Does somebody know why this code inside a .mqh file throws the error 'Open' - undeclared identifier?
It seems like Open, Close, High, Low functions aren´t "detected" in my library. ( Other system functions like Print() are properly loaded ).
bool isBlueCandle( int candle ) export {
return Open[candle] < Close[candle];
}
Not exactly, neither 1:1 copy, nor any MODs, return any error:
//+------------------------------------------------------------------+
//| isBlueCandle TESTs MetaLang.exe: Build 1154 |
//+------------------------------------------------------------------+
bool isBlueCANDLE_TEST( int candle ) export
{
return Open[candle] < Close[candle];
}
bool isBlueCANDLE_TEST2( int candle ) export {
return Open[candle] < Close[candle];
}
bool isBlueCANDLE_TEST3( const int candle ) export {
return Open[candle] < Close[candle];
}
bool isBlueCANDLE_TEST4( const int candle ) export {
return( Open[candle] < Close[candle] );
}
As posted in the comment above, the missing context would help trace the root-cause for your stated issue.
Post a complete copy of the MetaLang.exe Error-description.
Use mouse-right-click + copy ( in MetaLang.exe-Toolbox window on [Error]-page + paste that complete description on StackOverflow )
As an example:
return value of 'OrderModify' should be checked
FOREX_SimpleSAR_EA_msMOD_0.00.mq4 227 19
Just for a clarity sake:
MQL4 recognises both functions ( Print() ) and other objects ( Open ) with specific access-protocol to work with them. In case of functions, one passes "arguments" compatible with the function´s expectations.
Open, High, Volume et al, are not functions, but Arrays, the more, these arrays are special and carefully constructed in the internal MT4-engine, so as to provide a very fast & very efficient manipulation.
MetaQuotes call this a TimeSeries-object, a reversed-stepping-index into
( otherwise normal ) array.
So, your function isBlueCandle() is indeed a function, however, internally it does not call a function, but it compares a cell-values of Open ( the [anIntIndexAsPtrIntoTimeSeriesOrderedARRAY]-*referenced cell )
against a value of Close ( namely the [anIntIndexAsPtrIntoTimeSeriesOrderedARRAY]-*referenced cell ) to construct a bool which the isBlueCandle() function is about to return.
Related
I have a function which needs to parse some arguments and several if clauses inside it need to perform similar actions. In order to reduce typing and help keep the code readable, I thought I'd use a lambda to encapsulate the recurring actions, but I'm having trouble finding sufficient info to determine whether I'm mistakenly invoking undefined behavior or what I need to do to actualize my approach.
Below is a simplified code snippet of what I have currently:
int foo(int argc, char* argv[])
{
Using ss = std::istringstream;
auto sf = [&](ss&& stream) -> ss& {
stream.exceptions(ss::failbit);
return stream;
};
int retVal = 0;
bool valA = false;
bool valB = false;
try
{
for(int i=1; i < argc; i++)
{
std::string arg( argv[i] );
if( !valA )
{
valA = true;
sf( ss(arg) ) >> myInt;
}
else
if( !valB )
{
valB = true;
sf( ss(arg) ) >> std::hex >> myOtherInt;
}
}
}
catch( std::exception& err )
{
retVal = -1;
std::cerr << err.what() << std::endl;
}
return retVal;
}
First, based on what I've read, I don't think that specifying the lambda argument as an rvalue reference (ss&&) is doing quite what I want it to do, however, trying to compile with it declared as a normal reference (ss&) failed with the error cannot bind non-const lvalue reference of type 'ss&'. Changing ss& to ss&& got rid of the error and did not produce any warnings, but I'm not convinced that I'm using that construct correctly.
I've tried reading up on the various definitions for each, but the wording is a bit confusing.
I guess ultimately my questions are:
Can I expect the lifetime of my temporary ss(arg) object to extend through the entire extraction expression?
What is the correct way to define a lambda such that I can use the lambda in the way I demonstrate above, assuming that such a thing is actually possible?
We use a third party Tcl parsing library to validation Tcl script for both syntax and semantic checking. The driver was written in C and defined a set of utility functions. Then it calls Tcl_CreateObjCommand so the script could call these C functions. Now we are in the process of porting the main program to go and I could not find a way to do this. Anyone know a way to call golang functions from Tcl script?
static int
create_utility_tcl_cmds(Tcl_Interp* interp)
{
if (Tcl_CreateObjCommand(interp, "ip_v4_address",
ip_address, (ClientData)AF_INET, NULL) == NULL) {
TCL_CHECKER_TCL_CMD_EVENT(0, "ip_v4_address");
return -1;
}
.....
return 0;
}
Assuming you've set the relevant functions as exported and built the Go parts of your project as in
Using Go code in an existing C project
[…]
The important things to note are:
The package needs to be called main
You need to have a main function, although it can be empty.
