web2py - do I need another server for a real time application? - websocket

In the web2py examples there is a websocket example which uses tornado here:
gluon/contrib/websocket_messaging.py and this requires another server to be started namely tornado. My questions is, do I need another server? Should I only have one server to handle both the websocket stuff and the normal http requests?
Also, it seems tornado is the server of choice for the 2nd server, could that be something different?
I'm a bit of a newbie to websockets (and webapp development) so any comments/links that would help me better understand this would be appreciated.

Python WSGI based frameworks such as web2py are typically served via threaded web servers. A typical HTTP request occupies one of the server threads only very briefly in order to receive the incoming request and deliver the response, then freeing the thread to serve another incoming request.
Websockets (and long polling), on the other hand, require a long-lived connection between the client (i.e., browser) and the web server. A websocket connection will therefore occupy a thread indefinitely, so you can only have as many connections as you have threads, thus limiting the application to a relatively small number of concurrent users.
In order to enable many simultaneous websocket connections, it is therefore best to serve websockets via a server that features non-blocking network I/O, such as Tornado. For more details, see http://www.tornadoweb.org/en/stable/guide/async.html.
Another option is to use Gevent with monkey patching, which can be used in the context of a WSGI application as described here. Keep in mind, though, that any libraries you use that involve network I/O (such as database drivers) must be compatible with this approach (either via monkey patching or code explicitly designed for coroutines).
If realtime/server-push functionality is a major aspect of your application, and especially if you are new to web development, you might instead consider a framework built for this specific use case, such as Meteor.

Related

Should we prefer SSE + REST over websocket when using HTTP/2?

When using websocket, we need a dedicated connection for bidirectionnel communication. If we use http/2 we have a second connection maintained by the server.
In that case, using websocket seems to introduce an unecessary overhead because with SSE and regular http request we can have the advantage of bidirectionnal communication over a single HTTP/2 connection.
What do you think?
Using 2 streams in one multiplexed HTTP/2 TCP connection (one stream for server-to-client communication - Server Sent Events (SSE), and one stream for client-to-server communication and normal HTTP communication) versus using 2 TCP connections (one for normal HTTP communication and one for WebSocket) is not easy to compare.
Probably the mileage will vary depending on applications.
Overhead ? Well, certainly the number of connections doubles up.
However, WebSocket can compress messages, while SSE cannot.
Flexibility ? If the connections are separated, they can use different encryptions. HTTP/2 typically requires very strong encryption, which may limit performance.
On the other hand, WebSocket does not require TLS.
Does clear-text WebSocket work in mobile networks ? In the experience I have, it depends. Antiviruses, application firewalls, mobile operators may limit WebSocket traffic, or make it less reliable, depending on the country you operate.
API availability ? WebSocket is a wider deployed and recognized standard; for example in Java there is an official API (javax.websocket) and another is coming up (java.net.websocket).
I think SSE is a technically inferior solution for bidirectional web communication and as a technology it did not become very popular (no standard APIs, no books, etc - in comparison with WebSocket).
I would not be surprised if it gets dropped from HTML5, and I would not miss it, despite being one of the first to implement it in Jetty.
Depending on what you are interested in, you have to do your benchmarks or evaluate the technology for your particular case.
From the perspective of a web developer, the difference between Websockets and a REST interface is semantics. REST uses a request/response model where every message from the server is the response to a message from the client. WebSockets, on the other hand, allow both the server and the client to push messages at any time without any relation to a previous request.
Which technique to use depends on what makes more sense in the context of your application. Sure, you can use some tricks to simulate the behavior of one technology with the other, but it is usually preferably to use the one which fits your communication model better when used by-the-book.
Server-sent events are a rather new technology which isn't yet supported by all major browsers, so it is not yet an option for a serious web application.
It depends a lot on what kind of application you want to implement. WebSocket is more suitable if you really need a bidirectional communication between server and client, but you will have to implement all the communication protocol and it might not be well supported by all IT infrastructures (some firewall, proxy or load balancers may not support WebSockets). So if you do not need a 100% bidirectional link, I would advise to use SSE with REST requests for additional information from client to server.
But on the other hand, SSE comes with certain caveats, like for instance in Javascript implementation, you can not overwrite headers. The only solution is to pass query parameters, but then you can face an issue with the query string size limit.
So, again, choosing between SSE and WebSockets really depends on the kind of application you need to implement.
A few months ago, I had written a blog post that may give you some information: http://streamdata.io/blog/push-sse-vs-websockets/. Although at that time we didn't consider HTTP2, this can help know what question you need to ask yourself.

