What makes this prime factorization so efficient? - algorithm

I've been doing some Project Euler problems to learn/practice Lua, and my initial quick-and-dirty way of finding the largest prime factor of nwas pretty bad, so I looked up some code to see how others were doing it (in attempts to understand different factoring methodologies).
I ran across the following (originally in Python - this is my Lua):
function Main()
local n = 102
local i = 2
while i^2 < n do
while n%i==0 do n = n / i end
i = i+1
end
print(n)
end
This factored huge numbers in a very short time - almost immediately. The thing I noticed about the algorithm that I wouldn't have divined:
n = n / i
This seems to be in all of the decent algorithms. I've worked it out on paper with smaller numbers and I can see that it makes the numbers converge, but I don't understand why this operation converges on the largest prime factor.
Can anyone explain?

In this case, i is the prime factor candidate. Consider, n is composed of the following prime numbers:
n = p1^n1 * p2^n2 * p3^n3
When i reaches p1, the statement n = n / i = n / p1 removes one occurrence of p1:
n / p1 = p1^(n-1) * p2^n2 * p3^n3
The inner while iterates as long as there are p1s in n. Thus, after the iteration is complete (when i = i + 1 is executed), all occurrences of p1 have been removed and:
n' = p2^n2 * p3^n3
Let's skip some iterations until i reaches p3. The remaining n is then:
n'' = p3^n3
Here, we find a first mistake in the code. If n3 is 2, then the outer condition does not hold and we remain with p3^2. It should be while i^2 <= n.
As before, the inner while removes all occurences of p3, leaving us with n'''=1. This is the second mistake. It should be while n%i==0 and n>i (not sure about the LUA syntax), which keeps the very last occurence.
So the above code works for all numbers n where the largest prime factor occurrs only once by successivley removing all other factors. For all other numbers, the mentioned corrections should make it work, too.

This eliminates all the known smaller prime factors off n so that n becomes smaller, and sqrt(n) can be reached earlier. This gives the performance boost, as you no longer need to run numbers to square root of original N, say if n is a million, it consists of 2's and 5's, and naive querying against all known primes would need to check against all primes up to 1000, while dividing this by 2 yields 15625, then dividing by 5 yields 1 (by the way, your algorithm will return 1! To fix, if your loop exits with n=1, return i instead.) effectively factoring the big number in two steps. But this is only acceptable with "common" numbers, that have a single high prime denominator and a bunch of smaller ones, but factoring a number n=p*q whiere both p and q are primes and are close won't be able to benefit from this boost.
The n=n/i line works because if you are seeking another prime than i you are currently found as a divisor, the result is also divisible by that prime, by definition of prime numbers. Read here: https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic . Also this only works in your case because your i runs from 2 upward, so that you first divide by primes then their composites. Otherwise, if your number would have a 3 as largest prime, is also divisible by 2 and you'd check against 6 first, you'd spoil the principle of only dividing by primes (say with 72, if you first divide by 6, you'll end up with 2, while the answer is 3) by accidentally dividing by a composite of a largest prime.

This algorithm (when corrected) takes O(max(p2,sqrt(p1))) steps to find the prime factorization of n, where p1 is the largest prime factor and the p2 is the second largest prime factor. In case of a repeated largest prime factor, p1=p2.
Knuth and Trabb Pardo studied the behavior of this function "Analysis of a Simple Factorization Algorithm" Theoretical Computer Science 3 (1976) 321-348. They argued against the usual analysis such as computing the average number of steps taken when factoring integers up to n. Although a few numbers with large prime factors boost the average value, in a cryptographic context what may be more relevant is that some of the percentiles are quite low. For example, 44.7% of numbers satisfy max(sqrt(p1),p2)<n^(1/3), and 1.2% of numbers satisfy max(sqrt(p1),p2)<n^(1/5).
A simple improvement is to test the remainder for primality after you find a new prime factor. It is very fast to test whether a number is prime. This reduces the time to O(p2) by avoiding the trial divisions between p2 and sqrt(p1). The median size of the second largest prime is about n^0.21. This means it is feasible to factor many 45-digit numbers rapidly (in a few processor-seconds) using this improvement on trial division. By comparison, Pollard-rho factorization on a product of two primes takes O(sqrt(p2)) steps on average, according to one model.