You need to import the package C
You need special //export comments to mark the functions you want callable from C.
I can compile it as a C callable static library with the following command:
go build -buildmode=c-archive foo.go
Then the core of what remains to be done is to write the C glue function from Tcl's API to your Go code. That will involve a function something like:
static int ip_address_glue(
ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const *objv) {
// Need an explicit cast; ClientData is really void*
GoInt address_family = (GoInt) clientData;
// Check for the right number of arguments
if (objc != 2) {
Tcl_WrongNumArgs(interp, 1, objv, "address");
return TCL_ERROR;
}
// Convert the argument to a Go string
GoString address;
int len;
address.p = Tcl_GetStringFromObj(objv[1], &len);
address.n = len; // This bit is hiding a type mismatch
// Do the call; I assume your Go function is called ip_address
ip_address(address_family, address);
// Assume the Go code doesn't fail, so no need to map the failure back to Tcl
return TCL_OK;
}
(Credit to https://medium.com/learning-the-go-programming-language/calling-go-functions-from-other-languages-4c7d8bcc69bf for providing enough information for me to work out some of the type bindings.)
That's then the function that you register with Tcl as the callback.
Tcl_CreateObjCommand(interp, "ip_v4_address", ip_address_glue, (ClientData)AF_INET, NULL);
Theoretically, a command registration can fail. Practically, that only happens when the Tcl interpreter (or a few critical namespaces within it) is being deleted.
Mapping a failure into Tcl is going to be easiest if it is encoded at the Go level as an enumeration. Probably easiest to represent success as zero. With that, you'd then do:
GoInt failure_code = ip_address(address_family, address);
switch (failure_code) {
case 0: // Success
return TCL_OK;
case 1: // First type of failure
Tcl_SetResult(interp, "failure of type #1", TCL_STATIC);
return TCL_ERROR;
// ... etc for each expected case ...
default: // Should be unreachable, yes?
Tcl_SetObjResult(interp, Tcl_ObjPrintf("unexpected failure: %d", failure_code));
return TCL_ERROR;
}
Passing back more complex return types with tuples of values (especially a combination of a success indicator and a “real” result value) should also be possible, but I've not got a Go development environment in order to probe how they're mapped at the C level.
I am facing an issue with arduino, since I want to change the state of my device using an enum, but it doesn't seeem to work, my code looks like below. I am not entirely sure where it goes wrong, I think as well that the comparison between settingTo and toP2P could be wrong?
Thanks in advance!
String toP2P = "503250"
String toABP = "414250";
String settingTo = LoRa_Tx.dataRX.substring(indx);
if( settingTo == toP2P ) {
//switching to P2P
Serial.println("current mode 1 "+(String) LoRa_Tx.current_modeRxTx);
if(LoRa_Tx.current_modeRxTx != LoRa_Tx.LoRaMod){
LoRa_Tx.current_modeRxTx = LoRa_Tx.LoRaMod;
}
} else if(settingTo == toABP){
//switching to ABP
if(LoRa_Tx.current_modeRxTx != LoRa_Tx.LoRaWan){
LoRa_Tx.current_modeRxTx = LoRa_Tx.LoRaWan;}
}
}
My class has the enum defined as
typedef enum modeRxTx{LoRaMod, LoRaWan, Idle} ;
modeRxTx current_modeRxTx = Idle;
In general, you should avoid the String class, as it will eventually cause problems. However, given that the LoRa_Tx appears to have a String member, here is one way to watch for those two modes:
if ((indx > -1) && (LoRa_Tx.dataRx.length() >= indx+5)) {
const char *settingTo = &LoRa_Tx.dataRx.c_str()[ indx ];
if ( strncmp_P( settingTo, PSTR("503250"), 6 ) == 0 ) {
//switching to P2P
Serial.print( F("current mode 1 ") ); // <-- saves RAM!
Serial.println( LoRa_Tx.current_modeRxTx );
if(LoRa_Tx.current_modeRxTx != LoRa_Tx.LoRaMod) {
LoRa_Tx.current_modeRxTx = LoRa_Tx.LoRaMod;
}
} else if ( strncmp_P( settingTo, PSTR("414250"), 6 ) == 0 ) {
//switching to ABP
if(LoRa_Tx.current_modeRxTx != LoRa_Tx.LoRaWan) {
LoRa_Tx.current_modeRxTx = LoRa_Tx.LoRaWan;
}
}
}
Instead of creating a substring, it just makes a pointer to the actual characters of data_Rx. The c_str() function returns a pointer to the first character (zero-based index) or the String, and the [ indx ] is the first of the mode number characters. Finally, the & is a pointer to the first mode number character.
