vector accessing non zero elements but output as zero - c++11

I' did this program what suppose save pairs of string ,int on one vector and print the strings of the maximum number on vector
but when i try to find this strings don't appears nothing so I try print all values of int's on vector and although was finding the maximum of 10 all values in the vector was printing as 0. Someone can explain was it occurred and how I can access the values , please.
#include <iostream>
#include <utility>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
typedef vector<pair<string,int>> vsi;
bool paircmp(const pair<string,int>& firste,const pair<string,int>& seconde );
int main(int argc, char const *argv[]) {
vsi v(10);
string s;
int n,t;
cin>>t;
for (size_t i = 0;i < t;i++) {
for (size_t j = 0; j < 10; j++) {
cin>>s>>n;
v.push_back(make_pair(s,n));
}
sort(v.begin(),v.end(),paircmp);
int ma=v[v.size()-1].second;
cout<<ma<<endl;
for (size_t j = 0; j < 10; j++) {
cout << v.at(j).second <<endl;
if(v[j].second == ma)
cout<<v[j].first<<endl;
}
}
return 0;
}
bool paircmp(const pair<string,int>& firste,const pair<string,int>& seconde ){
return firste.second < seconde.second;
}

This line
vsi v(10);
creates you a std::vector filled with 10 default-constructed std::pair<std::string, int>s. That is, an empty string and zero.
You then push_back other values to your vector but they happen to be sorted after those ten initial elements, probably because they all have positive ints in them.
Therefore, printing the first member of the first ten elements prints ten empty strings.
This is all I can guess from what you have provided. I don't know what you are trying to accomplish with this code.
Try something like
for (const auto& item : v)
{
std::cout << "{ first: '" << item.first << "', "
<< "second: " << item.second << " }\n";
}
to print all elements of the vector v.

Related

How to access map in vector for building trie

#include <string>
#include <iostream>
#include <vector>
#include <map>
using std::map;
using std::vector;
using std::string;
typedef map<char, int> edges;
typedef vector<edges> trie;
trie build_trie(vector<string> & patterns) {
trie t;
// write your code here
for(int j=0;j<patterns.size();j++){
//current NOde = root;
int currNI=0;
for(int i=0;i<patterns[j].size();i++){
char currS = patterns[j][i];
auto it = t[currNI].begin();
//auto mit = it->edges.begin();
if(t[currNI].edges.find(currS)!=t[currNI].edges.end()){
currNI = t[currNI].edges.find(currS)->second;
}else{
t.push_back(edges.insert(currS,t.size()));
t[currNI].edges.insert(currS,t.size());
currNI = t.size();
}
}
}
return t;
}
int main() {
size_t n;
std::cin >> n;
vector<string> patterns;
for (size_t i = 0; i < n; i++) {
string s;
std::cin >> s;
patterns.push_back(s);
}
trie t = build_trie(patterns);
for (size_t i = 0; i < t.size(); ++i) {
for (const auto & j : t[i]) {
std::cout << i << "->" << j.second << ":" << j.first << "\n";
}
}
return 0;
}
Hi I was trying to build trie using vector and map but I am not able to access elements of map.
I have also added image of pseudo code for better clarity.
I have used iterators and many other tricks that are already present on stackoverflow and on other platform but somehow I am not able to access what I want.
Thank You
To answer your questions: in your code, edges is a type, not an object.
t[currNI] is of type edges, thus is a map<char, int>.
You should try t[currNI].find(currS) and t[currNI].end() directly.
NB: after you fix this, there are still other errors in your code.

How does std::distance() work?

I am very much new to C++11 and learning about the STL Libraries. I have written a code which is like this,
#include <bits/stdc++.h>
#include <vector>
#include <algorithm>
#include <iterator>
using namespace std;
void Print( const vector<int> &arrays )
{
for ( int x : arrays ) cout << x << ' ';
}
int main() {
int citys, cityPairs, fv, lv, w;
vector <int> fvarr;
vector <int> lvarr;
vector <int> warr;
vector <int> warr_temp;
vector <int> disjoint_pairs;
scanf("%d%d", &citys, &cityPairs);
for(int nr = 0; nr < cityPairs; nr++){
scanf("%d%d%d", &fv, &lv, &w);
fvarr.push_back(fv);
lvarr.push_back(lv);
warr.push_back(w);
warr_temp = warr;
}
for (int j = 0; j < citys; j++){
auto result = min_element(begin(warr_temp), end(warr_temp));
auto pos_temp = distance(begin(warr_temp), result);
cout << pos_temp;
auto pos = distance(begin(warr), result);
cout << pos;
disjoint_pairs.push_back(fvarr[pos]);
disjoint_pairs.push_back(lvarr[pos]);
warr_temp.erase(warr_temp.begin() + pos_temp);
}
// Print(disjoint_pairs);
}
What i am doing in this code is i am taking 3 vectors and 1 vector to copy the last one warr_temp = warr;. Then i am checking the minimum value in vectorwarr_temp and storing it's index in pos_temp, next i am storing that min value's index from vector warr into pos.
Now the problem is the first cout which is pos_temp giving me correct values but the second one which is pos giving me the output something like this,
-61-62-63-64
why is this happening? what are these numbers? are they pointers? I know that distance is a template so what is the right way to implement this?
If anyone can clear my doubts that would be very helpfull.
Sorry if stupid question!!!
The root cause of the problem is auto pos = distance(begin(warr), result); line. It gives unpredictable results because result and begin(warr) belong to different vectors.
result is iterator pointing to warr_temp element, it cannot be mixed with iterators pointing to warr elements like begin(warr).
To get element position in warr vector use std::find(begin(warr), end(warr), *result) instead:
auto warr_res = std::find(begin(warr), end(warr), *result);
auto pos = distance(begin(warr), warr_res);