Related

Product of Prime factors of a number

Given a number X , what would be the most efficient way to calculate the product of the prime factors of that number?
Is there a way to do this without actual factorisation ?
Note-The product of prime factors is needed (all to the power unity).
This answer addresses the second half of your question - i.e. is it possible to compute the product of the prime factors without factorising the number. This answer shows that it is possible to do, and shows a method that is more efficient than a naive method of factorisation. However, as noted in the comments, this proposed method is still not as efficient as factorising the number using a more advanced method.
Let k be the cube root of the number.
Check the number for all primes of size k or smaller and divide out any we find.
We now know that the resulting number is a product of primes larger than k, so it must either be 1, a single prime, or a product of 2 primes. (It cannot have more than 2 primes because k is the cube root of the number.)
We can detect whether it is a product of 2 primes by simply testing whether the number is a perfect square.
The results of this allow us to calculate the result in O(n^(1/3) / log(n)) assuming we have precomputed a list of primes.
EXAMPLE 1
Suppose we have the number 9409.
The cube root is 21.1 so we first check for divisibility by primes under 21.
None of them find a result so we compute the sqrt and find 9409== 97**2.
This means that the answer is 97.
EXAMPLE 2
Suppose we have the number 9797.
The cube root is 21.4 so we check for divisibility by primes under 21.
None of them find a result so we compute the sqrt and find 9797 is not a perfect square.
Therefore we conclude the answer is 9797. (Note that we have not determined the factorisation to work out this answer. In fact the factorisation is 97*101.)
Maple and Mathematica both calculate the squarefree kernel of a number by factoring and then multiplying back together just one copy of each prime (see https://oeis.org/A007947) so I doubt a better way is known.
Another approach is to start with the number itself. It is obviously a product of all its prime factors. You want to remove all the factors with power more than one. Hence, you don't mind if the number has a factor 2, but you do mind if it has a factor 4 (2^2). We can solve the problem by removing the extra factors.
Simple pseudocode:
method removeHigherPrimePowers(number)
temp <- number
primes <- [2, 3, 5, 7 ...]
for each p in primes
factor <- p * p // factor = 4, 9, 25, ...
while (temp MOD factor = 0)
temp <- temp / p // Remove extra factor of p
endwhile
endfor
return temp
endmethod
The number is being factorised, but the factorising is somewhat hidden. All those MOD statements do the same work. All that is being saved is a certain amount of accounting, keeping track of the factors found so far and multiplying them all together at the end.
As Peter says, you can test all primes up to the cube root, and then check if the number remaining is square.

Generating prime numbers in poly-time

I am struggling to see how we can generate a list of J smallest primes in poly-time J, based on the fact that p'j is less than or equal to 2j * ln(j) for j > 2, where j indicates the j-th consecutive prime number. For instance, p1 = 2 for j=1, p2 = 3 for j = 2. p3 = 5 for j = 3, p4 = 7 for j = 4, p5 = 11 for j = 5, etc etc...
I just don't see how I can make use of this fact above. Any time I want to generate a prime, say the 7th, I will check by plugging in: 2(7)*ln(7) = 27.2427... But this is completely useless, as it turns out. This number is way bigger than the last generated prime in my array, which is logical. Hence I still have to resort to either brute force by checking the last prime+1 for mod0 with each of the primes in my array. The other option is to resort to already existing algorithms that reduce the time to polynomial time.
Can you show me how I can make use of that fact: p'j <= 2j*ln(j)? Thanks.
To show that I can generate a list of the first J primes in time polynomial in J, I need to work out the cost of however I am generating the list.
If I am generating the list by checking numbers one after the other and discarding non-primes, there are two parts to the cost of generating the list - how long it takes to check each number, and how many numbers I need to check.
If primes were vanishingly rare, then I couldn't afford to check every number from 2 on, because simply listing all those numbers would be too expensive. But if I know that the Jth prime is no larger than 2j*ln(j) I can at least list them all in polynomial time.
In fact, if I have to generate J primes, and I start by taking the first 2J*ln(J) numbers, and I decide to check each number for being prime by test dividing it by every prime found so far, I never have more than J primes on hand at any time, so I cannot end up doing more than 2J^2*ln(J) trial divisions. This won't win me any prize for efficiency or clever algorithms, or even sharp bounds for computational cost, but it is no worse than polynomial.
Maybe what's tripping you up is that you're thinking that the upper bound gives you a method to directly generate the jth prime, or the first j primes. It doesn't -- it just gives you a size limit on the set of numbers that you need to check with some method you already had lying around, e.g. trial division.
If I give you a list of the n-1 numbers 2, 3, ..., n and ask you to find all the primes in this list, you can do this using trial division in O(n^2) time:
For each pair of numbers x and y, just check whether x divides evenly into y, and cross y out if it does. This step is O(n^2), and requires O(n) space for keeping track of which numbers have been crossed out.
List out all the numbers that were not crossed out. This step is O(n).
Note that this finds all primes <= n in O(n^2) for any positive value of n. So in particular, if we are told some value of j, it will work for n = RoundDown(2j log j).
With n = RoundDown(2j log j), this algorithm runs in time O((2j log j)^2) = O(j^2 log^2 j), which is polynomial in j, and it must succeed in finding at least the first j primes, since the bound tells us that the jth prime can be at most RoundDown(2j log j), and we have included every number up to and including that one in our input list. (It may find even more primes, but we can discard them in linear time if need be.)
Exercise: Think about why we are allowed to round down here.

