DirectX11 and Rasterizer depth bias - directx-11

I have problems with Z-fighting for my moving directional light casting shadows.
I'm trying to tinker with the rasterizer config when rendering the shadowmaps. There are three fields related to depth bias (DepthBias, SlopedScaleDepthBias, DepthBiasClamp) and no matter how I tinker with them I can't find a good value - I have no idea what value range is even appropriate.
Is there a universally-acceptable / "standard" set of sloped-scale/bias values that works for most scenes? I realize there are extreme cases but I just want the general case to work fine.

There isn't something like standard set of bias values. Implementing shadow maps is more like art than science :).
First ACME source is shadow map precision. Make sure that near and far planes of shadow casting light are as tight as possible. All objects before the near plane can be pancaked, as their exact depth isn't important.
Second ACME source is shadow map resolution. For a sunlight you should be doing cascaded shadow maps with at least 3 1024x1012 cascades for ~100-200m of shadow distance. It's hard to cover similar shadow distance with one shadow map with uniform projection.
Third ACME source are wide shadow map filters like PCF, as using a single depth depth comparison value across a wide kernel is insufficient. There are many methods to fix it, but none of them is robust.
To sum up, a tight frustum with a few cascades and some bias tweaking is enough to get the general case working. Start tweaking by disabling shadow filtering and tweak for filtering only when basic shadow maps are robust enough.
There are some additional interesting methods and most of them are implemented in the excellent demo: Matt Pettineo - "A sampling of shadow techniques".
Flip culling during shadow map rendering (this trades acne for Peter panning).
Normal offset shadow mapping does wonders for bias, but requires to have vertex normals around during shading.
Variance based methods (ESM,VSM,EVSM) completely remove bias issues, but have other drawbacks (light leaking and/or performance issues).