Why does the left shift on a unsigned int happens from the 16th bit?

I am trying to put the values from the vector into the int.
Given vector :'1','0','1','1','1','0','1','1','1','0','1','1','1','0','1','1' :
Expected output (binary representation for the variable out):
00000000000000001011101110111011.
However, I am getting the following output:
10111011101110110000000000000000
Notice: the insertion begun at the 16bit from right end instead of beginning from the leftmost bit
#include<vector>
#include<iostream>
int main() {
std::vector<unsigned char> test = {'1','0','1','1','1','0','1','1','1','0','1','1','1','0','1','1'};
std::vector<unsigned int> out(1);
int j = 0;
for (int i =0; i < test.size(); i++) {
out[j] = out[j] << 1;
if (test[i] == '1') {out[j] |=0x1;}
}
j++;
for (int p = 0; p < j; p++) {
for (int k = 0; k<32; k++ ) {
std::cout << !!((out[p]<<k)&0x8000);
}
std::cout << std::endl;
}
std::cout << "Size Of:" << sizeof(int);
return 0;
}
The reason why this happens is that you are using a wrong constant for the mask: 0x8000 has its 16-bit set, while you probably meant to use 0x80000000 with the 32-nd bit set. To avoid mistakes like that it's best to construct masks with shifts, for example
(1 << 31)
This expression is evaluated at compile time, so the result is the same as if you computed the constant yourself.
Note that both 0x8000 and 0x80000000 constants are system-dependent. Moreover, 0x80000000 assumes 32-bit int, which is not guaranteed.
A better approach would be shifting the number right instead of left, and masking with 1.
The block of code creating out[j] works just fine.
Your problem is in the output block, due to use of 0x8000. Whenever k >= 16, the low 16 bits will be zero, guaranteeing that 0x8000 is zero.
Your code seems overly complicated to me. Here's my version of a C program that transforms a string of 1's and 0's into an int and one going from int to string.
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv);
int main (int argc, char **argv) {
char str [] = "1010101010101010";
int x;
int out;
for (x=0;x<16;x++) {
if (str[x] == '1') {
out |= (1 << x);
}
}
printf("%d", out) ;
}
and
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv);
int main (int argc, char **argv) {
char str [] = "1010101010101010";
int in = 21845;
char out[17] = {0};
for (x=0;x<16;x++) {
if (in & (1<<x)) {
out[x] = '1';
}
else {
out[x] = '0';
}
}
printf("%s", out) ;
}