Create a random permutation of 1..N in constant space

I am looking to enumerate a random permutation of the numbers 1..N in fixed space. This means that I cannot store all numbers in a list. The reason for that is that N can be very large, more than available memory. I still want to be able to walk through such a permutation of numbers one at a time, visiting each number exactly once.
I know this can be done for certain N: Many random number generators cycle through their whole state space randomly, but entirely. A good random number generator with state size of 32 bit will emit a permutation of the numbers 0..(2^32)-1. Every number exactly once.
I want to get to pick N to be any number at all and not be constrained to powers of 2 for example. Is there an algorithm for this?
The easiest way is probably to just create a full-range PRNG for a larger range than you care about, and when it generates a number larger than you want, just throw it away and get the next one.
Another possibility that's pretty much a variation of the same would be to use a linear feedback shift register (LFSR) to generate the numbers in the first place. This has a couple of advantages: first of all, an LFSR is probably a bit faster than most PRNGs. Second, it is (I believe) a bit easier to engineer an LFSR that produces numbers close to the range you want, and still be sure it cycles through the numbers in its range in (pseudo)random order, without any repetitions.
Without spending a lot of time on the details, the math behind LFSRs has been studied quite thoroughly. Producing one that runs through all the numbers in its range without repetition simply requires choosing a set of "taps" that correspond to an irreducible polynomial. If you don't want to search for that yourself, it's pretty easy to find tables of known ones for almost any reasonable size (e.g., doing a quick look, the wikipedia article lists them for size up to 19 bits).
If memory serves, there's at least one irreducible polynomial of ever possible bit size. That translates to the fact that in the worst case you can create a generator that has roughly twice the range you need, so on average you're throwing away (roughly) every other number you generate. Given the speed an LFSR, I'd guess you can do that and still maintain quite acceptable speed.
One way to do it would be
Find a prime p larger than N, preferably not much larger.
Find a primitive root of unity g modulo p, that is, a number 1 < g < p such that g^k ≡ 1 (mod p) if and only if k is a multiple of p-1.
Go through g^k (mod p) for k = 1, 2, ..., ignoring the values that are larger than N.
For every prime p, there are φ(p-1) primitive roots of unity, so it works. However, it may take a while to find one. Finding a suitable prime is much easier in general.
For finding a primitive root, I know nothing substantially better than trial and error, but one can increase the probability of a fast find by choosing the prime p appropriately.
Since the number of primitive roots is φ(p-1), if one randomly chooses r in the range from 1 to p-1, the expected number of tries until one finds a primitive root is (p-1)/φ(p-1), hence one should choose p so that φ(p-1) is relatively large, that means that p-1 must have few distinct prime divisors (and preferably only large ones, except for the factor 2).
Instead of randomly choosing, one can also try in sequence whether 2, 3, 5, 6, 7, 10, ... is a primitive root, of course skipping perfect powers (or not, they are in general quickly eliminated), that should not affect the number of tries needed greatly.
So it boils down to checking whether a number x is a primitive root modulo p. If p-1 = q^a * r^b * s^c * ... with distinct primes q, r, s, ..., x is a primitive root if and only if
x^((p-1)/q) % p != 1
x^((p-1)/r) % p != 1
x^((p-1)/s) % p != 1
...
thus one needs a decent modular exponentiation (exponentiation by repeated squaring lends itself well for that, reducing by the modulus on each step). And a good method to find the prime factor decomposition of p-1. Note, however, that even naive trial division would be only O(√p), while the generation of the permutation is Θ(p), so it's not paramount that the factorisation is optimal.
Another way to do this is with a block cipher; see this blog post for details.