What are the advantages of websocket APIs to middleware?

Some pieces of middleware support websockets natively e.g. HiveMQ: http://www.hivemq.com/mqtt-over-websockets-with-hivemq/. What advantages are conferred to a developer using the websockets API as a first class client to the middleware, rather than routing requests through an intermediary server that supports language specific APIs e.g.
Client -> Middleware
vs
Client -> Server -> Middleware
For example, we could argue that skipping an intermediary server will reduce bandwidth costs, not require a developer to write an extra layer, native SSL websockets support?
What other advantages might be provided to not just a developer, but any party through providing websockets support for middleware?
The main advantage you get is simplicity and in case of HiveMQ, scalability.
Let me explain these advantages:
Simplicity
In case of HiveMQ, you just start the server and you are good to go. All web applications which use a MQTT library over websockets can connect to the server without even knowing that websockets as transport is used. For HiveMQ itself, it's just another MQTT client. So it doesn't matter if the clients are connected via websockets or via a classic TCP connection. I think you already mentioned the other arguments in your question. And of course last but not least the operations guys will thank you if they have one system (in your case the "Server") less to maintain.
Scalability
Software like HiveMQ is very scalable and it can handle up to hundreds of thousands of concurrent connected clients. The chance is high, that the additional layer ("Server" in your case) could introduce a bottleneck. Also, things like load balancing with a HW or SW load balancer gets a lot easier if you can throw out unneeded layers. In general, your architecture of your system will get a lot of easier if you don't need these additional layers (which are not services which can be reused for other applications, like microservices are).
Last but not least it's worth noting, that HiveMQ itself is often integrated with classic middleware / ESBs. That means, people write custom plugins for integrating HiveMQ to their existing middleware. JMS or webservice calls (REST, SOAP) are often used for doing that.
Take that answer with a grain of salt, since I'm involved developing HiveMQ :-)

Real-time client-server interactivity using Websharper

I'm just learning Websharper but, in the short term, I have a business problem that I am trying to solve. I've written a server and WPF-based client that allows the user to vary inputs using controls like sliders and obtain feedback from the server in real-time (i.e. there is no "submit" button).
I'd like to convert this desktop GUI app into a web app using Websharper. How might I do the background request-response to the server triggered by the user sliding and slider and resulting in feedback visualized asynchronously in the web page?
I imagine the most obvious way is to simply make a bunch of [<Rpc>]-decorated methods for your server-side logic and then simply invoke them on any change in the UI. IIRC, Websharper handles the client-server transition transparently, i.e. if you call a server method, the necessary proxy will fire to get you the results.
As has been pointed out you may rely on RPC methods, but this might give unacceptable latency.
At IntelliFactory we are now working on a project that required asynchronous bi-directional and low-latency communication between the server and the client. We ended up using the WebSocket protocol. We are planning to document and release the code into a reusable library soon for people with similar requirements.
The prime advantage of the WebSocket protocol for our purpose was that it allowed to maintain state on the server side of the connection. Our server is a worker role running in Windows Azure. The server is selected randomly by the Azure load balancer when the WebSocket connection is established, and the client talks to the same server while the connection is open. This allows maintaining expensive to initialize per-connection state on the server.
The disadvantage of the WebSocket protocol is lack of support by older browsers. A portable low-latency alternative is SignalR that uses some form of HTTP polling to emulate the functionality on older browsers. Unfortunately we have so far failed to adapt SignalR to our requirements on Azure. It should theoretically be possible but since AFAIK SignalR follows a mostly stateless design this would require coding up a router to redirect messages and "undo" the effects of Azure load balancer.
I don't know integration points of WebSharper, but Rx has many nice concepts and functions for functional and reactive event processing like throttling (needs for slider and async network calls).
https://github.com/Reactive-Extensions/RxJS
https://github.com/panesofglass/FSharp.Reactive

Why use AJAX when WebSockets is available?