Related

Shading mask algorithm for radiation calculations

I am working on a software (Ruby - Sketchup) to calculate the radiation (sun, sky and surrounding buildings) within urban development at pedestrian level. The final goal is to be able to create a contour map that shows the level of total radiation. With total radiation I mean shortwave (light) and longwave(heat). (To give you an idea: http://www.iaacblog.com/maa2011-2012-digitaltools/files/2012/01/Insolation-Analysis-All-Year.jpg)
I know there are several existing software that do this, but I need to write my own as this calculation is only part of a more complex workflow.
The (obvious) pseudo code is the following:
Select and mesh surface for analysis
From each point of the mesh
Cast n (see below) rays in the upper hemisphere (precalculated)
For each ray check whether it is in shade
If in shade => Extract properties from intersected surface
If not in shade => Flag it
loop
loop
loop
The approach above is brute force, but it is the only I can think of. The calculation time increases with the fourth power of the accuracy (Dx,Dy,Dazimth, Dtilt). I know that software like radiance use a Montecarlo approach to reduce the number of rays.
As you can imagine, the accuracy of the calculation for a specific point of the mesh is strongly dependent by the accuracy of the skydome subdivision. Similarly the accuracy on the surface depends on the coarseness of the mesh.
I was thinking to a different approach using adaptive refinement based on the results of the calculations. The refinement could work for the surface analyzed and the skydome. If the results between two adjacent points differ more than a threshold value, than a refinement will be performed. This is usually done in fluid simulation, but I could not find anything about light simulation.
Also i wonder whether there are are algorithms, from computer graphics for example, that would allow to minimize the number of calculations. For example: check the maximum height of the surroundings so to exclude certain part of the skydome for certain points.
I don't need extreme accuracy as I am not doing rendering. My priority is speed at this moment.
Any suggestion on the approach?
Thanks
n rays
At the moment I subdivide the sky by constant azimuth and tilt steps; this causes irregular solid angles. There are other subdivisions (e.g. Tregenza) that maintain a constant solid angle.
EDIT: Response to the great questions from Spektre
Time frame. I run one simulation for each hour of the year. The weather data is extracted from an epw weather file. It contains, for each hour, solar altitude and azimuth, direct radiation, diffuse radiation, cloudiness (for atmospheric longwave diffuse). My algorithm calculates the shadow mask separately then it uses this shadow mask to calculate the radiation on the surface (and on a typical pedestrian) for each hour of the year. It is in this second step that I add the actual radiation. In the the first step I just gather information on the geometry and properties of the various surfaces.
Sun paths. No, i don't. See point 1
Include reflection from buildings? Not at the moment, but I plan to include it as an overall diffuse shortwave reflection based on sky view factor. I consider only shortwave reflection from the ground now.
Include heat dissipation from buildings? Absolutely yes. That is the reason why I wrote this code myself. Here in Dubai this is key as building surfaces gets very, very hot.
Surfaces albedo? Yes, I do. In Skethcup I have associated a dictionary to every surface and in this dictionary I include all the surface properties: temperature, emissivity, etc.. At the moment the temperatures are fixed (ambient temperature if not assigned), but I plan, in the future, to combine this with the results from a building dynamic thermal simulation that already calculates all the surfaces temperatures.
Map resolution. The resolution is chosen by the user and the mesh generated by the algorithm. In terms of scale, I use this for masterplans. The scale goes from 100mx100m up to 2000mx2000m. I usually tend to use a minimum resolution of 2m. The limit is the memory and the simulation time. I also have the option to refine specific areas with a much finer mesh: for example areas where there are restaurants or other amenities.
Framerate. I do not need to make an animation. Results are exported in a VTK file and visualized in Paraview and animated there just to show off during presentations :-)
Heat and light. Yes. Shortwave and longwave are handled separately. See point 4. The geolocalization is only used to select the correct weather file. I do not calculate all the radiation components. The weather files I need have measured data. They are not great, but good enough for now.
https://www.lucidchart.com/documents/view/5ca88b92-9a21-40a8-aa3a-0ff7a5968142/0
visible light
for relatively flat global base ground light map I would use projection shadow texture techniques instead of ray tracing angular integration. It is way faster with almost the same result. This will not work on non flat grounds (many bigger bumps which cast bigger shadows and also change active light absorbtion area to anisotropic). Urban areas are usually flat enough (inclination does not matter) so the technique is as follows:
camera and viewport
the ground map is a target screen so set the viewpoint to underground looking towards Sun direction upwards. Resolution is at least your map resolution and there is no perspective projection.
rendering light map 1st pass
first clear map with the full radiation (direct+diffuse) (light blue) then render buildings/objects but with diffuse radiation only (shadow). This will make the base map without reflections and or soft shadows in the Magenta rendering target
rendering light map 2nd pass
now you need to add building faces (walls) reflections for that I would take every outdoor face of the building facing Sun or heated enough and compute reflection points onto light map and render reflection directly to map
in tis parts you can add ray tracing for vertexes only to make it more precise and also for including multiple reflections (bu in that case do not forget to add scattering)
project target screen to destination radiation map
just project the Magenta rendering target image to ground plane (green). It is only simple linear affine transform ...
post processing
you can add soft shadows by blurring/smoothing the light map. To make it more precise you can add info to each pixel if it is shadow or wall. Actual walls are just pixels that are at 0m height above ground so you can use Z-buffer values directly for this. Level of blurring depends on the scattering properties of the air and of coarse pixels at 0m ground height are not blurred at all
IR
this can be done in similar way but temperature behaves a bit differently so I would make several layers of the scene in few altitudes above ground forming a volume render and then post process the energy transfers between pixels and layers. Also do not forget to add the cooling effect of green plants and water vaporisation.
I do not have enough experience in this field to make more suggestions I am more used to temperature maps for very high temperature variances in specific conditions and material not the outdoor conditions.
PS. I forgot albedo for IR and visible light is very different for many materials especially aluminium and some wall paintings