The blog posts links to the paper Ciphers with Arbitrary Finite Domains which contains a bunch of solutions.
Consider the prime 3. To fully express all possible outputs, think of it this way...
bias + step mod prime
The bias is just an offset bias. step is an accumulator (if it's 1 for example, it would just be 0, 1, 2 in sequence, while 2 would result in 0, 2, 4) and prime is the prime number we want to generate the permutations against.
For example. A simple sequence of 0, 1, 2 would be...
0 + 0 mod 3 = 0
0 + 1 mod 3 = 1
0 + 2 mod 3 = 2
Modifying a couple of those variables for a second, we'll take bias of 1 and step of 2 (just for illustration)...
1 + 2 mod 3 = 0
1 + 4 mod 3 = 2
1 + 6 mod 3 = 1
You'll note that we produced an entirely different sequence. No number within the set repeats itself and all numbers are represented (it's bijective). Each unique combination of offset and bias will result in one of prime! possible permutations of the set. In the case of a prime of 3 you'll see that there are 6 different possible permuations:
0,1,2
0,2,1
1,0,2
1,2,0
2,0,1
2,1,0
If you do the math on the variables above you'll not that it results in the same information requirements...
1/3! = 1/6 = 1.66..
... vs...
1/3 (bias) * 1/2 (step) => 1/6 = 1.66..
Restrictions are simple, bias must be within 0..P-1 and step must be within 1..P-1 (I have been functionally just been using 0..P-2 and adding 1 on arithmetic in my own work). Other than that, it works with all prime numbers no matter how large and will permutate all possible unique sets of them without the need for memory beyond a couple of integers (each technically requiring slightly less bits than the prime itself).
Note carefully that this generator is not meant to be used to generate sets that are not prime in number. It's entirely possible to do so, but not recommended for security sensitive purposes as it would introduce a timing attack.
That said, if you would like to use this method to generate a set sequence that is not a prime, you have two choices.
First (and the simplest/cheapest), pick the prime number just larger than the set size you're looking for and have your generator simply discard anything that doesn't belong. Once more, danger, this is a very bad idea if this is a security sensitive application.
Second (by far the most complicated and costly), you can recognize that all numbers are composed of prime numbers and create multiple generators that then produce a product for each element in the set. In other words, an n of 6 would involve all possible prime generators that could match 6 (in this case, 2 and 3), multiplied in sequence. This is both expensive (although mathematically more elegant) as well as also introducing a timing attack so it's even less recommended.
Lastly, if you need a generator for bias and or step... why don't you use another of the same family :). Suddenly you're extremely close to creating true simple-random-samples (which is not easy usually).
The fundamental weakness of LCGs (x=(x*m+c)%b style generators) is useful here.
If the generator is properly formed then x%f is also a repeating sequence of all values lower than f (provided f if a factor of b).
Since bis usually a power of 2 this means that you can take a 32-bit generator and reduce it to an n-bit generator by masking off the top bits and it will have the same full-range property.
This means that you can reduce the number of discard values to be fewer than N by choosing an appropriate mask.
Unfortunately LCG Is a poor generator for exactly the same reason as given above.
Also, this has exactly the same weakness as I noted in a comment on #JerryCoffin's answer. It will always produce the same sequence and the only thing the seed controls is where to start in that sequence.
Here's some SageMath code that should generate a random permutation the way Daniel Fischer suggested:
def random_safe_prime(lbound):
while True:
q = random_prime(lbound, lbound=lbound // 2)
p = 2 * q + 1
if is_prime(p):
return p, q
def random_permutation(n):
p, q = random_safe_prime(n + 2)
while True:
r = randint(2, p - 1)
if pow(r, 2, p) != 1 and pow(r, q, p) != 1:
i = 1
while True:
x = pow(r, i, p)
if x == 1:
return
if 0 <= x - 2 < n:
yield x - 2
i += 1