I've been using WebSockets for a while now, I have chosen to create an Agile project management tool for my final year project at University utilizing Node server and WebSockets. I found using WebSockets provided a 624% increase in the number of requests per second my application could process.
However since starting the project I've read of security loopholes, and some browsers choosing to disable WebSockets by default..
This leads me to the question:
Why use AJAX when WebSockets seems to do such a great job of lowering latency and resource overhead, is there anything that AJAX does better than WebSockets?
WebSockets isn't intended to replace AJAX and is not strictly even a replacement for Comet/long-poll (although there are many cases where this makes sense).
The purpose of WebSockets is to provide a low-latency, bi-directional, full-duplex and long-running connection between a browser and server. WebSockets opens up new application domains to browser applications that were not really possible using HTTP and AJAX (interactive games, dynamic media streams, bridging to existing network protocols, etc).
However, there is certainly an overlap in purpose between WebSockets and AJAX/Comet. For example, when the browser wants to be notified of server events (i.e. push) then Comet techniques and WebSockets are certainly both viable options. If your application needs low-latency push events then this would be a factor in favor of WebSockets. On the other hand, if you need to co-exist with existing frameworks and deployed technologies (OAuth, RESTful APIs, proxies, load balancers) then this would be a factor in favor of Comet techniques (for now).
If you don't need the specific benefits that WebSockets provides, then it's probably a better idea to stick with existing techniques like AJAX and Comet because this allows you to re-use and integrate with a huge existing ecosystem of tools, technologies, security mechanisms, knowledge bases (i.e. far more people on stackoverflow know HTTP/Ajax/Comet than WebSockets), etc.
On the other hand, if you are creating a new application that just doesn't work well within the latency and connection constraints of HTTP/Ajax/Comet, then consider using WebSockets.
Also, some answers indicate that one of the downsides of WebSockets is limited/mixed server and browser support. Let me just diffuse that a bit. While iOS (iPhone, iPad) still supports the older protocol (Hixie) most WebSockets servers support both Hixie and the HyBi/IETF 6455 version. Most other platforms (if they don't already have built-in support) can get WebSockets support via web-socket-js (Flash based polyfill). This covers the vast majority of web users. Also, if you are using Node for the server backend, then consider using Socket.IO which includes web-socket-js as a fallback and if even that is not available (or disabled) then it will fall back to using whatever Comet technique is available for the given browser.
Update: iOS 6 now supports the current HyBi/IETF 6455 standard.
Fast forward to December 2017, Websockets are supported by (practically) every browser and their use is very common.
However, this does not mean that Websockets managed to replace AJAX, at least not completely, especially as HTTP/2 adaptation is on the rise.
The short answer is that AJAX is still great for most REST applications, even when using Websockets. But god is in the details, so...:
AJAX for polling?
The use of AJAX for polling (or long polling) is dying out (and it should be), but it still remains in use for two good reasons (mainly for smaller web apps):
For many developers, AJAX is easier to code, especially when it comes to coding and designing the backend.
With HTTP/2, the highest cost related to AJAX (the establishment of a new connection) was eliminated, allowing AJAX calls to be quite performant, especially for posting and uploading data.
However, Websocket push is far superior to AJAX (no need to re-authenticate or resend headers, no need for "no data" roundtrips, etc'). This was discussed a number of times.
AJAX for REST?
A better use for AJAX is REST API calls. This use simplifies the code base and prevents the Websocket connection from blocking (especially on medium sized data uploads).
There are a number of compelling reasons to prefer AJAX for REST API calls and data uploads:
The AJAX API was practically designed for REST API calls and it's a great fit.
REST calls and uploads using AJAX are significantly easier to code, both on the client and the backend.
As data payload increases, Websocket connections might get blocked unless message fragmentation / multiplexing logic is coded.
If an upload is performed in a single Websocket send call, it could block a Websocket stream until the upload had finished. This will reduce performance, especially on slower clients.