Efficiently rendering a transparent terrain in OpenGL

I'm writing an OpenGL program that visualizes caves, so when I visualize the surface terrain I'd like to make it transparent, so you can see the caves below. I'm assuming I can normalize the data from a Digital Elevation Model into a grid aligned to the X/Z axes with regular spacing, and render each grid cell as two triangles. With an aligned grid I could avoid the cost of sorting when applying the painter's algorithm (to ensure proper transparency effects); instead I could just render the cells row by row, starting with the farthest row and the farthest cell of each row.
That's all well and good, but my question for OpenGL experts is, how could I draw the terrain most efficiently (and in a way that could scale to high resolution terrains) using OpenGL? There must be a better way than calling glDrawElements() once for every grid cell. Here are some ways I'm thinking about doing it (they involve features I haven't tried yet, that's why I'm asking the experts):
glMultiDrawElements Idea
Put all the terrain coordinates in a vertex buffer
Put all the coordinate indices in an element buffer
To draw, write the starting indices of each cell into an array in the desired order and call glMultiDrawElements with that array.
This seems pretty good, but I was wondering if there was any way I could avoid transferring an array of indices to the graphics card every frame, so I came up with the following idea:
Uniform Buffer Idea
This seems like a backward way of using OpenGL, but just putting it out there...
Put the terrain coordinates in a 2D array in a uniform buffer
Put coordinate index offsets 0..5 in a vertex buffer (they would have to be floats, I know)
call glDrawArraysInstanced - each instance will be one grid cell
the vertex shader examines the position of the camera relative to the terrain and determines how to order the cells, mapping gl_instanceId to the index of the first coordinate of the cell in the Uniform Buffer, and setting gl_Position to the coordinate at this index + the index offset attribute
I figure there might be shiny new OpenGL 4.0 features I'm not aware of that would be more elegant than either of these approaches. I'd appreciate any tips!
The glMultiDrawElements() approach sounds very reasonable. I would implement that first, and use it as a baseline you can compare to if you try more complex approaches.
If you have a chance to make it faster will depend on whether the processing of draw calls is an important bottleneck in your rendering. Unless the triangles you render are very small, and/or your fragment shader very simple, there's a good chance that you will be limited by fragment processing anyway. If you have profiling tools that allow you to collect data and identify bottlenecks, you can be much more targeted in your optimization efforts. Of course there is always the low-tech approach: If making the window smaller improves your performance, chances are that you're mostly fragment limited.
Back to your question: Since you asked about shiny new GL4 features, another method you could check out is indirect rendering, using glDrawElementsIndirect(). Beyond being more flexible, the main difference to glMultiDrawElements() is that the parameters used for each draw, like the start index in your case, can be sourced from a buffer. This might prevent one copy if you map this buffer, and write the start indices directly to the buffer. You could even combine it with persistent buffer mapping (look up GL_MAP_PERSISTENT_BIT) so that you don't have to map and unmap the buffer each time.
Your uniform buffer idea sounds pretty interesting. I'm slightly skeptical that it will perform better, but that's just a feeling, and not based on any data or direct experience. So I think you absolutely should try it, and report back on how well it works!
Stretching the scope of your question some more, you could also look into approaches for order-independent transparency rendering if you haven't considered and rejected them already. For example alpha-to-coverage is very easy to implement, and almost free if you would be using MSAA anyway. It doesn't produce very high quality transparency effects based on my limited attempts, but it could be very attractive if it does the job for your use case. Another technique for order-independent transparency is depth peeling.
If some self promotion is acceptable, I wrote an overview of some transparency rendering methods in an earlier answer here: OpenGL ES2 Alpha test problems.

I need help drawing sunrays, glimmers, bursts, sparkles, etc in C

I am in the process of learning how to create a lens flare application. I've got most of the basic components figured out and now I'm moving on to the more complicated ones such as the glimmers / glints / spikeball as seen here: http://wiki.nuaj.net/images/e/e1/OpticalFlaresLensObjects.png
Or these: http://ak3.picdn.net/shutterstock/videos/1996229/preview/stock-footage-blue-flare-rotate.jpg
Some have suggested creating particles that emanate outwards from the center while fading out and either increasing or decreasing in size but I've tried this and there are just too many nested loops which makes performance awful.
Someone else suggested drawing a circular gradient from center white to radius black and using some algorithms to lighten and darken areas thus producing rays.
Does anyone have any ideas? I'm really stuck on this one.
I am using a limited compiler that is similar to C but I don't have any access to antialiasing, predefined shapes, etc. Everything has to be hand-coded.
Any help would be greatly appreciated!
I would create large circle selections, then use a radial gradient. Each side of the gradient is white, but one side has 100% alpha and the other 0%. Once you have used the gradient tool to draw that gradient inside the circle. Deselect it and use the transform tool to Skew or in a sense smash it. Then duplicate it several times and turn each one creating a spiral or circle holding Ctrl to constrain when needed. Then once those several layers are in the rotation or design that you want. Group them in a folder and then you can further effect them all at once with another transform or skew. WHen you use these real smal, they are like little stars. But you can do many different things when creating each one to make them different. Like making each one lower in opacity than the last etc...
I found a few examples of how to do lens-flare 'via code'. Ideally you'd want to do this as a post-process - meaning after you're done with your regular render, you process the image further.
Fragment shaders are apt for this step. The easiest version I found is this one. The basic idea is to
Identify really bright spots in your image and potentially down sample it.
Shoot rays from the fragment to the center of the image and sample some pixels along the way.
Accumalate the samples and apply further processing - chromatic distortion etc - on it.
And you get a whole range of options to play with.
Another more common alternative seems to be
Have a set of basic images (circles, hexes) and render them as a bunch of bright objects, along the path from the camera to the light(s).
Composite this image on top of the regular render of you scene.
The problem is in determining when to turn on lens flare, since it is dependant on whether a light is visible/occluded from a camera. GPU Gems comes to rescue, with better options.
A more serious, physically based implementation is listed in this paper. This is a real-time version of making lens-flares, but you need a hardware that can support both vertex and geometry shaders.