Programming problem - Game of Blocks

maybe you would have an idea on how to solve the following problem.
John decided to buy his son Johnny some mathematical toys. One of his most favorite toy is blocks of different colors. John has decided to buy blocks of C different colors. For each color he will buy googol (10^100) blocks. All blocks of same color are of same length. But blocks of different color may vary in length.
Jhonny has decided to use these blocks to make a large 1 x n block. He wonders how many ways he can do this. Two ways are considered different if there is a position where the color differs. The example shows a red block of size 5, blue block of size 3 and green block of size 3. It shows there are 12 ways of making a large block of length 11.
Each test case starts with an integer 1 ≤ C ≤ 100. Next line consists c integers. ith integer 1 ≤ leni ≤ 750 denotes length of ith color. Next line is positive integer N ≤ 10^15.
This problem should be solved in 20 seconds for T <= 25 test cases. The answer should be calculated MOD 100000007 (prime number).
It can be deduced to matrix exponentiation problem, which can be solved relatively efficiently in O(N^2.376*log(max(leni))) using Coppersmith-Winograd algorithm and fast exponentiation. But it seems that a more efficient algorithm is required, as Coppersmith-Winograd implies a large constant factor. Do you have any other ideas? It can possibly be a Number Theory or Divide and Conquer problem
Firstly note the number of blocks of each colour you have is a complete red herring, since 10^100 > N always. So the number of blocks of each colour is practically infinite.
Now notice that at each position, p (if there is a valid configuration, that leaves no spaces, etc.) There must block of a color, c. There are len[c] ways for this block to lie, so that it still lies over this position, p.
My idea is to try all possible colors and positions at a fixed position (N/2 since it halves the range), and then for each case, there are b cells before this fixed coloured block and a after this fixed colour block. So if we define a function ways(i) that returns the number of ways to tile i cells (with ways(0)=1). Then the number of ways to tile a number of cells with a fixed colour block at a position is ways(b)*ways(a). Adding up all possible configurations yields the answer for ways(i).
Now I chose the fixed position to be N/2 since that halves the range and you can halve a range at most ceil(log(N)) times. Now since you are moving a block about N/2 you will have to calculate from N/2-750 to N/2-750, where 750 is the max length a block can have. So you will have to calculate about 750*ceil(log(N)) (a bit more because of the variance) lengths to get the final answer.
So in order to get good performance you have to through in memoisation, since this inherently a recursive algorithm.
So using Python(since I was lazy and didn't want to write a big number class):
T = int(raw_input())
for case in xrange(T):
#read in the data
C = int(raw_input())
lengths = map(int, raw_input().split())
minlength = min(lengths)
n = int(raw_input())
#setup memoisation, note all lengths less than the minimum length are
#set to 0 as the algorithm needs this
memoise = {}
memoise[0] = 1
for length in xrange(1, minlength):
memoise[length] = 0
def solve(n):
global memoise
if n in memoise:
return memoise[n]
ans = 0
for i in xrange(C):
if lengths[i] > n:
continue
if lengths[i] == n:
ans += 1
ans %= 100000007
continue
for j in xrange(0, lengths[i]):
b = n/2-lengths[i]+j
a = n-(n/2+j)
if b < 0 or a < 0:
continue
ans += solve(b)*solve(a)
ans %= 100000007
memoise[n] = ans
return memoise[n]
solve(n)
print "Case %d: %d" % (case+1, memoise[n])