A common design uses small bidi messages transferred over Websockets while REST and data uploads (client to server) leverage AJAX's ease of use to prevent the Websocket from blocking.
However, on larger projects, the flexibility offered by Websockets and the balance between code complexity and resource management will tip the balance in favor of Websockets.
For example, Websocket based uploads could offer the ability to resume large uploads after a connection is dropped and re-established (remember that 5GB movie you wanted to upload?).
By coding upload fragmentation logic, it's easy to resume an interrupted upload (the hard part was coding the thing).
What about HTTP/2 push?
I should probably add that the HTTP/2 push feature doesn't (and probably can't) replace Websockets.
This had been discussed here before, but suffice to mention that a single HTTP/2 connection serves the whole browser (all the tabs/windows), so data being pushed by HTTP/2 doesn't know which tab/window it belongs to, eliminating it's capacity to replace Websocket's ability to push data directly to a specific browser tab / window.
While Websockets are great for small bi-directional data communication, AJAX still carried a number of advantages - especially when considering larger payloads (uploads etc').
And Security?
Well, generally, the more trust and control is offered to a programmer, the more powerful the tool... and the more security concerns that creep up.
AJAX by nature would have the upper hand, since it's security is built in to the browser's code (which is sometimes questionable, but it's still there).
On the other hand, AJAX calls are more susceptible to "man in the middle" attacks, while Websockets security issues are usually bugs in the application code that introduced a security flaw (usually backend authentication logic is where you'll find these).
Personally I don't find this to be that big of a difference, if anything I think Websockets are slightly better off, especially when you know what you're doing.
My Humble Opinion
IMHO, I would use Websockets for everything but REST API calls. Big data uploads I would fragment and send over Websockets when possible.
Polling, IMHO, should be outlawed, the cost in network traffic is horrid and Websocket push is easy enough to manage even for new developers.
In addition to issues with older browsers (including IE9, as WebSockets will be supported starting from IE10), there are still big problems with network intermediaries not yet supporting WebSockets, including transparent proxies, reverse proxies, and load balancers.
There are some mobile carriers that completely block the WebSocket traffic (that is, after the HTTP UPGRADE command).
With years passing, WebSockets will be more and more supported, but in the meantime you should always have an HTTP-based fall-back method for sending data to the browsers.
Most of the complaining I have read about websockets and security is from security vendors of web browser security and firewall security tools. The problem is they don't know how to do security analysis of websockets traffic, because once it has done the upgrade from HTTP to the websocket binary protocol, the packet content and its meaning is application specific (based on whatever you program). This is obviously a logistic nightmare for these companies whose livelihood is based on analyzing and classifying all your internet traffic. :)
WebSockets don't work in older web browsers, and the ones that do support it often have differing implementations. That's pretty much the only good reason why they aren't used all the time in place of AJAX.
I don't think we can do a a clear comparison of Websockets and HTTP as they're no rivals nor solve the same problems.
Websockets are a great choice for handling long-lived bidirectional data streaming in near real-time manner, whereas REST is great for occasional communications. Using websockets is a considerable investment, hence it is an overkill for occasional connections.
You may find that Websockets do better when high loads are present, HTTP is slightly faster in some cases because it can utilise caching. Comparing REST with Websockets is like comparing apples to oranges.
We should be checking which one provides better solution for our application, which one fits best in our use case wins.
An example of the differences between HTTP and Websockets in the form of a client-size lib that can handle Websocket endpoint like REST APIs and RESTful endpoints like Websockets on the client.
https://github.com/mikedeshazer/sockrest
Also, for those who are trying to consume a websocket API on client or vice versa the way they are used to. The libs/sockrest.js pretty much makes it clear the differences (or rather is supposed to).