Next, it uses a standard library function, strncmp_P (documented here), to compare those mode number characters with the modes you are looking for, and it only compares up to 6 characters. You don't say if there's a delimiter after "503250", so I don't know if "50325076" is possible and should be rejected.
The strncmp_P expects to get a PROGMEM string as the second argument, not just a const char *, so that's what the PSTR macro does. This saves RAM because the PSTR will be stored and compared from FLASH memory (aka PROGMEM). The Serial.print statements should use the F() macro for the same reason.
As far as i have seen function pointers do not exist in MQL4.
As a workaround i use:
// included for both caller as callee side
class Callback{
public: virtual void callback(){ return; }
}
Then in the source where a callback is passed from:
class mycb : Callback{
public: virtual void callback(){
// call to whatever function needs to be called back in this source
}mcbi;
now mcbi can be passed as follows:
afunction(){
fie_to_receive_callback((Callback *)mycbi);
}
and the receiver can callback as:
fie_to_receive_callback(mycb *mcbi){
mcbi.callback(); // call the callback function
}
is there a simpler way to pass a function callback in mql4 ?
Actually there is a way, using function pointers in MQL4.
Here is an example:
typedef int(*MyFuncType)(int,int);
int addition (int a, int b)
{ return (a+b); }
int subtraction (int a, int b)
{ return (a-b); }
int operation (int x, int y, MyFuncType myfunc)
{
int g;
g = myfunc(x,y);
return (g);
}
int OnInit()
{
int m,n;
m = operation (7, 5, addition);
n = operation (20, m, subtraction);
Print(n);
return(INIT_FAILED); //just to close the expert
}
No. Fortunately there is not. ( . . . . . . . however MQL4 language syntax creeps * )
MQL4 Runtime Execution Engine ( MT4 ) has rather fragile process/thread handling and adding more ( and smarter ) constructs ( beyond rudimentary { OnTimer() | OnTick() | OnCalculate() } event-bound callbacks ) constitutes rather a threat to the already unguaranteed RealTime Execution of the main MT4-duties. While "New"-MQL4.56789 may provide hacks into doing so, there might be safer rather an off-loading strategy to go distributed and let MT4-legacy handlers receive "pre-baked" results from external processing Cluster, rather than trying to hang more and more and more flittering gadgets on a-years-old-poor-Xmas-tree.
To realise how brute this danger-avoidance is, just notice that original OnTimer() used 1 second resolution ( yes 1.000.000.000 ns steps in the world, where stream-providers label events in nano-seconds ... )
* ): Yes, since "new"-MQL4 introduction, there were many stealth-mode changes in the original MQL4-language. After each update it is more than recommendable to review "new"-Help file, as there might be both new options & nasty surprises. Maintaining an MQL4 Code-Base with more than a few hundreds man*years, this is indeed a very devastating experience.
Our game engine uses STL sort for sorting a whole range of different objects using the template sort function. As I understand the requirements for the comparison logic is that you have to write it on the basis that it may internally do a reverse sort ( ie reverse the pairing eg. from (a,b) to (b,a) ).
So typically my compare functions looks like this:
bool CompareSubGroupReqsByDescendingFillPriority::operator()
( const ScenSubGroupReq& lhs,
const ScenSubGroupReq& rhs ) const
{
if( lhs.mFillPriority > rhs.mFillPriority ) return true;
else if( lhs.mFillPriority < rhs.mFillPriority ) return false;
else return lhs.mForceGroup->ObjectID() > rhs.mForceGroup->ObjectID();
}
I refer to the "else" statement as the "deal breaker" - ie. it must be able to resolve a case where both lhs and rhs are the same. I typically use the object ID where we are sorting persistent objects.
My question is how can you create a deal breaker when you are sorting non-persistent objects that are simple data types (eg shorts)?
Here is the example I am wrestling with:
bool
ComparePhaseLineIndexesByAscendingValue::operator() ( const short lhs,
const short rhs ) const
{
if( lhs < rhs ) return true;
else if( lhs > rhs ) return false;
else
{
// should never be here as no two phase lines should have the same index
FPAssert( false );
return false;
}
}
Trouble is I have been testing this and found a valid case where where I can have two phase lines with the same index. I don't care which of the entries with the same value ends up first.
What would you advise?
Technically the sort function takes the less than operator. What you are trying to do seems to have something to do with making sure that even equal objects are returned in a specific order. Generally you would just do
bool
ComparePhaseLineIndexesByAscendingValue::operator() ( const short lhs,
const short rhs ) const
{
return lhs < rhs;
}
Though generally a comparison function isn't required for builtin types (I think it's any type with a < operator specified).