Note I haven't exhaustively tested this, but I'm quite sure it will meet the 20 second time limit, if you translated this algorithm to C++ or somesuch.
EDIT: Running a test with N = 10^15 and a block with length 750 I get that memoise contains about 60000 elements which means non-lookup bit of solve(n) is called about the same number of time.
A word of caution: In the case c=2, len1=1, len2=2, the answer will be the N'th Fibonacci number, and the Fibonacci numbers grow (approximately) exponentially with a growth factor of the golden ratio, phi ~ 1.61803399. For the
huge value N=10^15, the answer will be about phi^(10^15), an enormous number. The answer will have storage
requirements on the order of (ln(phi^(10^15))/ln(2)) / (8 * 2^40) ~ 79 terabytes. Since you can't even access 79
terabytes in 20 seconds, it's unlikely you can meet the speed requirements in this special case.
Your best hope occurs when C is not too large, and leni is large for all i. In such cases, the answer will
still grow exponentially with N, but the growth factor may be much smaller.
I recommend that you first construct the integer matrix M which will compute the (i+1,..., i+k)
terms in your sequence based on the (i, ..., i+k-1) terms. (only row k+1 of this matrix is interesting).
Compute the first k entries "by hand", then calculate M^(10^15) based on the repeated squaring
trick, and apply it to terms (0...k-1).
The (integer) entries of the matrix will grow exponentially, perhaps too fast to handle. If this is the case, do the
very same calculation, but modulo p, for several moderate-sized prime numbers p. This will allow you to obtain
your answer modulo p, for various p, without using a matrix of bigints. After using enough primes so that you know their product
is larger than your answer, you can use the so-called "Chinese remainder theorem" to recover
your answer from your mod-p answers.
I'd like to build on the earlier #JPvdMerwe solution with some improvements. In his answer, #JPvdMerwe uses a Dynamic Programming / memoisation approach, which I agree is the way to go on this problem. Dividing the problem recursively into two smaller problems and remembering previously computed results is quite efficient.
I'd like to suggest several improvements that would speed things up even further:
Instead of going over all the ways the block in the middle can be positioned, you only need to go over the first half, and multiply the solution by 2. This is because the second half of the cases are symmetrical. For odd-length blocks you would still need to take the centered position as a seperate case.
In general, iterative implementations can be several magnitudes faster than recursive ones. This is because a recursive implementation incurs bookkeeping overhead for each function call. It can be a challenge to convert a solution to its iterative cousin, but it is usually possible. The #JPvdMerwe solution can be made iterative by using a stack to store intermediate values.
Modulo operations are expensive, as are multiplications to a lesser extent. The number of multiplications and modulos can be decreased by approximately a factor C=100 by switching the color-loop with the position-loop. This allows you to add the return values of several calls to solve() before doing a multiplication and modulo.
A good way to test the performance of a solution is with a pathological case. The following could be especially daunting: length 10^15, C=100, prime block sizes.
Hope this helps.
In the above answer
ans += 1
ans %= 100000007
could be much faster without general modulo :
ans += 1
if ans == 100000007 then ans = 0
Please see TopCoder thread for a solution. No one was close enough to find the answer in this thread.