nodejs: Ajax vs Socket.IO, pros and cons

I thought about getting rid of all client-side Ajax calls (jQuery) and instead use a permanent socket connection (Socket.IO).
Therefore I would use event listeners/emitters client-side and server-side.
Ex. a click event is triggered by user in the browser, client-side emitter pushes the event through socket connection to server. Server-side listener reacts on incoming event, and pushes "done" event back to client. Client's listener reacts on incoming event by fading in DIV element.
Does that make sense at all?
Pros & cons?
There is a lot of common misinformation in this thread that is very inaccurate.
TL/DR;
WebSocket replaces HTTP for applications! It was designed by Google with the help of Microsoft and many other leading companies. All browsers support it. There are no cons.
SocketIO is built on top of the WebSocket protocol (RFC 6455). It was designed to replace AJAX entirely. It does not have scalability issues what-so-ever. It works faster than AJAX while consuming an order of magnitude fewer resources.
AJAX is 10 years old and is built on top of a single JavaScript XMLHTTPRequest function that was added to allow callbacks to servers without reloading the entire page.
In other words, AJAX is a document protocol (HTTP) with a single JavaScript function.
In contrast, WebSocket is a application protocol that was designed to replace HTTP entirely. When you upgrade an HTTP connection (by requesting WebSocket protocol), you enable two-way full duplex communication with the server and no protocol handshaking is involved what so ever. With AJAX, you either must enable keep-alive (which is the same as SocketIO, only older protocol) or, force new HTTP handshakes, which bog down the server, every time you make an AJAX request.
A SocketIO server running on top of Node can handle 100,000 concurrent connections in keep-alive mode using only 4gb of ram and a single CPU, and this limit is caused by the V8 garbage collection engine, not the protocol. You will never, ever achieve this with AJAX, even in your wildest dreams.
Why SocketIO so much faster and consumes so much fewer resources
The main reasons for this is again, WebSocket was designed for applications, and AJAX is a work-around to enable applications on top of a document protocol.
If you dive into the HTTP protocol, and use MVC frameworks, you'll see a single AJAX request will actually transmit 700-900 bytes of protocol load just to AJAX to a URL (without any of your own payload). In striking contrast, WebSocket uses about 10 bytes, or about 70x less data to talk with the server.
Since SocketIO maintains an open connection, there's no handshake, and server response time is limited to round-trip or ping time to the server itself.
There is misinformation that a socket connection is a port connection; it is not. A socket connection is just an entry in a table. Very few resources are consumed, and a single server can provide 1,000,000+ WebSocket connections. An AWS XXL server can and does host 1,000,000+ SocketIO connections.
An AJAX connection will gzip/deflate the entire HTTP headers, decode the headers, encode the headers, and spin up a HTTP server thread to process the request, again, because this is a document protocol; the server was designed to spit out documents a single time.
In contrast, WebSocket simply stores an entry in a table for a connection, approximately 40-80 bytes. That's literally it. No polling occurs, at all.
WebSocket was designed to scale.
As far as SocketIO being messy... This is not the case at all. AJAX is messy, you need promise/response.
With SocketIO, you simply have emitters and receivers; they don't even need to know about each-other; no promise system is needed:
To request a list of users you simply send the server a message...
socket.emit("giveMeTheUsers");
When the server is ready, it will send you back another message. Tada, you're done. So, to process a list of users you simply say what to do when you get a response you're looking for...
socket.on("HereAreTheUsers", showUsers(data) );
That's it. Where is the mess? Well, there is none :) Separation of concerns? Done for you. Locking the client so they know they have to wait? They don't have to wait :) You could get a new list of users whenever... The server could even play back any UI command this way... Clients can connect to each other without even using a server with WebRTC...
Chat system in SocketIO? 10 lines of code. Real-time video conferencing? 80 lines of code Yes... Luke... Join me. use the right protocol for the job... If you're writing an app... use an app protocol.
I think the problem and confusion here is coming from people that are used to using AJAX and thinking they need all the extra promise protocol on the client and a REST API on the back end... Well you don't. :) It's not needed anymore :)
yes, you read that right... a REST API is not needed anymore when you decide to switch to WebSocket. REST is actually outdated. if you write a desktop app, do you communicate with the dialog with REST? No :) That's pretty dumb.
SocketIO, utilizing WebSocket does the same thing for you... you can start to think of the client-side as simple the dialog for your app. You no longer need REST, at all.
In fact, if you try to use REST while using WebSocket, it's just as silly as using REST as the communication protocol for a desktop dialog... there is absolutely no point, at all.
What's that you say Timmy? What about other apps that want to use your app? You should give them access to REST? Timmy... WebSocket has been out for 4 years... Just have them connect to your app using WebSocket, and let them request the messages using that protocol... it will consume 50x fewer resources, be much faster, and 10x easier to develop... Why support the past when you're creating the future?
Sure, there are use cases for REST, but they are all for older and outdated systems... Most people just don't know it yet.
UPDATE:
A LOT of people have been asking me recently how can they start writing an app in 2018 (and now soon 2019) using WebSockets, that the barrier seems really high, that once they play with Socket.IO they don't know where else to turn or what to learn.
Fortunately the last 3 years have been very kind to WebSockets...
There are now 3 major frameworks that support BOTH REST and WebSocket, and even IoT protocols or other minimal/speedy protocols like ZeroMQ, and you don't have to worry about any of it; you just get support for it out of the box.