Raytracing via diffusion algorithm

Many certain resources about raytracing tells about:
"shoot rays, find the first obstacle to cut it"
"shoot secondary rays..."
"or, do it reverse and approximate/interpolate"
I didnt see any algortihm that uses a diffusion algorithm. Lets assume a point-light is a point that has more density than other cells(all space is divided into cells), every step/iteration of lighting/tracing makes that source point to diffuse into neighbours using a velocity field and than their neighbours and continues like that. After some satisfactory iterations(such as 30-40 iterations), the density info of each cell is used for enlightment of objects in that cell.
Point light and velocity field:
But it has to be a like 1000x1000x1000 size and this would take too much time and memory to compute. Maybe just computing 10x10x10 and when finding an obstacle, partitioning that area to 100x100x100(in a dynamic kd-tree fashion) can help generating lighting/shadows for acceptable resolution? Especially for vertex-based illumination rather than triangle.
Has anyone tried this approach?
Note: Velocity field is here to make light diffuse to outwards mostly(not %100 but %99 to have some global illumination). Finite-element-method can make this embarassingly-parallel.
Edit: any object that is hit by a positive-density will be an obstacle to generate a new velocity field around the surface of it. So light cannot go through that object but can be mirrored to another direction.(if it is a lens object than light diffuse harder through it) So the reflection of light can affect other objects with a higher iteration limit
Same kd-tree can be used in object-collision algorithms :)
Just to take as a grain of salt: a neural-network can be trained for advection&diffusion in a 30x30x30 grid and that can be used in a "gpu(opencl/cuda)-->neural-network ---> finite element method --->shadows" way.
There's a couple problems with this as it stands.
The first problem is that, fundamentally, a photon in the Newtonian sense doesn't react or change based on the density of other photons around. So using a density field and trying to light to follow the classic Navier-Stokes style solutions (which is what you're trying to do, based on the density field explanation you gave) would result in incorrect results. It would also, given enough iterations, result in complete entropy over the scene, which is also not what happens to light.
Even if you were to get rid of the density problem, you're still left with the the problem of multiple photons going different directions in the same cell, which is required for global illumination and diffuse lighting.
So, stripping away the problem portions of your idea, what you're left with is a particle system for photons :P
Now, to be fair, sudo-particle systems are currently used for global illumination solutions. This type of thing is called Photon Mapping, but it's only simple to implement a direct lighting solution using it :P

Rendering realistic electric lightning using OpenGl

I'm implementing a simple lightning effect for my 3D game, something like this:
http://www.krazydad.com/bestiary/bestiary_lightning.html
I'm using opengl ES 2.0. I'm pondering what the best looking and most performance efficient way to render this in a 3D environment is though, as the lines making up the electric bolt needs to be looking "solid" when viewed from any angle.
I was thinking to generate two planes for each line segment, in an X cross to create an effect of line thickness. Rendering by disabling depth buffer writes, using some kind off additive blending mode. Texturing each line segment using an electric looking texture with an alpha channel.
I'm a bit worried about the performance hit from generating the necessary triangle lists using this method though, as my game will potentially have a lot of lightning bolts generated at the same time. But as the length and thickness of the lightning bolts will vary a lot, I doubt it would look good to simply use an animated 3D object of an lightning bolt, stretched and pointing to the right location, which was my initial idea.
I was thinking of an alternative approach where I render the lightning bolts using 2D lines between projected end points in a post processing pass. That should work well since the perspective effect in my case is negligible, except then it would be tricky to have the lines appear behind occluding objects.
Any good ideas on the best approach here?
Edit: I found this white paper from nVidia:
http://developer.download.nvidia.com/SDK/10/direct3d/Source/Lightning/doc/lightning_doc.pdf
Which uses an approach with having billboards for each line segment, then apply some filtering to smooth the resulting gaps and overlaps from each billboard.
Seems to yield pretty good visual results, however I am not too happy about the additional filtering pass as the game is for mobile phones where such a step is quite costly. And, as it turns out, billboarding is quite CPU expensive too, due to the additional matrix calculation overhead, which is slow on mobile devices.
I ended up doing something like the nVidia paper suggested, but to prevent the need for a postprocessing step I used different kind of textures for different kind of branching angles, to avoid gaps and overlaps of the segment corners, which turned out quite well. And to avoid the expensive billboard matrix calculation I instead drew the line segments using a more 2D approach, but calculating the depth value manually for each vertex in the segments. This yields both acceptable performance and visuals.
An animated texture, possibly powered by a shader, is likely the fastest way to handle this.
Any geometry generation and rendering will limit the quality of the effect, and may take significantly more CPU time, memory bandwidth and draw calls.
Using a single animated texture on a quad, or a shader creating procedural lightning, will give constant speed and make the effect much simpler to implement. For that, this question may be of interest.

Resources