Save state of c++11 random generator without using iostream

What is the best way to store the state of a C++11 random generator without using the iostream interface. I would like to do like the first alternative listed here[1]? However, this approach requires that the object contains the PRNG state and only the PRNG state. In partucular, it fails if the implementation uses the pimpl pattern(at least this is likely to crash the application when reloading the state instead of loading it with bad data), or there are more state variables associated with the PRNG object that does not have to do with the generated sequence.
The size of the object is implementation defined:
g++ (tdm64-1) 4.7.1 gives sizeof(std::mt19937)==2504 but
Ideone http://ideone.com/41vY5j gives 2500
I am missing member functions like
size_t state_size();
const size_t* get_state() const;
void set_state(size_t n_elems,const size_t* state_new);
(1) shall return the size of the random generator state array
(2) shall return a pointer to the state array. The pointer is managed by the PRNG.
(3) shall copy the buffer std::min(n_elems,state_size()) from the buffer pointed to by state_new
This kind of interface allows more flexible state manipulation. Or are there any PRNG:s whose state cannot be represented as an array of unsigned integers?
[1]Faster alternative than using streams to save boost random generator state
I've written a simple (-ish) test for the approach I mentioned in the comments of the OP. It's obviously not battle-tested, but the idea is represented - you should be able to take it from here.
Since the amount of bytes read is so much smaller than if one were to serialize the entire engine, the performance of the two approaches might actually be comparable. Testing this hypothesis, as well as further optimization, are left as an exercise for the reader.
#include <iostream>
#include <random>
#include <chrono>
#include <cstdint>
#include <fstream>
using namespace std;
struct rng_wrap
{
// it would also be advisable to somehow
// store what kind of RNG this is,
// so we don't deserialize an mt19937
// as a linear congruential or something,
// but this example only covers mt19937
uint64_t seed;
uint64_t invoke_count;
mt19937 rng;
typedef mt19937::result_type result_type;
rng_wrap(uint64_t _seed) :
seed(_seed),
invoke_count(0),
rng(_seed)
{}
rng_wrap(istream& in) {
in.read(reinterpret_cast<char*>(&seed), sizeof(seed));
in.read(reinterpret_cast<char*>(&invoke_count), sizeof(invoke_count));
rng = mt19937(seed);
rng.discard(invoke_count);
}
void discard(unsigned long long z) {
rng.discard(z);
invoke_count += z;
}
result_type operator()() {
++invoke_count;
return rng();
}
static constexpr result_type min() {
return mt19937::min();
}
static constexpr result_type max() {
return mt19937::max();
}
};
ostream& operator<<(ostream& out, rng_wrap& wrap)
{
out.write(reinterpret_cast<char*>(&(wrap.seed)), sizeof(wrap.seed));
out.write(reinterpret_cast<char*>(&(wrap.invoke_count)), sizeof(wrap.invoke_count));
return out;
}
istream& operator>>(istream& in, rng_wrap& wrap)
{
wrap = rng_wrap(in);
return in;
}
void test(rng_wrap& rngw, int count, bool quiet=false)
{
uniform_int_distribution<int> integers(0, 9);
uniform_real_distribution<double> doubles(0, 1);
normal_distribution<double> stdnorm(0, 1);
if (quiet) {
for (int i = 0; i < count; ++i)
integers(rngw);
for (int i = 0; i < count; ++i)
doubles(rngw);
for (int i = 0; i < count; ++i)
stdnorm(rngw);
} else {
cout << "Integers:\n";
for (int i = 0; i < count; ++i)
cout << integers(rngw) << " ";
cout << "\n\nDoubles:\n";
for (int i = 0; i < count; ++i)
cout << doubles(rngw) << " ";
cout << "\n\nNormal variates:\n";
for (int i = 0; i < count; ++i)
cout << stdnorm(rngw) << " ";
cout << "\n\n\n";
}
}
int main(int argc, char** argv)
{
rng_wrap rngw(123456790ull);
test(rngw, 10, true); // this is just so we don't start with a "fresh" rng
uint64_t seed1 = rngw.seed;
uint64_t invoke_count1 = rngw.invoke_count;
ofstream outfile("rng", ios::binary);
outfile << rngw;
outfile.close();
cout << "Test 1:\n";
test(rngw, 10); // test 1
ifstream infile("rng", ios::binary);
infile >> rngw;
infile.close();
cout << "Test 2:\n";
test(rngw, 10); // test 2 - should be identical to 1
return 0;
}

Interleave random numbers

I would like to interleave a random number with some alphanumeric characters, for example: HELLO mixed with the random number 25635 → H2E5L6L3O5. I know %1d controls the spacing, although I'm not sure how to interleave text between the random numbers or how accomplish this.
Code:
int main(void) {
int i;
srand(time(NULL));
for (i = 1; i <= 10; i++) {
printf("%1d", 0 + (rand() % 10));
if (i % 5 == 0) {
printf("\n");
}
}
return 0;
}
btw - if my random number generator isn't very good i'm open to suggestions - thanks
If you're okay with using C++11, you could use something like this:
#include <iostream>
#include <random>
#include <string>
int main() {
std::random_device rd;
std::default_random_engine e1(rd());
std::uniform_int_distribution<int> uniform_dist(0, 9);
std::string word = "HELLO";
for (auto ch : word) {
std::cout << ch << uniform_dist(e1);
}
std::cout << '\n';
}
...which produces e.g.:
H3E6L6L1O5
If you're stuck with an older compiler, you could use rand and srand from the standard C library for your random numbers:
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <string>
int main() {
std::srand(std::time(NULL));
std::string word = "HELLO";
for (int i = 0; i < word.size(); ++i) {
std::cout << word[i] << (rand() % 10);
}
std::cout << '\n';
}

Resources