Prime factor of 300 000 000 000?

I need to find out the prime factors of over 300 billion. I have a function that is adding to the list of them...very slowly! It has been running for about an hour now and i think its got a fair distance to go still. Am i doing it completly wrong or is this expected?
Edit: Im trying to find the largest prime factor of the number 600851475143.
Edit:
Result:
{
List<Int64> ListOfPrimeFactors = new List<Int64>();
Int64 Number = 600851475143;
Int64 DividingNumber = 2;
while (DividingNumber < Number / DividingNumber)
{
if (Number % DividingNumber == 0)
{
ListOfPrimeFactors.Add(DividingNumber);
Number = Number/DividingNumber;
}
else
DividingNumber++;
}
ListOfPrimeFactors.Add(Number);
listBox1.DataSource = ListOfPrimeFactors;
}
}
Are you remembering to divide the number that you're factorizing by each factor as you find them?
Say, for example, you find that 2 is a factor. You can add that to your list of factors, but then you divide the number that you're trying to factorise by that value.
Now you're only searching for the factors of 150 billion. Each time around you should start from the factor you just found. So if 2 was a factor, test 2 again. If the next factor you find is 3, there's no point testing from 2 again.
And so on...
Finding prime factors is difficult using brute force, which sounds like the technique you are using.
Here are a few tips to speed it up somewhat:
Start low, not high
Don't bother testing each potential factor to see whether it is prime--just test LIKELY prime numbers (odd numbers that end in 1,3,7 or 9)
Don't bother testing even numbers (all divisible by 2), or odds that end in 5 (all divisible by 5). Of course, don't actually skip 2 and 5!!
When you find a prime factor, make sure to divide it out--don't continue to use your massive original number. See my example below.
If you find a factor, make sure to test it AGAIN to see if it is in there multiple times. Your number could be 2x2x3x7x7x7x31 or something like that.
Stop when you reach >= sqrt(remaining large number)
Edit: A simple example:
You are finding the factors of 275.
Test 275 for divisibility by 2. Does 275/2 = int(275/2)? No. Failed.
Test 275 for divisibility by 3. Failed.
Skip 4!
Test 275 for divisibility by 5. YES! 275/5 = 55. So your NEW test number is now 55.
Test 55 for divisibility by 5. YES! 55/5 = 11. So your NEW test number is now 11.
BUT 5 > sqrt (11), so 11 is prime, and you can stop!
So 275 = 5 * 5 * 11
Make more sense?
Factoring big numbers is a hard problem. So hard, in fact, that we rely on it to keep RSA secure. But take a look at the wikipedia page for some pointers to algorithms that can help. But for a number that small, it really shouldn't be taking that long, unless you are re-doing work over and over again that you don't have to somewhere.
For the brute-force solution, remember that you can do some mini-optimizations:
Check 2 specially, then only check odd numbers.
You only ever need to check up to the square-root of the number (if you find no factors by then, then the number is prime).
Once you find a factor, don't use the original number to find the next factor, divide it by the found factor, and search the new smaller number.
When you find a factor, divide it through as many times as you can. After that, you never need to check that number, or any smaller numbers again.
If you do all the above, each new factor you find will be prime, since any smaller factors have already been removed.
Here is an XSLT solution!
This XSLT transformation takes 0.109 sec.
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:saxon="http://saxon.sf.net/"
xmlns:f="http://fxsl.sf.net/"
exclude-result-prefixes="xs saxon f"
>
<xsl:import href="../f/func-Primes.xsl"/>
<xsl:output method="text"/>
<xsl:template name="initial" match="/*">
<xsl:sequence select="f:maxPrimeFactor(600851475143)"/>
</xsl:template>
<xsl:function name="f:maxPrimeFactor" as="xs:integer">
<xsl:param name="pNum" as="xs:integer"/>
<xsl:sequence select=
"if(f:isPrime($pNum))
then $pNum
else
for $vEnd in xs:integer(floor(f:sqrt($pNum, 0.1E0))),
$vDiv1 in (2 to $vEnd)[$pNum mod . = 0][1],
$vDiv2 in $pNum idiv $vDiv1
return
max((f:maxPrimeFactor($vDiv1),f:maxPrimeFactor($vDiv2)))
"/>
</xsl:function>
</xsl:stylesheet>
This transformation produces the correct result (the maximum prime factor of 600851475143) in just 0.109 sec.:
6857
The transformation uses the f:sqrt() and f:isPrime() defined in FXSL 2.0 -- a library for functional programming in XSLT. FXSL is itself written entirely in XSLT.
f:isPrime() uses Fermat's little theorem so that it is efficient to determine primeality.
One last thing nobody has mentioned, perhaps because it seems obvious. Every time you find a factor and divide it out, keep trying the factor until it fails.
64 only has one prime factor, 2. You will find that out pretty trivially if you keep dividing out the 2 until you can't anymore.
$ time factor 300000000000 > /dev/null
real 0m0.027s
user 0m0.000s
sys 0m0.001s
You're doing something wrong if it's taking an hour. You might even have an infinite loop somewhere - make sure you're not using 32-bit ints.
The key to understanding why the square root is important, consider that each factor of n below the square root of n has a corresponding factor above it. To see this, consider that if x is factor of n, then x/n = m which means that x/m = n, hence m is also a factor.
I wouldn't expect it to take very long at all - that's not a particularly large number.