Note: Although Meteor is by far the most popular, I am leaving it out because although they are a very, very well-funded WebSocket framework, anyone who has coded with Meteor for a few years will tell you, it's an internal mess and a nightmare to scale. Sort of like WordPress is to PHP, it is there, it is popular, but it is not very well made. It's not well-thought out, and it will soon die. Sorry Meteor folks, but check out these 3 other projects compared to Meteor, and you will throw Meteor away the same day :)
With all of the below frameworks, you write your service once, and you get both REST and WebSocket support. What's more, it's a single line of config code to swap between almost any backend database.
Feathers Easiest to use, works the same on the front and backend, and supports most features, Feathers is a collection of light-weight wrappers for existing tools like express. Using awesome tools like feathers-vuex, you can create immutable services that are fully mockable, support REST, WebSocket and other protocols (using Primus), and get free full CRUD operations, including search and pagination, without a single line of code (just some config). Also works really great with generated data like json-schema-faker so you can not only fully mock things, you can mock it with random yet valid data. You can wire up an app to support type-ahead search, create, delete and edit, with no code (just config). As some of you may know, proper code-through-config is the biggest barrier to self-modifying code. Feathers does it right, and will push you towards the front of the pack in the future of app design.
Moleculer Moleculer is unfortunately an order of magnitude better at the backend than Feathers. While feathers will work, and let you scale to infinity, feathers simply doesn't even begin to think about things like production clustering, live server consoles, fault tolerance, piping logs out of the box, or API Gateways (while I've built a production API gateway out of Feathers, Moleculer does it way, way better). Moleculer is also the fastest growing, both in popularity and new features, than any WebSocket framework.
The winning strike with Moleculer is you can use a Feathers or ActionHero front-end with a Moleculer backend, and although you lose some generators, you gain a lot of production quality.
Because of this I recommend learning Feathers on the front and backend, and once you make your first app, try switching your backend to Moleculer. Moleculer is harder to get started with, but only because it solves all the scaling problems for you, and this information can confuse newer users.
ActionHero Listed here as a viable alternative, but Feathers and Moleculer are better implementations. If anything about ActionHero doesn't Jive with you, don't use it; there are two better ways above that give you more, faster.
NOTE: API Gateways are the future, and all 3 of the above support them, but Moleculer literally gives you it out of the box. An API gateway lets you massage your client interaction, allowing caching, memoization, client-to-client messaging, blacklisting, registration, fault tolerance and all other scaling issues to be handled by a single platform component. Coupling your API Gateway with Kubernetes will let you scale to infinity with the least amount of problems possible. It is the best design method available for scalable apps.
Update for 2021:
The industry has evolved so much that you don't even need to pay attention to the protocol. GraphQL now uses WebSockets by default! Just look up how to use subscriptions, and you're done. The fastest way to handle it will occur for you.
If you use Vue, React or Angular, you're in luck, because there is a native GraphQL implementation for you! Just call your data from the server using a GraphQL subscription, and that data object will stay up to date and reactive on it's own.
GraphQL will even fall-back to REST for you when you need to use legacy systems, and subscriptions will still update using sockets. Everything is solved when you move to GraphQL.
Yes, if you thought "WTH?!?" when you heard you can simply subscribe, like with FireBase, to a server object, and it will update itself for you. Yes. That's now true. Just use a GraphQL subscription. It will use WebSockets.
Chat system? 1 line of code.
Real time video system? 1 line of code.
Video game with 10mb of open world data shared across 1m real-time users? 1 line of code. The code is just your GQL query now.
As long as you build or use the right back-end, all this realtime stuff is now done for you with GQL subscriptions. Make the switch as soon as you can and stop worrying about protocols.
Socket.IO uses persistent connection between client and server, so you will reach a maximum limit of concurrent connections depending on the resources you have on server side, while more Ajax async requests can be served with the same resources.
Socket.IO is mainly designed for realtime and bi-directional connections between client and server and in some applications there is no need to keep permanent connections. On the other hand Ajax async connections should pass the HTTP connection setup phase and send header data and all cookies with every request.
Socket.IO has been designed as a single process server and may have scalability issues depending server resources that you are bound to.
Socket.IO in not well suited for applications when you are better to cache results of client requests.
Socket.IO applications face with difficulties with SEO optimization and search engine indexing.
Socket.IO is not a standard and not equivalent to W3C Web Socket API, It uses current Web Socket API if browser supports, socket.io created by a person to resolve cross browser compatibility in real time apps and is so young, about 1 year old. Its learning curve, less developers and community resources compared with ajax/jquery, long term maintenance and less need or better options in future may be important for developer teams to make their code based on socket.io or not.
Sending one way messages and invoking callbacks to them can get very messy.
$.get('/api', sendData, returnFunction); is cleaner than
socket.emit('sendApi', sendData); socket.on('receiveApi', returnFunction);
Which is why dnode and nowjs were built on top of socket.io to make things manageable. Still event driven but without giving up callbacks.

Resources