplication()
app.Register(blog.Blog{
Title: "My Personal Blog",
})
app.Register(...)
app.Run()
}
Another approach might be to define an RPC interface for your components (which might include functions like RegisterComponent, UnregisterComponent and a GetGlobalConfig).
Then, you can run those components in separate processes which has the advantage that you can start/stop/reload those components dynamically and they can not break your main app. Take a look at the net/rpc package and maybe even httputil.NewSingleHostReverseProxy if you want to use this approach instead.