Could you give us an example number which is causing your code difficulties?
Here's one site where you can get answers: Factoris - Online factorization service. It can do really big numbers, but it also can factorize algebraic expressions.
The fastest algorithms are sieve algorithms, and are based on arcane areas of discrete mathematics (over my head at least), complicated to implement and test.
The simplest algorithm for factoring is probably (as others have said) the Sieve of Eratosthenes. Things to remember about using this to factor a number N:
general idea: you're checking an increasing sequence of possible integer factors x to see if they evenly divide your candidate number N (in C/Java/Javascript check whether N % x == 0) in which case N is not prime.
you just need to go up to sqrt(N), but don't actually calculate sqrt(N): loop as long as your test factor x passes the test x*x<N
if you have the memory to save a bunch of previous primes, use only those as the test factors (and don't save them if prime P fails the test P*P > N_max since you'll never use them again
Even if you don't save the previous primes, for possible factors x just check 2 and all the odd numbers. Yes, it will take longer, but not that much longer for reasonable sized numbers. The prime-counting function and its approximations can tell you what fraction of numbers are prime; this fraction decreases very slowly. Even for 264 = approx 1.8x1019, roughly one out of every 43 numbers is prime (= one out of every 21.5 odd numbers is prime). For factors of numbers less than 264, those factors x are less than 232 where about one out of every 20 numbers is prime = one out of every 10 odd numbers is prime. So you'll have to test 10 times as many numbers, but the loop should be a bit faster and you don't have to mess around with storing all those primes.
There are also some older and simpler sieve algorithms that a little bit more complex but still fairly understandable. See Dixon's, Shanks' and Fermat's factoring algorithms. I read an article about one of these once, can't remember which one, but they're all fairly straightforward and use algebraic properties of the differences of squares.
If you're just testing whether a number N is prime, and you don't actually care about the factors themselves, use a probabilistic primality test. Miller-Rabin is the most standard one, I think.
I spent some time on this since it just sucked me in. I won't paste the code here just yet. Instead see this factors.py gist if you're curious.
Mind you, I didn't know anything about factoring (still don't) before reading this question. It's just a Python implementation of BradC's answer above.
On my MacBook it takes 0.002 secs to factor the number mentioned in the question (600851475143).
There must obviously be much, much faster ways of doing this. My program takes 19 secs to compute the factors of 6008514751431331. But the Factoris service just spits out the answer in no-time.
The specific number is 300425737571? It trivially factors into 131 * 151 * 673 * 22567.
I don't see what all the fuss is...
Here's some Haskell goodness for you guys :)
primeFactors n = factor n primes
where factor n (p:ps) | p*p > n = [n]
| n `mod` p /= 0 = factor n ps
| otherwise = p : factor (n `div` p) (p:ps)
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
Took it about .5 seconds to find them, so I'd call that a success.
You could use the sieve of Eratosthenes to find the primes and see if your number is divisible by those you find.
You only need to check it's remainder mod(n) where n is a prime <= sqrt(N) where N is the number you are trying to factor. It really shouldn't take over an hour, even on a really slow computer or a TI-85.
Your algorithm must be FUBAR. This only takes about 0.1s on my 1.6 GHz netbook in Python. Python isn't known for its blazing speed. It does, however, have arbitrary precision integers...
import math
import operator
def factor(n):
"""Given the number n, to factor yield a it's prime factors.
factor(1) yields one result: 1. Negative n is not supported."""
M = math.sqrt(n) # no factors larger than M
p = 2 # candidate factor to test
while p <= M: # keep looking until pointless
d, m = divmod(n, p)
if m == 0:
yield p # p is a prime factor
n = d # divide n accordingly
M = math.sqrt(n) # and adjust M
else:
p += 1 # p didn't pan out, try the next candidate
yield n # whatever's left in n is a prime factor
def test_factor(n):
f = factor(n)
n2 = reduce(operator.mul, f)
assert n2 == n
def example():
n = 600851475143
f = list(factor(n))
assert reduce(operator.mul, f) == n
print n, "=", "*".join(str(p) for p in f)
example()
# output:
# 600851475143 = 71*839*1471*6857
(This code seems to work in defiance of the fact that I don't know enough about number theory to fill a thimble.)
Just to expand/improve slightly on the "only test odd numbers that don't end in 5" suggestions...
All primes greater than 3 are either one more or one less than a multiple of 6 (6x + 1 or 6x - 1 for integer values of x).
It shouldn't take that long, even with a relatively naive brute force. For that specific number, I can factor it in my head in about one second.
You say you don't want solutions(?), but here's your "subtle" hint. The only prime factors of the number are the lowest three primes.
Semi-prime numbers of that size are used for encryption, so I am curious as to what you exactly want to use them for.
That aside, there currently are not good ways to find the prime factorization of large numbers in a relatively small amount of time.

Resources